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Abstract

Sepsis remains a poorly understood, enigmatic disease. One of the cascades crucially involved in its pathogenesis is the
complement system. Especially the anaphylatoxin C5a has been shown to have numerous harmful effects during sepsis. We
have investigated the impact of high levels of C5a on the adrenal medulla following cecal ligation and puncture (CLP)-
induced sepsis in rats as well as the role of C5a on catecholamine production from pheochromocytoma-derived PC12 cells.
There was significant apoptosis of adrenal medulla cells in rats 24 hrs after CLP, as assessed by the TUNEL technique. These
effects could be reversed by dual-blockade of the C5a receptors, C5aR and C5L2. When rats were subjected to CLP, levels of
C5a and norepinephrine were found to be antipodal as a function of time. PC12 cell production of norepinephrine and
dopamine was significantly blunted following exposure to recombinant rat C5a in a time-dependent and dose-dependent
manner. This impaired production could be related to C5a-induced initiation of apoptosis as defined by binding of Annexin
V and Propidium Iodine to PC12 cells. Collectively, we describe a C5a-dependent induction of apoptotic events in cells of
adrenal medulla in vivo and pheochromocytoma PC12 cells in vitro. These data suggest that experimental sepsis induces
apoptosis of adrenomedullary cells, which are responsible for the bulk of endogenous catecholamines. Septic shock may be
linked to these events. Since blockade of both C5a receptors virtually abolished adrenomedullary apoptosis in vivo, C5aR
and C5L2 become promising targets with implications on future complement-blocking strategies in the clinical setting of
sepsis.
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Introduction

Septic shock accounts for an alarming number of deaths in

intensive care units [1,2] resulting in approximately 215,000

fatalities per year in the US alone, a number very similar to the

numbers of deaths from acute myocardial infarction. More

importantly, the mortality of patients with septic shock has

increased over the last years [3] and septicemia ranks now as the

10th leading cause of death in the U.S., as opposed to no. 13 in

1990 [4]. In fact, despite remarkable scientific and clinical

advances, sepsis continues to be an incalculable and enigmatic

disease for clinicians and researchers. Recent findings suggest that

sepsis might not be a solitary, clearly defined disease, but rather a

puzzling interplay of various biological systems and cascades with

the immune system [5], resulting in a highly variable clinical

picture, that we have yet to fully comprehend. One of the

biological systems crucially involved in the pathogenesis of sepsis is

the complement cascade. Especially, the complement anaphyla-

toxin C5a has been described to lead to adverse effects, when

excessively generated during sepsis. Its detrimental part in the

development of murine sepsis has been highlighted in a recent

report [6]. Simultaneous double-blockade of C5a receptors (C5aR

or C5L2) dramatically improved survival from 0% to 70–80%,

stressing the focal position of C5a during experimental sepsis.

The brain and the immune system extensively communicate with

each other during health and disease [7,8]. To facilitate this

correspondence, common ‘‘chemical languages’’ are employed. In

addition to the hypothalamic-pituitary-adrenal (HPA) axis, the

autonomic nervous system seems to be key in this ‘‘verbal exchange’’,

modulating inflammation via the adrenergic sympathetic and vagus-

mediated, parasympathetic nervous systems [9,10]. Both, endoge-

nous catecholamines as well as vagus-derived acetylcholine seem to

be part of this universal language, functioning as exquisite fine-tuners

of the immune cells during inflammation [11–14]. Although

catecholamines are frequently used last-resort drugs to stabilize

cardiovascular functions during hemorrhagic shock and severe sepsis,

their endogenous regulation during sepsis is poorly understood.

In the current study, we sought to evaluate the consequences of

excessively generated C5a on the adrenal medulla, the body’s

major catecholamine-producing and storing organ, during sepsis.

