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Abstract
Exhaled nitric oxide (FeNO) is an established respiratory biomarker with clinical appli-
cations in the diagnosis and management of asthma. Because FeNO depends strongly on 
the flow (exhalation) rate, early protocols specified that measurements should be taken 
when subjects exhaled at a fixed rate of 50 ml/s. Subsequently, multiple flow (or “ex-
tended”) protocols were introduced which measure FeNO across a range of fixed flow 
rates, allowing estimation of parameters including CawNO and CANO which partition 
the physiological sources of NO into proximal airway wall tissue and distal alveolar re-
gions (respectively). A recently developed dynamic model of FeNO uses flow-concen-
tration data from the entire exhalation maneuver rather than plateau means, permitting 
estimation of CawNO and CANO from a wide variety of protocols. In this paper, we use a 
simulation study to compare CawNO and CANO estimation from a variety of fixed flow 
protocols, including: single maneuvers (30, 50,100, or 300 ml/s) and three established 
multiple maneuver protocols. We quantify the improved precision with multiple ma-
neuvers and the importance of low flow maneuvers in estimating CawNO. We conclude 
by applying the dynamic model to FeNO data from 100 participants of the Southern 
California Children's Health Study, establishing the feasibility of using the dynamic 
method to reanalyze archived online FeNO data and extract new information on CawNO 
and CANO in situations where these estimates would have been impossible to obtain 
using traditional steady-state two compartment model estimation methods.

K E Y W O R D S

Bayesian inference, exhaled breath, FeNO, sampling protocol

1  |   INTRODUCTION

The fractional concentration of nitric oxide in exhaled breath 
(FeNO) is an established biomarker used clinically for the 
phenotyping and management of asthma, with guidelines for 
assessment (ATS, 1999; ATS/ERS, 2005) and interpretation 

developed around a standardized exhalation rate of 50 ml/s 
(FeNO50) (Dweik et al., 2012). This is because for any given 
subject the concentration of NO exhaled depends strongly 
on the exhalation rate (Hogman et al., 1997; Silkoff et al., 
1997). A significant drawback to this approach is that a 
flow rate of 50 ml/s primarily provides information on NO 
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arising from proximal airway wall sources (George, 2008). 
Measuring FeNO at multiple flow rates enables estimation 
of NO sources from distinct anatomical subregions (Eckel 
et al., 2014; Hogman, Drca, Ehrstedt, & Merilainen, 2000; 
Pietropaoli et al., 1999; Silkoff, Sylvester, Zamel, & Permutt, 
2000; Tsoukias & George, 1998), which may provide added 
clinical information for the monitoring of rhinitis and asthma 
(Hogman, 2012; Högman, Malinovschi, Norbäck, & Janson, 
2011; Hogman & Merilainen, 2012; Thornadtsson et al., 
2015). In 2017, guidelines were updated to include multiple 
flow FeNO assessment (Horváth et al., 2017). In the com-
monly employed two-compartment model (George, Hogman, 
Permutt, & Silkoff, 2004) the airways are divided into alveo-
lar and airway compartments, and estimates for the contribu-
tion from each to FeNO can be calculated.

Multiple flow protocols (George et al., 2004) require ob-
serving FeNO at a range of fixed flow rates which is accom-
plished via 3–10  +  exhalation maneuvers, each targeting a 
different exhalation rate (Molshatski & Eckel, 2017). Often 
two (or more) replicate exhalations will be performed at 
each flow rate. In a previous paper (Muchmore, Rappaport, 
& Eckel, 2017) we have shown that measured flow data can 
be used to adjust for the effects of flow rate variation, po-
tentially obviating the need for subjects to exercise respira-
tory control. The dynamic estimation approach introduced in 
(Muchmore et al., 2017) models FeNO throughout all phases 
of exhalation. Even when the target is steady exhalation, flow 
rate variability inevitably occurs during the maneuver since, 
by definition, the flow rate is 0 when exhalation begins and 
rises toward the target rate. Participants often overshoot the 
target, introducing additional variation as they stabilize their 
flow. Because flow rate variability inevitably occurs during 
steady-state protocol measurements, the estimation methods 
introduced in (Muchmore et al., 2017) can also be used to 
calculate partitioned estimates of FeNO sources based on a 
single exhalation, an idea first proposed and demonstrated in 
(Tsoukias, Shin, Wilson, & George, 2001), or from replicates 
of maneuvers targeting a single flow rate.

