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to this protein family to the developmental program (Aeschli-
mann and Thomazy 2000). Recent experimental evidence 
in support of the role of TGs in cartilage development and 
homeostasis is eloquently outlined in a review by Adamc-
zyk in an accompanying article in this issue of Amino Acids 
(Adamczyk 2016). While TG2−/− mice had no overt devel-
opmental abnormalities (Nanda et  al. 2001; De Laurenzi 
and Melino 2001), deficiencies became apparent once the 
mice were subjected to injury or challenged in experimental 
models of disease (Iismaa et al. 2009). This highlighted two 
points: First, that TG2 is dispensable for skeletal develop-
ment, a fact that is further reinforced by the absence of overt 
skeletal abnormalities and grossly normal bone mineral con-
tent in TG2 and factor XIIIa double knock-out mice (Cord-
ell et  al. 2015). Second, that the inflammatory response in 
TG2−/− mice is substantially altered, which often results in 
delayed or compromised tissue repair but may also offer pro-
tection in certain circumstances, for example following CNS 
injury or in neurodegenerative conditions. A detailed discus-
sion of this is beyond the scope of this review, and we will 
focus here on aspects relevant to joint disease.

TG2 externalization occurs in the context 
of inflammation

Although having well characterized extracellular functions, 
TG2 is externalized by cells through an unconventional 
secretion pathway (Aeschlimann and Paulsson 1994), the 
details of which remain to be completely deciphered. We 
recently identified that P2X7 receptor (P2X7R) activation 
controls active TG2 secretion by cells (Adamczyk et  al. 
2015). This not only established for the first time a model 
in which the steps leading to TG2 externalization can now 
be meaningfully interrogated (P2X7R expressing HEK293 
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Introduction

A role of transglutaminases (TG) in formation of skeletal tis-
sues was postulated based on functional in vitro studies and 
by linking the expression of several of the enzymes belonging 
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cells) but also, importantly, provided a mechanistic expla-
nation for a link between extracellular TG2 activities and 
inflammation. P2X7R is a member of the P2X family 
of nucleotide gated ion channels that is activated by high 
concentrations of extracellular ATP (Hattori and Gouaux 
2012). Ion channel opening allows K+ efflux that trig-
gers inflammasome assembly in innate immune cells in a 
NLRP3-dependent manner (Strowig et  al. 2012), leading 
to caspase-1 autoprocessing and ultimately, maturation 
and secretion of proinflammatory interleukin (IL)-1 fam-
ily cytokines (Mariathasan et al. 2006). Given its require-
ment for high extracellular ATP concentration, P2X7R will 
primarily be activated following injury or in the context of 
inflammation, where P2X7R-mediated release of ATP from 
immune cells acts as a danger signal amplification system. 
TG2 expression is highly upregulated by acute phase injury 
cytokines (Aeschlimann and Thomazy 2000; Nurminskaya 
and Belkin 2012), and hence abundant P2X7R-driven TG2 
release will occur in such an environment. Furthermore, 
co-secretion of thioredoxin (Adamczyk et  al. 2015), an 
oxidoreductase enzyme, will prevent inactivation of TG2 
which would readily occur in the oxidative inflammatory 
environment through the redox sensitive Cys switch mech-
anism of TG2 (Stamnaes et al. 2010a; Jin et al. 2011). In 
combination, this will promote the accumulation of sus-
tained high levels of active extracellular enzyme. The role 
of TG2 in promoting TGF-β activation (Kojima et al. 1993; 
Szondy et al. 2003) may, hence, have a critical function in 
terminating the proinflammatory cascade as TGF-β signal-
ing can render cells inert to proinflammatory signals (Kout-
oulaki et al. 2010), facilitating resolution of the inflamma-
tory response.