We hypothesized that, in line with all its reported adverse effects,

excessive levels of C5a might greatly impair the adrenomedullary

catecholamine production and/or their release during sepsis,

which might result in septic shock.
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Results

Experimental sepsis induces adrenomedullary apoptosis
in vivo in a C5a-dependent fashion

Animals were randomly assigned to 3 different groups: sham

animals received abdominal midline incision and manipulation of

the cecum (no ligation or puncture) and no treatment. Positive

control rats received preimmune rabbit serum (5 ml i.p. 12 hrs

before CLP) and were subsequently exposed to CLP. The third

group of animals received anti-sera to C5aR and C5L2 12 hrs

prior to CLP operation (1:1 ratio, total of 5 ml, i.p.) followed by

CLP. Twenty-four hrs after initiation of CLP, animals were

euthanized, adrenal glands surgically removed and immediately

embedded and frozen in OCT compound. Frozen sections (4 mm)

were prepared from the embedded tissue and subjected to

TUNEL analysis. As shown in Figure 1A, sham operated animals

did not display adrenomedullary apoptosis and served as negative

controls. Histological slides obtained from sham operated rats

were preincubated with recombinant DNAse (10 min). The

induced DNA strand breaks prior to TUNEL labeling served as

positive controls (Figure 1B). When adrenal glands of preimmune

rabbit serum treated rats were removed 24 hrs after CLP-induced

sepsis and evaluated by TUNEL technique, there was significant

apoptosis (Figure 1C, D). In sharp contrast, when both receptors

for C5a were blocked by anti-sera to C5aR and C5L2, cells of the

adrenal medulla from CLP rats failed to show significant signs of

apoptosis (Figure 1E, F).

CLP-induced sepsis is associated with antipodal levels of
C5a and norepinephrine

Rats were subjected to cecal ligation and puncture (CLP)-

induced sepsis, as previously described [15]. Plasma samples were

obtained 0–48 hrs after CLP and analyzed for C5a and

norepinephrine levels by ELISA. C5a levels were significantly

elevated 24 hrs after initiation of experimental sepsis and peaked

at 48 hrs (Figure 2A). In sharp contrast, there was a peak of

plasma norepinephrine 6 hrs after initiation of CLP. Norepineph-

rine levels then fell below negative control levels 24 hrs and 48 hrs

after CLP when compared to negative control levels (Figure 2B).

Recombinant rat C5a decreases catecholamine-release
from rat pheochromocytoma-derived PC12 cells

Rat PC12 cells derive from a catecholamine-producing

neuroendocrine tumor of the adrenal medulla, termed a

pheochromocytoma. They secrete norepinephrine and dopamine,

but not epinephrine [16]. As shown in Figure 3A, cells not

otherwise treated released norepinephrine, with levels peaking at

30 min and gradually declining thereafter. In contrast, incubation

of PC12 cells with 10 nM recombinant rat C5a (rrC5a) completely

abolished norepinephrine release over a long period of time (the

entire 12 hr time span). Similar inhibitory effects were observed on

dopamine release from pheochromocytoma cells (Figure 3B). The

abridged secretion of norepinephrine and dopamine by PC12 cells

following rrC5a exposure was dose dependent, reaching the

inhibitory peak at a concentration of 10 nM rrC5a (Figure 3C, D).

To assess if the presence of any non-specific protein had a similar

effect on catecholamine release by PC12 cells, PC12 cells were

incubated with pepstatin, a protein of similar size to rrC5a, as

previously described [17]. Incubation of PC12 cells with pepstatin

failed to significantly alter the time-course of dopamine release

from pheochromocytoma PC12 cells, as demonstrated in

Figure 3E. Moreover, exposure of PC12 cells to lipopolysaccharide

(LPS, 50 ng/ml) led to only a transient decrease of dopamine

release, returning to baseline levels after 2 hrs (Figure 3E),

indicating that the long-term inhibition of catecholamine release

by PC12 cells was unique to C5a. Since PC12 cells do not produce

epinephrine [16], we were unable to evaluate its secretion.

Exposure of PC12 pheochromocytoma cells to
recombinant rat C5a induces apoptosis

To evaluate whether paralysis of catecholamine release from

PC12 cells might be related to induction of apoptosis by rrC5a,

PC12 cells were separated into three experimental groups: the

negative control group was pretreated (1 hr, 37uC) and incubated

(30 min, 37uC) in growth medium only. A positive control group

received pretreatment (1 hr, 37uC) with the inactive derivative of

the pan-caspase inhibitor ZVAD [Z-VAD-FMK(non-omethy-

lated)] followed by medium change and subsequent incubation

with 10 nM rrC5a (30 min, 37uC). A third group was pretreated

for 1 hr at 37uC with the active derivative of the pan-caspase

inhibitor ZVAD [Z-VAD(Ome)-FMK] followed by consecutive

medium change and exposure 10 nM rrC5a (30 min, 37uC).