Our work is motivated by existing FeNO data in a large 
longitudinal study of school children, the Southern California 
Children's Health Study (CHS). A multiple fixed flow rate 
FeNO sampling protocol was employed in later years of the 
study; however, in earlier years only repeated FeNO50 data 
were collected. In this paper, we study how the accuracy and 
precision of partitioned estimates from the Bayesian dynamic 
two-compartment model vary when based upon: a single 
exhalation targeting a single steady-state rate, multiple ex-
halations targeting a single steady-state rate, and multiple 
exhalations targeting multiple steady-state rates. We first ex-
plore these issues using simulated FeNO data, for which the 
true parameter values are known, and we also apply these 
methods to real FeNO data collected in the CHS. Results from 
this work will inform the feasibility of extracting significant 

additional information from archived data by estimating par-
titioned source estimates from repeated online FeNO50 data 
in the CHS and other studies with archived online FeNO data.

1.1  |  Airway model

1.1.1  |  Glossary

•	 r and l are the airway radius and length (respectively), in cm.
•	 z0, zmouth, and zalv are the locations of the sensor, mouth, 

and alveolar boundary, in cm from z0.
•	 c(z,t) is a solution of Equation 1, i.e. the model solution at 

position z and time t, in ppb.
•	 ci: = c (z0, ti) is the model solution at the sensor z0, ĉi is a 

numerical approximation of ci, and c̃
i
 is the measured con-

centration, all in ppb and at time ti.
•	 v (t) is the linear flow rate, in cm/s.
•	 d is the diffusivity of NO in air, in cm2/s.
•	 p is the permeability of airway wall tissue to NO, in cm/s.
•	 cw is the concentration of NO in the airway wall tissue in 

ppb.

Using the notation of (George et al., 2004), the parameters 
we are interested in estimating are CawNO = cw, the “airway 
wall concentration”, and CANO = c(zalv,t), the “alveolar con-
centration” corresponding to the concentration at the alveolar 
boundary zalv.

1.2  |  Model description

We employ a dynamic variant of the two-compartment model 
(Tsoukias & George, 1998), which is summarized below and 
was originally described in (Muchmore et al., 2017). The air-
way is assumed to be a cylinder with fixed dimensions, and 
there are assumed to be two physiological sources contributing 
to FeNO. One of these sources is NO producing epithelial tis-
sue lining the airway. The tissue concentration is assumed to be 
constant throughout the airway and is known as CawNO. As air 
passes through the airway, NO is assumed to diffuse from tissue 
to lumen at a rate proportional to the concentration difference.

The dimensions of the alveolar compartment may vary, 
unlike the airway compartment. However, at any moment it 
is “perfectly mixed”; that is, the NO concentration is assumed 
to be constant throughout and is denoted by CANO. While in 
principle this may vary over time, in practice we assume that 
it is constant on short (seconds-minutes) time scales. As de-
scribed in (Muchmore et al., 2017) the dynamics of this sys-
tem can be modeled by the partial differential equation (PDE).

(1)�

�t
c (z, t)=−v (t)

�

�z
c (z, t)+d

�
2

�z2
c (z,t)+

2p

r

[

cw−c (z, t)
]

,



      |  3 of 11MUCHMORE et al.

where CANO is implicitly included as it determines the inflow 
boundary condition during exhalation. The Bayesian estimation 
approach we employ necessitates repeated simulation of the un-
derlying physical model, which consists of calculating a series 
of numerical solutions ĉ0,ĉ1,… ,ĉn, where exhalation begins 
at t0 and ends at tn. This calculation also requires specification 
of the velocity function v(t), which is the only term that varies 
with time and in a sense “drives” the solution. The fundamen-
tal difference between dynamic and steady-state modeling ap-
proaches is that the latter assumes this as constant, while the 
former (which we employ) uses measured flow data to empiri-
cally estimate this function.

2  |   METHODS

2.1  |  Bayesian inference and parameter 
estimation via Markov Chain Monte Carlo 
(MCMC)

We consider the problem of parameter estimation in a 
Bayesian paradigm (Gelman, Carlin, Stern, & Rubin, 
2003), and here we outline the approach first described in 
(Muchmore et al., 2017). Our goal is to characterize the pos-
terior distribution (generically denoted f(θ|x) for parameters 
θ and data x) in terms of the likelihood f(x|θ) and a prior 
distribution f(θ). In our application the parameters of inter-
est consist of the vector θ = (CawNO, CANO), while x is the 
FeNO data collected for each subject. This consists of a col-
lection of measurements denoted 

{

c̃ij

}

, where c̃ij is the meas-
ured concentration at time ti during maneuver j  ϵ  1, 2,…. 
As is often the case, it is sufficient to work with the unnor-
malized posterior, which simplifies the relationship between 
the posterior, likelihood, and prior into the proportionality 
f (�|x)∝ f (x|�)f (�).