IL-1β family cytokines and thioredoxin-1 similar to TG2 
are leaderless proteins that are not targeted to the classi-
cal ER to Golgi pathway for export (Rubartelli et al. 1990, 
1992), and their precise mechanism of secretion remains a 
matter of debate. It is possible that all or part of the mecha-
nism guiding the release of these three proteins is shared, 
particularly as we have shown that TG2 and thioredoxin 
are co-secreted (Adamczyk et al. 2015). A common mecha-
nism that enables rapid deployment of these proteins is also 
consistent with their overlapping functions in innate immu-
nity. Several distinct mechanisms that can support uncon-
ventional protein secretion have been identified (for review 
see Nickel and Rabouille 2009; Rabouille et al. 2012), and 
microvesicle shedding at the plasma membrane, exocyto-
sis of endo-lysosome-derived vesicles or transporter-facil-
itated direct membrane translocation implicated in IL-1β 
secretion (Eder 2009). We have been able to mechanisti-
cally separate P2X7R-stimulated vesicle release from TG2 
export, and have shown that TG2 is directly secreted across 
the plasma membrane in free form (Adamczyk et al. 2015). 
Our data also suggest that TG2 secretion is independent of 

inflammasome assembly but instead relates to the ability 
of P2X7R to induce ‘membrane pores’ (Adamczyk et  al. 
2015; discussed below). Interestingly, recent data show 
that IL-1β secretion can also be de-coupled from NLRP3 or 
AIM2 inflammasome formation and its maturation by cas-
pase-1 processing, and is mediated by a state of membrane 
hyperpermeability (Martín-Sánchez et al. 2016). Although 
single cell analysis supports bulk release of IL-1β in the 
context of inflammasome activation-driven cell death (Shi-
rasaki et  al. 2014), inflammasome-independent P2X7R-
driven IL-1β secretion has been demonstrated in cell mod-
els (Gudipaty et  al. 2003), may have distinct biological 
functions, notably in non-immune cells, and may relate to 
P2X7R activation-mediated membrane pore formation that 
is reversible. Nevertheless, activation of caspase-4/5 can 
trigger a form of programmed cell death termed pyroptosis. 
Pyroptosis is part of the innate immune defense to infec-
tion and features plasma membrane pore formation that 
ultimately results in fragmentation of infected cells. Gas-
dermin D was recently shown to be a critical effector com-
ponent of the canonical NLRP3, AIM2, and NAIP-NLRC4 
inflammasome pathways, substantially impacting on IL-1β 
secretion without affecting caspase-1 autoprocessing or 
IL-1β activation (Shi et  al. 2015; Kayagaki et  al. 2015). 
Cleavage of gasdermin D by inflammatory caspases-4/5 
or -1 leads to dissociation of gasdermin N-domain from its 
autoinhibitory C-domain and results in formation of large 
membrane pores (Aglietti et  al. 2016; Ding et  al. 2016). 
Whether gasdermin D N-domain pores also support release 
of TG2 and thioredoxin from cells undergoing pyroptosis 
remains to be investigated.

Role of the P2X7R‑TG2 pathway in rheumatoid 
arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease 
characterized by specific adaptive immune cell responses, 
synovial hyperplasia and inflammation-driven cartilage and 
bone destruction. Citrullination of proteins by members of 
the peptidyl arginine deiminase (PAD) family of enzymes 
(primarily PAD4 but PAD2 and PAD3 are also involved) is 
a characteristic feature of disease (Harris et al. 2008), and 
the resulting neo-epitopes elicit an immune response via a 
mechanism that shares some similarity to the pathogenesis 
of celiac disease (Molberg and Sollid 2006). Antibodies to 
citrullinated peptides (anti-CCP antibodies or ACPA) sig-
nify disease development, and have become an accepted 
marker in diagnosis (Liao et  al. 2013). More recently, a 
pathogenic loop involving PAD3/PAD4-reactive autoan-
tibodies that activate PAD4 and thereby drive the forma-
tion of immune-stimulating epitopes has been implicated 
in rapid disease progression (Darrah et  al. 2013). Current 
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therapeutic approaches target aspects of immunity (block-
ing TNF-α or targeting B cells) but a substantial fraction of 
patients are nonresponsive to these treatments, highlighting 
first, the fact that pathogenesis is not uniform and second, 
the need to identify the implied additional pathways that 
drive joint destruction.