Following incubation, PC12 cells were stained with Propidium

Iodine or Annexin V. As depicted in Figure 4, negative control

cells displayed virtually no staining for either Propidium Iodine or

Annexin V (panels A, B). When cells were pretreated with inactive

ZVAD and subsequently exposed to rrC5a (10 nM), there was a

substantial fluorescence with Propidium Iodine or Annexin V

stains (Figure 4C, D), indicating induction of apoptosis by rrC5a.

These C5a-dependent effects were significantly reduced when

PC12 cells were pretreated with the active derivate of the pan-

caspase inhibitor, ZVAD (Figure 4E, F).

Discussion

During sepsis, there is a robust activation of one of the

phylogenetically oldest cascade systems of the body, the comple-

ment system [18–21]. Following activation via one of three

different pathways, the complement cascade initiates the forma-

tion of the anaphylatoxins C3a and C5a, C4a and the terminal

‘‘membrane attack complex’’ (MAC). The complement system has

been demonstrated to play a key role in the development of sepsis

in rodents and humans [22,23]. While physiological levels of

complement activation products (such as C3a, C5a or MAC)

might be beneficial and enhance bacterial clearance, excessive

generation of C5a inflicts paralysis of phagocyte functions via

paralysis of the MAPK-signaling pathways and inability to

assemble the NADPH oxidase [24,25], leading to abrogation of

bactericidal functions: chemotaxis, phagocytosis and production of

reactive oxygen species (‘‘oxidative burst’’). In addition to major

disturbance of phagocyte function, excessive C5a levels during

sepsis have been linked to impaired myocardial contractility and

cardiac output [26], profound coagulatory and fibrinolytic changes

[27], and enhanced production of proinflammatory cytokines and

chemokines [17,28], all of which result in reduced survival in

rodents. Recently, the dual-blockade of both C5a-receptors, C5aR

and C5L2, has been shown to greatly improve survival during

moderate and severe experimental sepsis [6]. Thus, excessive

complement activation with subsequent generation of C5a has

been coined ‘‘too much of a good thing’’ [29] or ‘‘the dark side of

C5a in sepsis’’ [30].

In the present study, we describe C5a-dependent induction of

apoptosis of the adrenal medulla in septic rats (Figure 1) as well as

C5a-induced apoptosis of pheochromocytoma-derived rat PC12

cells (Figures 3, 4). In line with our findings, a previous report

described severe destructive ultrastructural lesions in the adrenal

medulla and cortex during endotoxemia [31] and Tracey et al

Adrenal Apoptosis and C5a
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found adrenal medullary necrosis in the late phase of tumor

necrosis factor (TNF)-induced shock in dogs [32]. Histologic

examination of adrenal glands from calves, which succumbed to

gram-negative septicaemia revealed thrombi, haemorrhage and

necrotic changes [33].

During experimental sepsis, apoptosis seems to occur in many

organs. Accordingly, apoptosis was noted in the thymus, spleen,

Peyer’s patches, liver, kidney, lung, intestine and skeletal muscle

[34–38]. In line with these findings, septic humans present with

focal apoptosis in the spleen, colon, and ileum [34,39]. During

sepsis syndrome, apoptosis of immune cells leads to a striking loss

of lymphocytes and dendritric cells [40–42], which, in combina-

tion with the immunosuppressive effects of apoptotic cells,

accounts for the profound immunoparalysis in the late course of

sepsis. Autopsies of patients that died from sepsis have revealed

extensive apoptosis of tissue lymphocytes and gastrointestinal

epithelial cells [39], both cell types with high and rapid turnover.

Administration of ZVAD, the same broad pan-caspase inhibitor

used in the present study, improved survival during experimental

sepsis and decreased lymphocyte apoptosis in a dose dependent

manner in thymus and spleen [43].