We assume that with θ fixed the corresponding model equa-
tion, and its solution, can be used to calculate the density of the 
observed data. To formulate a likelihood, we further assume 
that the observed values c̃ij arise from a shared parametric con-
ditional distribution with density function f, and that conditional 
on the model solutions cij the observed c̃ij are independent. 
Then the likelihood can be written as f (x�𝜃)=

∏

i

∏

j

f (c̃ij�cij) , 
where θ appears implicitly on the right via the model solution 
cij. Here we assume that c̃ij ∼N

(

cij,𝜎
)

. To efficiently explore 
the posterior distribution we employ a Metropolis-Hastings 
style Markov chain Monte Carlo (MCMC) algorithm  
(Robert & Casella, 2004), which generically proceeds as 
follows:

1.	 Select an initial value θ and calculate the likelihood 
f(θ|x).

2.	 Propose a new value θ′ using a transition kernel q
(

�→�
′
)

 
and calculate the likelihood f(θ′|x).

3.	 Accept the proposed value with probability 
min

[

1,
f (x|��)f (��)q(��→�)

f (x|�)f (�)q(�→��)

]

.

4.	 If the proposal is accepted set θ = θ′, f(θ|x) = f(θ′|x) then 
return to 1; otherwise, return to 1.

The efficiency of this type of algorithm can depend cru-
cially on the choice of transition kernel q. Although man-
ually finding an optimal q may be very difficult, a number 
of recent MCMC algorithms incorporate an “adaptive” tran-
sition distribution (Roberts & Rosenthal, 2009). To account 
for variability in the posterior across individuals, the adap-
tive Metropolis algorithm of (Vihola, 2012) is employed to 
automatically calibrate the proposal distribution, using the 
implementation provided by (Scheidegger, 2018). This both 
increases the sampling efficiency while simultaneously auto-
mating the choice of transition kernel.

Running the MCMC algorithm described above yields a 
collection of points {θk} known as the posterior sample for the 
parameter vector θ. The point estimates reported herein are 
maximum a posteriori (MAP) estimators, that is, the estima-
tor that maximizes the posterior probability. We use uniform 
priors for all parameters, hence in this framework the MAP 
estimator is equivalent to the maximum likelihood estima-
tor (MLE) on a bounded domain. To quantify uncertainty in 
the reported MAP estimates the empirical standard deviation 
of accepted sample points is reported, with the first half of 
points discarded to account for the “burn-in” sampling period.

Calculating the MAP/MLE values is an optimization 
problem, and the MCMC routine can be viewed as a way of 
approximating the solution. One advantage of the Bayesian 
approach over deterministic optimization methods is that the 
posterior sample provides an empirical measure of uncer-
tainty around the estimated values. Probabilistic methods like 
MCMC may also be less likely than deterministic methods 
to get stuck at locally optimal solutions, a problem we have 
encountered when experimenting with deterministic methods 
for simultaneous estimation of CawNO and CANO.

This modeling framework grants us the flexibility to cal-
culate parameter estimates using either the data from a single 
exhalation maneuver or data from multiple maneuvers per-
formed by the same subject on the same date. If we assume that 
each sample from the same individual is independent from the 
others, then the likelihood of a collection of samples is simply 
the product of the likelihoods for the individual samples. All 
MCMC models in this paper run on three chains, each with 
5,000 iterations and with different initial values, specifically 
(100, 1), (200, 2), and (400, 4) for CawNO and CANO respec-
tively. To assess the convergence of the chains we employ the 
Gelman-Rubin (Gelman & Rubin, 1992) statistic, denoted by R̂,  
which is a measure of the relative variance within and between 
chains. Values of R̂ near 1 are an indication of convergence, and 
here we use a threshold of R̂ < 1.1 as our convergence criteria. 
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In the simulation study every chain converged during the initial 
run, although with the real data some samples required addi-
tional iterations as discussed in the discussion section.

2.2  |  Southern California children's health 
study data

Online multiple flow FeNO data were collected at two study vis-
its (2010 and 2011–2012) from more than 1,600 children who 
participated in the population-based cohort of the CHS recruited 
in 2002–2003 from southern California classrooms (McConnell 
et al., 2006). Characteristics of the cohort have been reported 
previously (Linn et al., 2013; McConnell et al., 2006). The study 
protocol (Linn et al., 2009, 2013) requested that participants 
perform nine constant flow FeNO maneuvers at four target flow 
rates: three at 50 ml/s, and two each at: 30 ml/s, 100 ml/s, and 
300 ml/s. Online samples were collected using ECO MEDICS 
CLD-SP Analyzers with DENOX attachment. These devices 
employ chemiluminescent sensor technology to measure NO 
concentrations and ultrasound for measuring flow rates.

