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Abstract. Intracerebral hemorrhage (ICH) may lead to 
physical and pathological damage and has been a focus of 
research for decades. Evaluating tensile damage caused by 
deformation in ICH is an important component of damage 
assessment for correct diagnosis and treatment. Traditional 
research on ICH paid little attention to quantified brain 
tissue damage resulting from mechanical factors, and only 
a few reported the mechanical properties of damaged brain 
tissue. The aim of the present study was to present an effec-
tive method that is able to evaluate the tissue damage degree 
in ICH, based on strain energy function. Two finite element 
analysis (FEA) models were analyzed: A three-dimensional 
(3D) model for tissue's tension experiment and a two-dimen-
sional (2D) model for brain tissue's deformation in ICH. The 
polynomial fitting function of stress vs. stretch curve, which 
was derived from previous reports, was used in the FEA as 
the constitutive function of brain tissue. The present study 
demonstrated that white matter could be regarded as hyper-
elastic material when stretch was <1.343, and with stretch 
increasing, tissue injury exacerbated when stretch was 
>1.343. The strain energy loss was not linear in this process, 
and Neo-Hookean and Ogden model's results demonstrated 
a similar change in trend, but a difference in quantity. The 
results from 2D and 3D simulation, respectively, demon-
strated the degree of damage according to the above dividing 
criteria and the possible distribution of tissue damage after 
ICH ictus. An analytical model from a biomechanical 
perspective for white matter injury in ICH may facilitate to 
improve clinical diagnosis and treatment.

Introduction

Extensive research on brain injury following the onset of intra-
cerebral hemorrhage (ICH) has focused on mass effect, ischemia 
and release of clot components (1). However, these findings 
rarely involved how to evaluate tissue's direct damage caused 
by the deformation of tissue in ICH. Following a hemorrhagic 
stroke attack, the initial bleeding causes physical injury to the 
brain's physiological structure (2). As a result, the formation of 
cracks by physical disruption provides space for occurrence of 
hematoma, and the hematoma's mass compresses brain tissues, 
exerting a direct force on white matter in particular (3). With the 
expansion of the hematoma, the extent of physical disruption and 
deformation of surrounding tissues increases, thus the stretch 
caused by deformation induces tissue damage (4). In fact, earlier 
research had investigated soft tissue damage under mechanical 
loadings (5-9). For instance, by comparing morphological injury 
and electrophysiological impairment in an adult guinea pig, the 
tissue-level mechanical thresholds for axonal injury were deter-
mined in vivo (7). The stress-stretch relationship of the human 
brain, within 12 h of death, had been quantitatively studied, and 
the tissue deformation had been described as similar to filled 
elastomers (8). Furthermore, the application of computer-aided 
tools has been extended to evaluate tissue damage. For example, 
a study by Cheng and Hannaford (9) used finite element 
analysis (FEA) to predict tissue damage with in vivo uniaxial 
experimental data of liver and compared the effect of damage 
evaluation between a two-dimensional (2D) and three-dimen-
sional (3D) model. Although increased interests focused on the 
injury mechanisms of soft tissue caused by external mechanical 
forces, there is currently no broadly accepted indicator system 
for evaluating soft tissue damage, and brain tissue is regarded as 
extremely soft tissue (10). To overcome this problem, the present 
study introduced a novel method to evaluate the tensile damage 
of white matter in ICH. Experimental tensile data of white matter 
from former literature (8) was used as the analysis object in the 
present study. The present work was based on the energy conser-
vation principle, strain energy theory and hyperelastic theory in 
continuum mechanics.

Recently, research has used FEA as an effective tool 
for simulating brain tissue deformation of different scales; 
however, it is unable to sufficiently meet the needs of grading 
brain tissue injury in ICH (11,12). In addition, an accurate 
mechanical model is based on accurate experimental data and 
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reasonable assumption. The mechanical test data of human 
brain is scarce, whether in vivo or in vitro, because of ethics 
and scarcity of materials. However, some researchers have 
obtained worthy experiment results. For example, a study by 
Jin et al (13) tested 240 brain tissue specimens under tension, 
compression and shear mode at varying strain rates, and these 
experimental results provided useful information to develop 
accurate constitutive equations for brain tissue. However, 
unfortunately the maximum strains were set below 0.5 by 
Jin et al (13), yet the majority of tissue strains surrounding 
hematoma in ICH are over 0.5, according to computed tomog-
raphy (CT) or magnetic resonance imaging (MRI) images (4). 
A study by Franceschini et al (8) presented the whole damage 
evolution and fracture process in a prismatic specimen of 
white matter, and all these data met the requirements of the 
present study.