Activation of P2X7R may drive accumulation of extra-
cellular TG, and ultimately TG-mediated protein modifica-
tion or crosslinking reactions that have a role in pathogene-
sis. In support of this, mouse models of disease linked both 
TG2 and factor XIIIa reaction products mechanistically to 
an exacerbated inflammatory response that drives disease 
progression and joint destruction (Dzhambazov et al. 2009; 
Raghu et al. 2015). Given the role of the NLRP3-dependent 
inflammasome pathway in proinflammatory cytokine pro-
duction, unsurprisingly P2X7R−/− mice were protected 
from inflammatory arthritis as shown using the collagen 
type II (CIA)-induced arthritis model (Labasi et al. 2002). 
P2X7R−/− mice also do not develop Freund’s adjuvant 
(CFA)-induced chronic inflammatory hypersensitivity 
(Chessell et al. 2005). However, it is noteworthy that TG2 
has been shown to modify epitopes targeted by T cells in 
the CIA model, and to exacerbate incidence, severity, and 
histopathological features of disease (Dzhambazov et  al. 
2009). Notably, injection of functional but not inactive 
enzyme also triggers a B cell response to the enzyme itself, 
an event that may originate from complex formation of the 
enzyme with peptides containing T cell epitopes in a pro-
cess akin of what is seen in celiac disease (Stamnaes et al. 
2010b). Interestingly, it has also been shown that P2X7R 
activation in mice drives PAD2-mediated protein citrullina-
tion, an event linked to anti-CCP antibody development in 
RA (Arandjelovic et al. 2012). Hence, ablation of P2X7R 
may have effects on the immune response that go beyond 
suppressing formation of biologically active IL-1 and 
IL-18, namely, also suppressing the formation of posttrans-
lational protein modifications that are targeted by the adap-
tive immune system (Fig. 1).

The efficacy of P2X7R antagonists has been extensively 
examined in rodent models of inflammatory arthritis, with 
some success (for summary see Table  7 in Bartlett et  al. 
2014; McInnes et  al. 2014). Blocking P2X7R suppresses 
synovial inflammation substantially and reduces local tis-
sue damage as well as mechanical hyperalgesia, particu-
larly when administered prior to disease onset, with no 
apparent effect on the systemic acute phase response. Con-
firmatory clinical studies are underway but have so far not 
shown the expected efficacy (Keystone et  al. 2012; Stock 
et al. 2012). One reason for this could be the highly poly-
morphic nature of the P2RX7 gene in the human popula-
tion. It is becoming increasingly clear that a growing num-
ber of amino acid substitutions found in P2X7R have a 
substantial impact on receptor functionality (Stokes et  al. 

2010), and some strongly predispose to chronic inflamma-
tory diseases, whereas others offer protection. Indeed, SNP 
linkage analysis in an RA cohort revealed a positive corre-
lation with the presence of a gain-of-function P2X7R allele 
(Al-Shukaili et al. 2011) which we have shown to mediate 
enhanced TG2 release (Adamczyk et  al. 2015). Hence, it 
may be necessary to consider the P2RX7 genotype when 
evaluating the efficacy of P2X7R antagonists, as antago-
nist binding affinity or baseline receptor activation state 
are P2X7R variant-specific and can differ substantially. 
Indeed, receptor variant-dependent pharmacodynamics has 
been reported for one of the antagonists in development 
(McHugh et al. 2012).