For this study, we randomly selected 100 CHS participants 
who performed nine maneuvers at the 2011–2012 visit (as 
specified in the study protocol) when they were ages 14–16 
and at least 2 50 ml/s maneuvers at the previous study visit. To 
validate use of the Bayesian dynamic two-compartment model 
on data arising from various study protocol, we applied it to 
simulated FeNO data (assuming known CawNO and CANO) 
based on observed flow data from both study visits and to ob-
served FeNO data from only the 2011–2012 study visit under 
various study protocol scenarios. The distribution of FeNO50 
in these 100 participants at the 2011–2012 visit is displayed 
in Figure S1 (https​://doi.org/10.6084/m9.figsh​are.8968313). 
The original CHS data collection protocol and this reanalysis 
of archived data was approved by the University of Southern 
California Health Sciences campus institutional review board.

2.3  |  Simulated data scenarios

Seven different sampling scenarios were used in the simulation 
study: four consisted of a single sample at each of the target 
flow rates employed in the CHS: 30, 50, 100, and 300 ml/s; one 
scenario consisted of five samples at 50 ml/s (5@50); one sce-
nario consisted of three samples with one each at 30, 100, and 
300 ml/s (HMA); and the final scenario consisted of all nine 
samples specified in the CHS protocol, which includes two 
samples at 30, 100, and 300 ml/s along with three at 50 ml/s 
(9F). The single and 9F scenarios were chosen as they represent 
either the minimal or maximal amount of data available. The 
HMA scenario was selected as it includes low, medium, and 
high flow rates, which corresponds to the protocol described 
in (Hogman et al., 2002) and (Hogman & Merilainen, 2007). 

Finally, the 5@50 scenario was specified as it corresponds to 
the sampling scenario employed in earlier years of the CHS. It 
should be noted that existing approaches require data at multi-
ple flow rates to enable estimation of multiple parameters, thus 
our ability to estimate multiple parameters based on single flow 
samples, or multiple samples at single rate, is novel.

To generate a sample of values for the parameters CawNO 
and CANO to employ in the simulation study, an inverse 
smoothing spline was created to enable mapping a uniform 
(0, 1) random variable into random variables representative 
of current estimates for the corresponding population dis-
tributions. These population estimates were taken from the 
percentiles for individuals under 20 years of age reported in 
Table 2 of (Hogman et al., 2017), and the (2.5, 5, 25, 50, 75, 
95, 97.5) percentiles for CawNO and CANO were (19, 21, 34, 
58, 123, 208, 439) and (0.11, 0.61, 1.52, 2.05, 2.73, 3.59, 
3.88) respectively. The airway length was assumed to be 
25 cm and the airway volume 100 ml, which is downscaled 
roughly 40% for children based on values of 39.93 cm and 
142 ml used in (Condorelli, Shin, Aledia, Silkoff, & George, 
2007) for adults. Using these values, the simulated data were 
generated by solving the model equation numerically via the 
procedure described in (Muchmore et al., 2017).

2.4  |  Real data scenarios

The scenarios considered when using real FeNO data for 
estimation were identical to those used in simulations, with 
one exception. The simulated scenario using five samples at 
50  ml/s was chosen as it represents the sampling protocol 
used in earlier CHS study periods. A larger goal of this work 
is to enable estimation of both CANO and CawNO using both 
the 5@50 sampling protocol employed in earlier years along 
with the 9F protocol employed in later years. This would pro-
vide longitudinal estimates of both parameters over a 6-year 
period, which when combined with the other data collected 
during the study could prove very useful for future studies. 
The possibility of replicating multiple flow estimates using 
single flow data is considered further in the results section. 
However, the real data used here employed the 9F protocol, 
which specifies only three samples at 50 ml/s. Thus, in the 
real data application the 5@50 scenario is impossible, and 
instead the closest feasible alternative of 3@50 is adopted.

3  |   RESULTS

3.1  |  Simulated data scenarios

The accuracy and precision of the estimates for CawNO and 
CANO with the MCMC estimation procedure applied to the 
simulated data are shown in Figure 1. Specifically, panels 

https://doi.org/10.6084/m9.figshare.8968313
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(a) and (c) show the distribution of the estimation error for 
100 individuals given each scenario for CawNO and CANO, 
respectively, while panels (b) and (d) illustrate the standard 
deviation of the MCMC samples generated during estimation 
of the respective parameters.

In Figure 1a we see that the error in estimating CawNO ap-
pears to be a function of flow rate for the single flow samples, 
with error variability increasing monotonically as the flow rate 
increases. The error in estimation arises from the fact that there 
are many combinations of values for CawNO and CANO which 
produce model solutions very similar to what is observed. One 
reason we employ a probabilistic estimation method is because 
deterministic methods often locate these locally optimal solu-
tions, which can be quite far from the global optima.