Using a suitable mechanical model to fit the experimental 
data, unknown material properties may be determined. To 
predigest the solving process and promote model practica-
bility, brain tissue was treated as isotropic and homogenous 
in the majority of studies, and this setting is also applicable to 
the present study. In a common constitutive equation used to 
describe brain tissue deformation, strain always changes with 
location and time (14-16), which is called strain rate effect. 
However, the deformation of brain tissue in ICH is a one-way 
process before interventional therapy, and the deformation 
slowly continues, with hematoma increasing following the 
onset of ICH (3). It was reasonable to leave relaxation effect 
and strain rate effect out of account in the present work.

The objective of the present study was to identify an 
effective evaluating method for grading white matter tensile 
damage in ICH. On account of ignoring tissue damage in the 
deformation process, an overwhelming majority of previous 
research neglected detection of biological structure integrity 
following experimental operation. Therefore, these results 
were not applicable in present work. Furthermore, it is easier 
to understand that tissue structural damage may lead to change 
of mechanical properties. The mechanical properties of soft 
tissues are changing continually when deformation exceeds 
strain threshold (17) and, up until now, no suitable constitu-
tive equation was able to describe this process. Research has 
demonstrated that, in stretching the optic nerve in vivo, the 
tissue-level strain thresholds for injury ranged from 0.09-0.47, 
with an average strain of 0.181 (7). Even if theories of fracture 
mechanics make significant developments, after more than 
15 years, no suitable mathematical physics model has incor-
porated stretch with structure damage. Therefore, the present 
study established a grading evaluation criterion, which was 
obtained from comparing the quantitative change of strain 
energy between ideal hyperelastic deformation and actual 
deformation, and based on strain energy theory and strain 
energy loss. From a biomechanical perspective for white 
matter's tensile damage in ICH, this simple analytical model 
may facilitate the improvement of clinical diagnosis and treat-
ment.

Materials and methods

Strain energy function. With strain energy loss in deforma-
tion as the studied object, the mechanical behavior of white 

mater under uniaxial tension (8) was the main experimental 
data source. As demonstrated in Fig. 1, white matter stretched 
under the uniaxial tension until structure failed, and the 
results of nominal stress vs. stretch were analyzed by math-
ematical and mechanical methods. Hyperelastic models and 
polynomial fitting models were used to fit the mechanical 
properties, and FEA was used to demonstrate the strain and 
stress distribution during stretching. Model solutions were 
obtained by using ABAQUS/Standard finite element v. 6.12 
software (Dassault Systems Simulia Corp., Johnston, RI, 
USA).

The strain energy function may either be a direct function 
of the principal stretch ratios, W=W (λ1, λ2, λ3), or a function 
of the strain invariants, W=W (I1, I2, I3). Let the deformation 
gradient tensor as: 

  (i)

X is the reference position of a material element and X is 
the current position of the same element. The tension deforma-
tion, as demonstrated in Fig. 1, may be written as: 

  (ii)

Where λi are the principal stretch ratios of tension in the 
Rectangular Cartesian coordinate system: 

  (iii)

We assumed that tissue kept a fixed volume and initial form in 
tension deformation. Thus:

  (iv)

Where λT is the principal stretch ratio in the stretching direc-
tion. Then:

  (v)

From equation (ii), the right Cauchy-Green deformation 
tensor (18) maybe be determined as follows:

  (vi)

In general, an isotropic hyperelastic incompressible material is 
characterized by a strain-energy density function, W, which is 
a function of two principal strain invariants only: W=W (I1, I2), 
where I1 and I2 are defined as (19):

  (vii)

So that:

  (viii)
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During uniaxial tension tests, the tension stress was generally 
evaluated as σ11=T/A, where T is the tension force and A is the 
area of a cross-section of the specimen. Thus:

  (ix)

Hyperelastic models
Neo‑Hookean strain energy function. The Neo-Hookean 
model (20) is often used for the modeling of nonlinear elastic 
material. It is based on the statistical thermodynamics of 
cross‑linked polymer chains and depends on the first invariant 
of the right Cauchy-Green deformation tensor. The strain 
energy function for an incompressible Neo-Hookean material 
under uniaxial mode is given:

  (x)

It yields the following uniaxial tension stress component σ11 
along the x1-axis:

  (xi)

Where C1 is a material constant.