The mechanism by which TG2 contributes to RA pro-
gression is not completely understood. TG2 is overex-
pressed in human RA lesions (Weinberg et  al. 1991), and 
the presence of active TG2 substantially increases sever-
ity of disease in the CIA model (Dzhambazov et al. 2009) 
whereas a virally transduced localized knockdown of TG2 
appears to alleviate joint destruction (Lauzier et  al. 2012). 
As administration of TG2 alone in the absence of collagen 
II immunization does not elicit an immune response, and 
as functional enzyme but not inactive TG2 exacerbates the 
disease course, this suggests that TG2 does not initiate the 
autoimmune response but that TG2-catalyzed reactions 
modify the immune response (Dzhambazov et  al. 2009). 
The fact that the increased disease severity is not localized to 
the immunization site but systemically affects joints further 
suggests that the altered disease course is a consequence of 
exacerbated adaptive immunity (Dzhambazov et  al. 2009), 
and this likely involves targeting of neo-epitopes generated 
by TG2. However, although Q267 in the immunodominant 
collagen II T cell epitope (IAGFKGEQGPK) can be deami-
dated by TG2, this does not lead to enhanced presentation or 
T cell stimulation (Dzhambazov et al. 2009). It is possible 
that other, as yet unidentified epitopes targeted by T cells 
are generated by TG2. Alternatively, the explanation could 
also be the development of a B cell response to TG2. With 
circulating autoantibodies, immune-complex formation at 
RA lesion sites is likely to occur and promoted by inflam-
mation-driven TG2 overexpression and externalization, and 
hence could contribute to exacerbated disease. Indeed, a B 
cell response to TG2 is seen only following administration 
of functional enzyme (Dzhambazov et  al. 2009), and anti-
TG autoantibody-driven pathogenesis has been implicated 
in extraintestinal manifestations of celiac disease (Boscolo 
et  al. 2010; Zone et  al. 2011). However, while anti-TG2 
antibodies have been reported in RA patients and other 
immune-mediated forms of arthritis in some studies (Pic-
arelli et al. 2003), it is not a prevalent or consistent feature 
of human RA (Liao et al. 2013).

In contrast to TG2, factor XIIIa does not apparently alter 
T and B cell responses in the CIA model but plays a role in 
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differentiation of myeloid precursor cells into their mature 
progenies including osteoclasts (Raghu et al. 2015). Never-
theless, factor XIIIa−/− mice display an attenuated proin-
flammatory response. It remains to be investigated whether 
this relates to crosstalk between the immune system and 
the coagulation cascade, leading to enhanced plasma factor 
XIII zymogen activation and fibrinogen deposition which 
drives inflammation. Alternatively, this may relate to exter-
nalization of the catalytic subunit (a2-form) by myeloid 
cells which could have direct, coagulation system-inde-
pendent functions.

Role of P2X7R and TG2 in inflammation 
associated with gout

Enhanced TG2 expression by synovial mononuclear 
cells from patients with gouty arthritis is associated with 
increased production of bioactive TGF-β (Yen et al. 2015). 
TG2 has also been implicated in the clearance of apoptotic 
cells by phagocytes in acute inflammation models (Szondy 
et al. 2003), including a mouse model of gout-like inflam-
mation where it is thought to facilitate clearance of apop-
totic neutrophils by macrophages (Rose et  al. 2006). The 
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Fig. 1   Schematic outlining purinergic signaling-mediated events 
contributing to inflammatory joint destruction. 1 Inflammasome 
assembly is initiated following Toll-like receptor engagement (signal 
1, not shown) and intracellular K+ depletion in response to P2X7R 
channel opening (signal 2), leading to caspase-1 mediated processing 
of pro-IL-1β/pro-IL-18 into the proinflammatory mature cytokines 
(Strowig et al. 2012). Subsequent release of cytokines can occur via 
microvesicle shedding at the plasma membrane (induced by P2X7R 
via MAPK p38 and Rho pathways), although several alternative 
mechanisms have been proposed (Eder 2009; Martín-Sánchez et  al. 
2016). Recent evidence suggests that ‘bulk’ release of IL-1β may be 
largely a consequence of pyroptosis, a form of cell necrosis that is 
triggered by formation of large gasdermin D membrane pores upon 
inflammasome activation (Shirasaki et  al. 2014; Shi et  al. 2015). 2 
TG2 secretion in response to P2X7R activation depends on the mem-
brane pore functionality of the receptor (Adamczyk et  al. 2015). 
However, it appears to be independent of inflammasome activation, 
given that P2X7R-mediated TG2 secretion can be transferred to a 
HEK cell model that lacks inflammasome components and secretion 
is unaffected by caspase-1 inhibition in macrophages (Adamczyk 
et  al. 2015). Thioredoxin, an activator of TG2, is co-secreted with 
TG2 (Adamczyk et  al. 2015), and consequential thioredoxin deple-