For the single flow samples the standard deviation of the 
posterior samples also increases monotonically as a function 
of flow rate, as shown in Figure 1b. These empirical standard 
deviations are a measure of uncertainty in the corresponding 
parameter estimates, with larger values representing greater 
uncertainty. Estimates of CawNO based on multiple samples 
provide more accuracy and precision, and as expected using 
the full complement of nine maneuvers as in scenario 9F 
yields the best results. Although, the differences between the 
9F, HMA, and 5@50 scenarios are small, with HMA provid-
ing the next best accuracy and precision followed by 5@50.

Figure 1c and d illustrate the corresponding results for 
the CANO parameter. For this parameter there is much less 

variation in the accuracy and precision of the single flow rate 
estimates as compared to CawNO. However, there do appear 
to be differences as the number of maneuvers increases, with 
small decreases in error variability and larger decreases in 
posterior sample standard deviation moving from scenarios 
with a single flow to 5@50, HMA, and 9F.

3.2  |  Real data scenarios

The 100 CHS participants were 57% male, primarily Hispanic 
(55%) or non-Hispanic White (31%), 22% reported a doc-
tor's diagnosis of asthma, and had a mean (SD) age of: 15.3 
(0.6) years, mean (SD) height of: 168.5 (8.8) cm, and mean 
(SD) weight of: 63.2 (13.0) kg. Figure 2 illustrates the results 
when this estimation algorithm is applied to real FeNO sam-
ples from the CHS. Because the “true” values for CawNO and 
CANO are unknown for these samples the estimation error 
cannot be calculated. Panels (a) and (c) of Figure 2 are plots 
of the estimates themselves, and unlike Figure 1 there is no 
a priori reason to prefer one distribution to another. Panels 
(b) and (d) of Figure 2 are again the standard deviation of the 
posterior samples, and as in Figure 1, smaller values indicate 
greater precision.

In Figure 2a we can see that the distribution of CawNO 
estimates appears to be similar across the various scenar-
ios. To further quantify the degree of agreement between 

F I G U R E  1   Performance comparison 
of simulation study results for all scenarios. 
(a) Distribution of errors as measured by 
the difference between MAP estimators 
and values of CawNO used in simulation. 
(b) Distribution of empirical standard 
deviation of the MCMC draws after burn-in 
estimating CawNO. (c) Distribution of errors 
for CANO. (d) Distribution of empirical 
standard deviation for CANO
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the methods, in the upper portion of Table 1 we provide 
the Spearman correlation for CawNO estimates from each 
method. These correlations range from moderate to very 
strong (R  =  0.67–0.99), which is consistent with the simi-
larity exhibited by the sample distributions in Figure 2a. 
However, while the actual estimates may be broadly similar, 
Figure 2b shows that the sample posterior standard deviations 
vary considerably. The real data results correspond well with 
the previous simulated data results. Again there is a mono-
tonic relationship with the estimates based on a single flow 
rate, and again lower flow rates appear to offer substantially 
better precision. As before, the multiple flow estimates have 
more similar precision, again with 9F the best followed by 
HMA and 3@50.

Figure 2c illustrates the distribution of CANO parameter 
estimates, which appear to be somewhat more variable across 

methods than for CawNO. The correlation between CANO es-
timates (bottom triangle of Table 1), ranges from 0.65 to 0.99 
but the values tend to be lower than the corresponding values 
for CawNO. As in Figure 1c there is no clear trend in the sam-
ple standard deviations for the single flow scenarios. Also 
similar is the pattern displayed by the multiple flow scenario 
estimates, with improvement in all three cases and the most 
marked reduction in SD for HMA and 9F.

The single flow estimates illustrated in Figure 2 were 
based on a randomly selected sample at the appropriate the 
flow rate taken from the nine collected during the study. 
Because replicate samples were collected at each flow rate, 
another way to assess the quality of the estimates when the 
true parameter value is unknown is by calculating estimates 
for each parameter independently for two different sam-
ples from the same individual at the same rate. The level of 

F I G U R E  2   Results from real data 
application. (a) Distribution of MAP 
estimates for CawNO. (b) Distribution of 
empirical standard deviation of the MCMC 
draws after burn-in estimating CawNO. (c) 
Distribution of MAP estimators for CANO. 
(d) Distribution of empirical standard 
deviation for CANO
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T A B L E  1   Spearman correlation of 
estimates for CawNO (upper triangular cells) 
and CANO (shaded lower triangular cells) 
across all scenarios using real data