Collectively, we present the first evidence for C5a-dependent

apoptosis of pheochromocytoma PC12 cell and apoptosis of

adrenal medulla cells triggered by excessive generation of C5a

sham - neg ctrl sham - pos ctrl

24h CLP + preimmune serum - 1 24h CLP  + preimmune serum - 2

A B

C D

E F

24h CLP + anti-C5aR + anti-C5L2 - 1 24h CLP + anti-C5aR + anti-C5L2 - 2

Figure 1. Induction of C5a dependent apoptosis in adrenal medullae after CLP. (A) Analysis of adrenal medulla in sham operated animals
(neg ctrl) by the TUNEL technique. (B) Adrenal medullae of sham operated animals preincubated with DNAse before TUNEL staining served as
positive control. (C, D) Examination of adrenal medullae obtained 24 hrs after CLP by TUNEL assay. (E, F) Adrenal medullae from animals with dual-
blockade of C5aR and C5L2 acquired 24 hrs after CLP. Slides are representative of n$3 animals per condition.
doi:10.1371/journal.pone.0002560.g001
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during experimental sepsis. Dual blockade of both receptors for

C5a, C5aR and C5L2, during CLP-induced sepsis greatly

ameliorated adrenomedullary apoptosis. Such events may result

in inadequate levels of endogenous catecholamines in the

circulation, perhaps being linked to the onset of septic shock. It

remains to be determined if these findings are relevant to human

sepsis and whether inhibition of adrenomedullary apoptosis might

reduce the level of septic shock and improve the clinical outcome.

Materials and Methods

Animals and Anaesthesia
All investigative procedures and the animal facilities conformed

to the Guide of Care and Use of Laboratory Animals published by

the US National Institutes of Health. The study was approved by

the University animal care and use committee (UCUCA) and

performed according to appropriate guidelines. Specific pathogen-

free male Long-Evans rats (300–325 g; Taconic, Hudson, NY),

were anesthetized with isoflurane (AerraneTM, Henry Schein, NY,

USA) and ketamine (100 mg/kg body weight) (Fort Dodge Animal

Health, Fort Dodge, IA). Sepsis was induced by the CLP

procedure as previously described [15]. In brief, after a midline

incision, the cecum was exposed and ligated ,1/2 of the distance

from the distal pole. The ligated cecum was punctured through

and through with a 19-gauge needle and a small portion of feces

was expressed. The abdomen was closed in layers using 4–0

sutures (Ethicon Inc., Piscataway, NJ) and metallic clips.

Preparation and characterization of antibody to mouse
C5aR and C5L2

For the immunization of rabbits, we used mouse C5aR or C5L2

peptides (with the published sequences [44]) conjugated to keyhole

limpet hemocyanin (Lampire Biological Laboratories). These

antibodies to mouse C5aR and C5L2 have been shown to cross-

react with rat C5aR and C5L2 [45], and have been demonstrated

to be specific for each receptor and improve survival after CLP in

mice [6].

Dual blockade of C5aR and C5L2 has been recently described

[6]. Rats were intraperitoneally administered a single injection

(5 ml) of mixed (1:1) antiserum to C5aR (Lampire Biological

Laboratories) and C5L2 (Lampire Biological Laboratories) or 5 ml

of preimmune rabbit serum (control; Jackson Immunoresearch)

12 h before CLP.

TUNEL assay
The terminal deoxynucleotidyl transferase dUTP nick-end

labeling (TUNEL) technique was applied to determine the extent

of adrenomedullary cell death in tissue sections using a Fluorescein

in situ cell death detection kit (Roche Diagnostics, Indianapolis,

IN) according to the manufacturer’s instructions. Staining was

assessed using fluorescing microscopy and digital imaging.

Collection of plasma samples from septic animals
Blood was drawn by cardiac puncture and anticoagulated with

citrate dextrose (ACD; ratio 9:1). Blood samples were spun down

at 2500 rpm for 10 min at 4uC. Plasma was collected and

immediately frozen at 280uC until further analysis.