Ogden strain energy function. The Ogden model has been 
used previously to describe the nonlinear stress-strain 
behavior of complex materials, such as rubbers, biological 
tissue and brain tissues (20) The Ogden hyperelastic function 
is given by:

  (xii)

In uniaxial tension, the following equation applies:

  (xiii)

It yields the following uniaxial tension stress component, σ11, 
along the x1-axis:

  (xiv)

For N=1:  (xv)

For N=2:  (xvi)

Where μi and αi are material constants, and λi are the principal 
stretch ratios.

Mooney‑Rivlin strain energy function. The strain energy func-
tion for an incompressible Mooney-Rivlin material (20) is:

  (xvii)

Its strain energy depends on the first and second strain invari-
ants. In uniaxial tension:

  (xviii)

So that:

  (xix)

Where the C1 and C2 are material constants.

Assumptions. The present study was based on the following 
assumptions: White matter was considered to be an incom-
pressible material, and were demonstrated to be isotropic and 
homogenous before structures failing; under a small range of 
stretch (λ≤1.15) loading, the mechanical response of white 
matter, particularly under tension load, could be described by 
hyperelastic models; with the premise of assumption that no 
structural damage occurred in white matter during the whole 
stretch process, the hyperelastic model and material param-
eters mentioned above could be extended to use in a wider 
range (λ≤2.24); and, without consideration of energy loss, such 
as heat transfer, during the actual deformation process under 
tension loading, the transmission of energy was just restricted 
to energy storage, which was expressed as strain energy, and 
structural failure.

Damage evaluation. As previously mentioned, the present 
study assumed that brain tissue could be treated as a 
hyperelastic material in a small range of deformation under 
tension. These limited data could be fitted by using common 
hyperelastic constitutive models, and the constitutive relation 
could be generalized to present an ‘undamaged’ stress-stretch 
relationship in large deformation in tension. Then, WUDG was 

Figure 1. Schematic representation of uniaxial tensile experiment, the stretch 
is defined as the ratio of the initial length to the length after tension. λ, stretch; 
L, distance; X1, vertical direction; X2, horizontal direction.
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defined as strain energy for the ‘undamaged’ stress‑stretch 
curve and WEPT as strain energy for the experimental curve. 
Therefore, it was evident that the difference between WUDG and 
WEPT, which could be defined as:

  (xx)

Quantified the degree of tissue damage in stretching. According 
to equation (ix), the WUDG and WEPT could be obtained by 
getting the definite integral of fitting functions. Considering 
white matter as a soft and vulnerable material, a traditional 
polynomial function, rather than common mechanical consti-
tutive models, were used to describe the relationship between 
experimental tension stress values and the corresponding 
amount of stretch, and the parameters were given by nonlinear 
least‑square fitting. The regression equation was as follows:

  (xxi)

Where σ11 is tension stress, λT is the principal stretch ratio in 
the stretching direction and Bi is the coefficient in each term. 
The fitting procedure was performed by using the nonlinear 
fitted module in OriginPro 8.0 (OriginLab, Northampton, MA, 
USA) and the quality of fit for each model was assessed based 
on R2. Table I demonstrated the coefficients of the regression 
equation, and inflexion points have been sought through high 

order derivation, as demonstrated in Fig. 2. The first inflexion 
point appeared when stretch reached 1.343, and it marked the 
beginning of tissue mechanical property change. In the present 
study, it was enough to ensure an ideal hyperelastic deforma-
tion if the stretch was not >1.15.

If a small stretch (λ≤1.15) of brain white matter could 
be regarded as ‘undamaged’ deformation, we could have 
the hyperelastic constitutive function based on strain energy 
function by fitting these experimental data, and if the above 
constitutive function could be used to describe an ‘undam-
aged’ deformation of brain white matter in the whole process 
of tension load, we could have the ‘undamaged’ constitutive 
equation, which presented the different stress-strain relation-
ship with the experimental curve. It was clear that WDMG was a 
relation of function dependent on stretch, and the increment in 
WDMG expressed the intensity of structural failure.