Scenario 30 ml/s 50 ml/s 100 ml/s 300 ml/s 3@50 HMA 9F

30 ml/s 0.94 0.87 0.67 0.89 0.94 0.94

50 ml/s 0.81 0.89 0.73 0.94 0.90 0.92

100 ml/s 0.82 0.81 0.76 0.90 0.85 0.86

300 ml/s 0.65 0.70 0.76 0.71 0.67 0.68

3@50 0.80 0.84 0.85 0.75 0.91 0.88

HMA 0.81 0.77 0.81 0.78 0.85 0.99

9F 0.84 0.82 0.84 0.80 0.78 0.99
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agreement between values indicates the degree of replicabil-
ity for a given scenario. In Figure 3 the distribution of abso-
lute differences between these two estimates are illustrated 
at each of the four flow rates, with CawNO shown in Figure 
3a and CANO shown in Figure 3b. For CawNO the median 
difference is smaller at lower flow rates, indicating that esti-
mates based on lower flow rates are more stable. For CANO 
the pattern is the opposite, with higher flow rates showing 
more replicability. These single flow results are broadly con-
sistent with the observation that low flow exhalations pro-
vide more information regarding proximal sources of NO, 
while samples collected at high flow rates are more repre-
sentative of distal NO sources (George, 2008).

To further illustrate the range of estimates within and 
between individuals, the results for three randomly selected 
subjects are shown in Table 2. These subjects were selected 
based on their FeNO50 values, representing the 10th, 50th, and 
90th percentiles. The single flow estimates are less consis-
tent, reflecting the difficulty in estimating multiple parame-
ters from a single exhalation targeting a steady rate. However, 
with multiple samples available the consistency in estimation 
improves, and the HMA and 9F methods estimates are largely 
similar (recall that in Table 1 Spearman's correlation between 
HMA and 9F was 0.99 for both CawNO and CANO).

T A B L E  2   MAP point estimates and 
credible intervals across all scenarios for 
three subjects with FeNO50 at the 10th, 50th, 
and 90th percentiles

Percentile Scenario CawNO 95% CI of CawNO CANO
95% CI of 
CANO

10 30 ml/s 39.27 (32.79, 46.36) 5.94 (4.57, 7.11)

50 ml/s 44.78 (27.36, 63.17) 3.35 (1.83, 4.79)

100 ml/s 20.42 (1.78, 56.77) 3.38 (1.85, 4.24)

300 ml/s 101.72 (6.44, 161.44) 0.62 (0.05, 1.96)

3@50 46.73 (40.43, 55.05) 3.73 (2.99, 4.30)

HMA 55.92 (51.76, 60.44) 1.91 (1.57, 2.24)

9F 57.31 (54.45, 59.96) 2.22 (2.00, 2.47)

50 30 ml/s 61.65 (56.12, 67.34) 8.90 (7.62, 10.06)

50 ml/s 39.34 (26.30, 53.28) 9.53 (8.18, 10.73)

100 ml/s 10.42 (1.08, 48.30) 8.02 (6.31, 8.53)

300 ml/s 29.82 (2.60, 140.77) 2.68 (0.94, 3.29)

3@50 48.87 (42.58, 56.97) 8.93 (8.16, 9.54)

HMA 78.03 (74.19, 81.80) 4.53 (4.20, 4.86)

9F 79.87 (77.38, 82.25) 4.89 (4.68, 5.14)

90 30 ml/s 309.87 (303.72, 316.44) 12.93 (11.65, 14.05)

50 ml/s 343.63 (329.44, 356.58) 12.07 (10.81, 13.36)

100 ml/s 254.04 (223.50, 281.84) 13.50 (12.23, 14.82)

300 ml/s 206.01 (119.59, 293.91) 7.56 (6.20, 8.87)

3@50 358.29 (349.07, 365.59) 11.92 (11.22, 12.70)

HMA 326.61 (322.76, 330.41) 9.30 (8.96, 9.66)

9F 337.54 (335.83, 340.59) 10.47 (10.20, 10.65)

F I G U R E  3   (a) Distribution of absolute differences between 
MAP estimates of CawNO using two independent samples at the same 
flow rate. (b) Distribution of absolute differences between MAP 
estimates of CANO using two independent samples at the same flow 
rate
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3.3  |  Relationship between 3@50 and 9F

In the context of the CHS, the relationship between the 
3@50 and 9F protocols is of interest. Earlier study years col-
lected multiple FeNO samples at only one rate, while later 
years collected FeNO at a range of rates; therefore, currently 
it is only possible to estimate CawNO and CANO for the 
later years. Here, we have estimated both CawNO and CANO 
using multiple samples at a single rate (3@50) and a range 
of rates (9F). We can use these to investigate the relationship 
between the two scenarios for each parameter and estimate a 
regression relating the estimates under each scenario.

The boxplots in Figure 2a indicate that for all methods 
estimates of CawNO have a positive skew, and similarly 
for CANO in Figure 2c, which is not surprising as both are 
concentrations and therefore must be non-negative. To un-
derstand the joint distribution between estimates, and any 
potential relationship between them, Bland-Altman (Bland 
& Altman, 1986) plots can be found in supplemental Figure 
S2 (https​://doi.org/10.6084/m9.figsh​are.8198831). To ac-
count for the skew, we first log-transform the data after 
adding one (log1p), and scatterplots of the resulting values 
are illustrated in Figure 4. To correct for the lack of agree-
ment between the two methods the best fit linear regres-
sion lines and corresponding R2 values are also reported in 
Figure 4, enabling prediction of 9F CawNO and CANO esti-
mates when only repeated samples at 50 ml/s are available.