tion from thioredoxin-interacting protein (TXNIP) intracellularly 
was shown to induce inflammasome assembly and drive the release 
of thromboinflammatory particles by macrophages (Rothmeier 
et  al. 2015). 3 PAD2/4 release and activation is induced in neutro-
phil extracellular traps (NETs) leading to extensive citrullination of 
extracellular proteins in RA (Spengler et  al. 2015). This implicates 
inflammatory cell death in this process, consistent with its induc-
tion in experimental models by the phorbolester PMA or the calcium 
ionophore ionomycin (Blachère et  al. 2015). However, citrullination 
of proteins during NETosis in the joint is unlikely to represent the 
event leading to the original breakdown of immune-tolerance to cit-
rullinated peptides. A rise in intracellular Ca2+ levels in response to 
P2X7R activation in mast cells was recently shown to lead to PAD2 
release and activation in the absence of cell death (Arandjelovic et al. 
2012), suggesting that the danger signal ATP may drive this process 
in the initial phase during disease development. 4 P2X7R signal-
ing mediates activation of ADAM-10 via intracellular signaling, and 
this is likely due to the rise in intracellular Ca2+ that follows P2X7R 
channel opening (Horiuchi et al. 2007). ADAM-10 activation results 
in shedding of a variety of cell surface proteins that have key regu-
latory roles in inflammation, for example lymphocyte trafficking via 
IL-6 trans-signaling (Garbers et al. 2011)
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mechanism for this appears to involve interactions of extra-
cellular TG2 with β3-integrin and MFG-E8 but is inde-
pendent of catalytic activity (Rose et al. 2006; Tóth et al. 
2009). TG2 secretion normally brings about its activation 
through Ca2+-induced conformational changes (Pinkas 
et al. 2007). However, it is possible that the high concentra-
tions of extracellular nucleotides present at sites of inflam-
mation or an interaction with heparan sulfate-bearing cell 
surface proteins (Lortat-Jacob et  al. 2012) stabilizes the 
nucleotide-bound conformation and thereby prevents Ca2+-
binding and activation. The importance of TG2 in regulat-
ing inflammation in this context was further substantiated 
by the fact that TG2−/− mice exhibited an exacerbated 
inflammatory response in the acute gout-like peritoneal 
inflammation model (Yen et al. 2015). Hyperuricemia and 
gout are metabolic diseases caused by purine metabolism 
disorder. Gout has many manifestations including chronic 
inflammatory arthritis, treatment of which remains a chal-
lenge. Mechanistically, hyperuricemia, i.e., uric acid, the 
end product of purine metabolism, drives monosodium 
urate crystal (MSU) formation (Martillo et al. 2014). MSU 
crystals activate the immune system via toll-like receptor 
activation and inflammasome signaling. An acute episode 
may be brought about by stimulation of synovial mac-
rophages and monocytes to release large amounts of proin-
flammatory IL-1β and IL-18 (Rock et al. 2013), a view that 
is supported by IL-1 antagonism providing clinical benefit 
in patients with gout-associated arthritis (Schlesinger et al. 
2012). Epidemiological studies have shown that only about 
10 % of patients (range 2–36 % depending on study) with 
hyperuricemia will develop gout suggesting that other fac-
tors play an overriding role. While genetic variations in 
P2X7R are suspected of contributing to disease (Gong and 
Chen 2015), no such link has been made for TG2. Atten-
tion has switched to immune activation as a cause because 
immunoglobulins from the synovial fluid of patients with 
gout but not other forms of arthritis promote MSU crystal 
formation. Decoration of crystals with immunoglobulins 
drives inflammation through activation of Fc-receptor bear-
ing cells. Interestingly, MSU immunized B cell-deficient 
mice displayed reduced effector T cell function, and uric 
acid-induced immune activation could be restored by anti-
body transfer supporting that MSU crystals evoke a danger 
signal response (Kanevets et al. 2009).