ELISA analysis of rat C5a and norepinephrine
For determination of complement anaphylatoxin C5a levels in

plasma samples of rats, an ELISA-system was developed. ELISA

plates (Immulon 4HBX, Thermo Labsystems, Milford, MA, USA)

were coated with purified polyclonal goat anti-rat C5a IgG

(Invitrogen, Carlsbad, CA). This capture antibody is designed to

recognize the C peptide region (amino residues 58–77) of rat C5a,

as previously described [46]. After blocking of non-specific binding

sites with 1% BSA (Sigma-Aldrich, St. Louis, MO) in PBS (Gibco-

Invitrogen, Carlsbad, CA) containing 0.05% TWEEN 20 (Sigma-

Aldrich, St. Louis, MO), the plate was coated with 100 ml diluted

plasma and recombinant rat C5a [38] at defined concentrations

for establishing the standard curve. As detection antibody, goat

anti-rat C5a antibody (Invitrogen, Carlsbad, CA) was biotinylated

(Pierce, Rockford, IL), and 100 ml/well were added. Following

washing steps and incubation with streptavidin-peroxidase (R&D

Systems, Minneapolis, MN), substrate (R&D Systems, Minneapo-

lis, MN) was added and the color reaction was stopped with 1 N

sulfuric acid. The absorbance was read at 450 nm.

For determination of plasma norepinephrine, samples were

analyzed using a commercially available ELISA kit (Rocky

Mountain Diagnostics, Colorado Springs, CO) according to the

manufacturer’s instructions.

Figure 2. Antipodal levels of C5a and norepinephrine following CLP. Animals were subjected to CLP and plasma was obtained 0–48 hrs
after initiation of experimental sepsis. (A) Plasma levels of C5a as a function of time following CLP. (B) Norepinephrine concentrations in plasma 0–
48 hrs after CLP. All bars are presented as mean6s.e.m. For each bar n = 4–10.
doi:10.1371/journal.pone.0002560.g002
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Preparation of rat recombinant C5a (rrC5a)
Preparation of rat recombinant C5a has been previously

described [24].

PC12 cell studies
Rat pheochromocytoma-derived PC12 cells were obtained from

ATCC, (Manassas, VA). They were cultured according to the

manufacturer’s protocol. Cells were incubated as a function of

time or dose-response with recombinant rat C5a. Supernatants

were analyzed for norepinephrine or dopamine via ELISA kits

obtained from Rocky Mountain Diagnostics (Colorado Springs,

CO) according to the manufacturer’s instructions.

Fluorescing staining of PC12 cells with Annexin V and
Propidium Iodine

PC12 cells were incubated with plain medium (neg ctrl) or

medium containing rrC5a (10 nM) for 30 min, and assessed for

Annexin V or Propidium Iodine binding with a commercially

available Annexin V apoptosis detection kit (Santa Cruz, Santa

Cruz, CA) according to the manufacturer’s instructions. Staining

Figure 3. Impaired production of catecholamines by PC12 cells following C5a exposure. Norepinephrine levels in PC12 cell supernatants
incubated with or without recombinant rat C5a (10 nM; rrC5a) as a function of time (A). PC12 cell supernatants incubated with or without 10 nM
rrC5a subjected to dopamine analysis (B). Levels of norepinephrine (C) and dopamine (D) in PC12 cell supernatants following 30 min incubation with
increasing doses of rrC5a (0 nM–100 nM). (E) Analysis of dopamine levels in PC12 cell supernatants after incubation with either LPS (50 ng/ml) or
pepstatin (50 ng/ml) as a function of time. All bars are presented as mean6s.e.m. For each bar n = 5.
doi:10.1371/journal.pone.0002560.g003
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was assessed using fluorescing microscopy and digital imaging. In a

second set of experiments, PC12 cells were pretreated for 1 hr at

37uC with either plain medium, the pan-caspase inhibitor Z-

VAD(Ome)-FMK (100 mM) or its inactive derivative (Z-VAD-

FMK, 100 mM; both MP Biomedicals, Solon, OH). Following

medium change, pretreated PC12 cells were incubated with

10 nM rrC5a (30 min at 37uC) and analyzed with the Annexin V

apoptosis detection kit for Annexin V and Propidium Iodine as

described above.

Statistical analysis
All values are expressed as means6SEM. Data were analyzed

with a one-way ANOVA and individual group means were then

compared with a Student-Newman-Keuls test. Differences were

considered significant when p#0.05.
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