4  |   DISCUSSION

4.1  |  Summary of findings

In this article, we used simulated data and real multiple flow 
FeNO measurements from the CHS to evaluate the esti-
mation of CawNO and CANO under a variety of fixed flow 
rate sampling protocols using the Bayesian dynamic two-
compartment model. We found that both parameters can be 
reasonably estimated using three or five repeated measures 
of FeNO at 50  ml/s. As expected, estimation is markedly 

improved by using multiple flow rates and more modestly 
improved by including replicates across multiple flow rates. 
We provide quantification of the improvement, which could 
inform future fixed flow sampling designs. Our findings sug-
gest that the dynamic model can be applied to repeated online 
measurements of FeNO50, providing new opportunities for 
re-analysis of existing archived online FeNO50 data.

4.2  |  Comparison with previous literature

The dynamic method applied here is a strict generalization 
of the steady-state approach, as proved mathematically in 
(Muchmore et al., 2017), and the two classes of two-compart-
ment methods are based on the same underlying physical mod-
els and assumptions. However, the dynamic method enables 
estimation of both CawNO and CANO using data from a single 
target flow rate (by exploiting information on within-maneu-
ver variation in flow), a scenario where parameter estimation 
is impossible for steady-state methods. Hence the dynamic 
method parameter estimates reported here are, by design, not 
meant to be directly comparable with steady-state results. 
However, previous results on sampling protocols with steady-
state methods can contextualize our results. In (Molshatski & 
Eckel, 2017) we investigated the design of steady-state sam-
pling strategies that are optimal in the sense of minimizing the 
standard errors of the parameter estimates. For the parameter 
CANO they conclude that sampling at high flow rates is most 
important for reducing the associated standard error, while 
for the parameters DawNO and J’awNO including samples at 
low flow rates is most effective for reducing the associated 
standard errors. (Although we do not estimate DawNO and 
J’awNO directly, CawNO can be expressed as a function of 
these parameters). Moreover, they find that including some 
combination of low (below 50  ml/s), medium (between 50 
and 200 ml/s), and high (above 200 ml/s) flow rate samples 
yields optimal results across all criteria for a strategy based on 
sampling at four different rates. These results are consistent 
with our results illustrated in Figure 1b and d showing that 
multiple samples at a range of different rates leads to smaller 

F I G U R E  4   Joint distribution of log1p 
transformed parameter estimates, and linear 
regression results relating 3@50 results to 
9F estimates for (a) CawNO and (b) CANO
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posterior sample standard deviations than multiple samples 
at the same rate. They also corroborate our results shown in 
Figure 3, which illustrates greater consistency of estimates for 
CawNO at low flow rates, while for CANO estimates at higher 
flow rates tend to be in closer agreement.

4.3  |  Strengths and limitations

Strengths of this study include a comprehensive statistical eval-
uation of estimates for CawNO and CANO under various fixed 
flow sampling protocols with the dynamic model. This includes 
parallel analyses using simulated and real data, providing both 
theoretical and practical insight into the statistical properties 
of the corresponding parameter estimates. We make efficient 
use of archived online FeNO maneuvers in the CHS, and we 
take advantage of real flow data from maneuvers in the CHS 
to generate FeNO profiles in the simulation study. We also es-
tablish a relationship between estimates calculated under the 
9F and 3@30 protocols, which is of significant interest in the 
context of the CHS. More generally, we have established that 
multiple parameters can be estimated from online FeNO data 
that nominally targets a single flow rate. While this approach 
is not generally recommended for future data collection, it may 
provide a way to extract additional information from other ex-
isting FeNO studies or may inform the flow rate sampling de-
sign for studies of patients with severe airway disease who are 
unable to perform maneuvers at more extreme (especially low) 
flow rates (Lázár et al., 2019). Finally, our multiple flow FeNO 
data were generated using a rigorous data collection protocol 
on highly accurate ECO MEDICS CLD-SP analyzers, though 
other devices simultaneously measuring highly time-resolved 
expiratory flow and NO concentration could be used.