P2X7R‑TG2 pathway in osteoarthritis: a link 
to inflammation‑driven pain?

P2X7R expression is not restricted to the hematopoietic 
lineage but it is widely expressed in many tissues (Bartlett 
et  al. 2014) including the musculoskeletal system where 
ATP release in response to mechanical loading has been 

postulated to have a regulatory role in tissue homeostasis 
(Garcia and Knight 2010). P2X7R is expressed by chon-
drocytes and, hence, exposure of cells to excessive mechan-
ical stress in osteoarthritis (OA) may lead to ATP release, 
which in turn may trigger TG2 secretion through activa-
tion of P2X7R. Hence, both tissue intrinsic TG2 released 
by chondrocytes themselves as well as associated with the 
inflammatory response could contribute to the elevated lev-
els of γ-glutamyl-ε-lysine crosslinks present in OA tissue 
(Huebner et al. 2009).

P2X7R has several activation states; ATP stimula-
tion initially causes ion channel opening, that besides K+ 
efflux supports Ca2+ and Na+ influx, leading to membrane 
depolarization and activation of intracellular signaling cas-
cades (Coddou et  al. 2011; Bartlett et  al. 2014). This is 
functionally linked to a disintegrin and metalloproteinase 
(ADAM)-10 activation, which leads to chemoattractant 
release that supports lymphocyte homing (Fig. 1) (Garbers 
et  al. 2011). Prolonged ATP exposure leads to formation 
of a ‘membrane pore’ that enables membrane permeabil-
ity to larger organic cations (Virginio et al. 1999; Browne 
et al. 2013). The identity of this pore remains controversial 
as there is conflicting evidence suggesting either dilation 
of the P2X7R channel itself or an interaction of P2X7R 
with another plasma membrane channel, potentially iden-
tified as pannexin-1. However, recent studies demonstrate 
that inflammasome activation is pannexin-1 independent 
(Qu et  al. 2011; Fowler et  al. 2014). Interestingly, muta-
tions in P2X7R that interfere with membrane pore forma-
tion have been associated with reduced chronic pain in OA 
patients (Sorge et al. 2012). Studies in animal models high-
lighted the role of microglia cell-produced proinflamma-
tory cytokines in hypersensitivity to pain, and demonstrated 
that P2X7R pore formation is responsible for neuropathic 
pain sensing (Sorge et al. 2012; Nieto et al. 2016). As TG2 
externalization is also controlled specifically by P2X7R 
membrane pore activity (Fig.  1) (Adamczyk et  al. 2015) 
and extracellular active TG2 is therefore likely to be pre-
sent in this context, it would be interesting to test whether it 
has a role that affects pain signaling.

Conclusions

Based on our recent work and this literature review, we 
conclude that there is potential for the pathological role of 
TG2 contributing to chronic inflammation and autoimmun-
ity to be targeted with P2X7R antagonists. Importantly, 
P2X7R inhibition blocks acute release of large amounts 
of soluble TG2 by macrophages but has no apparent effect 
on the level of cell surface-associated enzyme (Adamczyk 
et  al. 2015) that has a critical function in the phagocytic 
activity of these cells. Recent evidence suggests that an 
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aspect of P2X7R functionality known as ‘membrane pore 
formation’ is more important than the ion channel activity 
of this receptor in inflammation. As TG2 externalization 
is likewise mediated by the P2X7R membrane pore func-
tionality, selectively targeting this activity of the receptor 
is likely to be more effective therapeutically and this also 
reduces the risk of undesired side effects. Development 
of suitable pharmacological inhibitors is an area currently 
under intense investigation. Unexpectedly, nucleoside 
reverse transcriptase inhibitors currently used as anti-viral 
agents have been shown to selectively block large mem-
brane pore activity (Fowler et  al. 2014), and hence, may 
offer for the first time an opportunity to test the efficacy of 
selective therapeutic intervention.
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