This study has several limitations. First, the data collected 
in the CHS had a digital signal filter automatically applied 
by the device manufacturer's software (intended to reduce 
noise in the biofeedback which assists participants in attain-
ing and maintaining target flow rates), so the raw data are 
not available and cannot be recovered. The signal filtering 
induces a dependence between consecutive measurements, 
which is inconsistent with the independence assumption un-
derlying the likelihood. This does not affect the unbiasedness 
of the point estimates, but it may lead to an underestimate 
of the associated posterior variance (Gelman et al., 2003). 
This effect, however, will be counterbalanced by assump-
tions regarding the error variance discussed below. Second, 
an underlying assumption of our dynamic model (as in most 
steady-state two-compartment modeling approaches) is that 
the airway geometry relevant for FeNO dynamics can be rep-
resented by a fixed-size cylinder assumed to be homogenous 
across individuals. The homogeneity assumption could be re-
laxed by estimating airway dimensions as part of the MCMC 
routine, as we are investigating in other ongoing work. A 

cylindrical airway model also ignores the fact that cross-sec-
tional volume and surface area increase with airway depth. 
Previous work with more realistic airway models has shown 
that a cylindrical model with CawNO which is uniformly 
distributed significantly understates the effects of back dif-
fusion and underestimates the tissue concentration required 
in small airways to produce the observed profiles (Shin & 
George, 2002; Van Muylem, Noel, & Paiva, 1985). Third, 
in order to estimate CawNO and CANO from single flow rate 
maneuver(s) we reduced the number of parameters estimated 
from three as reported in (Muchmore et al., 2017) to only 
two here. This is accomplished by fixing the airway perme-
ability p to the constant value 0.04 derived from the values 
used in the simulation study (Eckel et al., 2014). Thus, the 
estimates we calculate are only directly comparable across 
individuals insofar as this assumption holds true. While it 
may be reasonable to assume that this coefficient is roughly 
constant for healthy individuals, diseases like cystic fibrosis 
likely correspond to significant violations of this assumption. 
Fourth, in our MCMC estimation routine we fix the standard 
deviation of the sampling error at σ  =  5  ppb. However, it 
is almost certain that this value is much larger than the true 
sampling error of the instrument, as it is more than two orders 
of magnitude greater than the zero-point noise reported in the 
device specifications. Overestimating the standard deviation 
results in posterior distributions that are over dispersed, or 
equivalently leads to credible intervals that are wider than 
they would otherwise be (Gelman, 2006). This approach is 
conservative in the sense that the precision is almost cer-
tainly underestimated; however, we chose this value as it also 
plays an important role in the MCMC routine's sampling ef-
ficiency. Specifically, R̂ tends to increase as σ decreases and 
vice versa. With σ = 5, R̂ < 1.1 for all simulated examples and 
a large majority of real data examples. As a sensitivity analy-
sis we repeated the analysis for the real data examples where 
R̂ > 1.1 with σ = 10 and σ = 15. In doing so the parameter 
estimates remain essentially unchanged, and R̂ falls below 1.1 
in all cases. As another sensitivity analysis, in supplemental 
Figure S3 (https​://doi.org/10.6084/m9.figsh​are.8198834) we 
recreate Figure 1 excluding estimates where R̂ > 1.1, and they 
are nearly identical. Finally, we used synthetic versions of 
the various sampling protocols by considering subsets of ar-
chived maneuvers conducted as part of a nine flow protocol. 
It is conceivable that participants might perform maneuvers 
differently when independently conducting each sampling 
protocol, and our analyses do not capture these differences. 
However, our approach was an efficient use of archived data.

4.4  |  Conclusions and future directions

In this article, we have demonstrated the feasibility of ap-
plying the dynamic method to archived online target flow 

https://doi.org/10.6084/m9.figshare.8198834


10 of 11  |      MUCHMORE et al.

FeNO data to extract new information on CawNO and 
CANO in situations where these estimates would have been 
impossible to obtain using traditional steady-state two 
compartment model estimation methods. Given the strong 
correlation of estimates from the 9F and 3@50 scenarios, 
these estimates should be useful in population-level re-
search studies. In future work, we will apply the dynamic 
method to archived online FeNO50 data in the CHS from 
two study visits. Researchers collecting new online FeNO 
data for estimating CawNO and CANO, especially for clini-
cal purposes, should collect FeNO at different flow rates. 
We should also note that the dynamic estimation method is 
best suited to data from dynamically varying flow exhala-
tion profiles rather than fixed flow rate maneuvers. In fu-
ture work, we will evaluate the dynamic method applied to 
data from tidal or other variable flow rate maneuvers. This 
will require collecting original data from newly recruited 
subjects, without the various signal processing techniques 
typically applied by default. A key requirement of new data 
collection for this purpose is rapid, synchronized sampling 
of both flow rate and NO concentration; however, limited 
accuracy is expected and explicitly accounted for in the 
model description. It has long been recognized that there is 
potential benefit in optimizing the configuration of existing 
hardware (Condorelli, Shin, & George, 2004), and there 
may be potential for continued symbiotic development of 
sampling and analysis methodologies.
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