Finite element analysis. The 3D model from the white 
matter stretch experiment with geometry and displacement 
by Franceschini et al (8) was applied in Fig. 1. To simplify 

Figure 2. Stretch‑stress curve for polynomial function, inflexion points and 
extreme point.

Figure 3. 2D grid of the brain parenchyma.

Table I. Coefficients of the regression equation.

Parameters Value Standard Error

Intercept 162.54421 83.33519
B1 -813.54332 342.58013
B2 1629.70556 591.66707
B3 -1710.6673 556.7951
B4 1023.37927 308.54665
B5 -350.50895 100.75664
B6 63.9283 17.96696
B7 -4.81159 1.35075
R2 0.9954 -

Bi, coefficient in the regression equation.

Table II. List of material constants for white matter on the 
premise of the stretch at λ≤1.15.

 Model
Material ----------------------------------------------------------------------------------------
constant Neo-Hookean Ogden Mooney-Rivlin

C1 762.75 ‑ -2097.043
C2 - - 3134.634
µ1 - 1799.094 -
α1 - -7.0557 -
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simulation, a finite element model that only included tested 
tissue had been set up. The tensile process was divided into 
three stages according to protrude and concave of the poly-
nomial fitted curve, as demonstrated in Fig. 2. The 2D model 
of brain tissue deformation with geometry and displace-
ment for bleeding in ICH was demonstrated in Fig. 3. The 
model comprised 4313 8-node quadrilateral elements of type 
CPE8RP (ABAQUS v. 6.12 Standard,), and 13,373 nodes. All 
nodes on the outer edge in all directions constrained except 
for the gap edge between the left and right hemisphere. 
Elements were detached along the direction of the hema-
toma's common position on the cross section. The load was 
acted on the detached free edge, and the load simulated the 
pressure applying on the edge by the mass effect of hema-
toma in ICH.

Results 

Model validation. The fitting results for stretch no greater than 
1.15 was plotted in Fig. 4, and all hyperelastic models demon-
strated good agreement with experimental results (8). On the 
premise of λ≤1.15, the material constants for white matter were 
indicated in Table II. The Mooney-Rivlin model demonstrated 
an improved fitting effect compared with the other models. The 
Ogden and Neo-Hookean models were not stable for extending 
to a larger scale. When the stretch was >1.18, the changing 
curve of stress declined in the Mooney-Rivlin model. This 
result was not consistent with the stress-strain relationship 
in this simple tension experiment, and so the Mooney-Rivlin 
model was eliminated.

In Fig. 4B, the results of nominal stress vs. stretch for the 
Ogden and Neo-Hookean models were demonstrated, which 
were extrapolated to a larger scale by material constants on 
the premise of λ≤1.15 and polynomial fitting. The majority 
of the Ogden and Neo‑Hookean fitting curves were located 

Figure 5. Difference of strain energy loss and per unit increment of strain 
energy loss between hyperelastic model and the polynomial fitting model 
with the increase of stretch. (A) Strain energy loss and (B) per unit increment 
of strain energy loss. WDMG was defined as difference between strain energy 
for the ‘undamaged’ stress-stretch curve strain energy for the experimental 
curve, and ΔW is the loss strain energy between fitting curve and hyperelastic 
models.

Figure 4. Comparison of the experimental results with theoretical models. (A) Results on the premise of λ≤1.15. (B) Results on the premise of ideal ‘undam-
aged’ deformation. (C) Neo‑Hookean fitting curve compared with polynomial fitting curve and the degree of tissue damage in tension. (D) Ogden fitting curve 
compared with polynomial fitting curve and the degree of tissue damage in tension. λ, stretch.
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above the polynomial fitting curve. The area under the curves 
demonstrated corresponding strain energy, and the shaded 
area in Fig. 4C and D indicated WDMG: The degree of tissue 
damage in comparison with the Ogden and Neo-Hookean 
fitting curves, respectively. ΔWNeo-Hookean and ΔWOgden were used 
to represent the difference of strain energy between the hyper-
elastic model and the polynomial fitting model with increasing 
stretch. Fig. 5A demonstrated that there was no distinction 
in the trend of strain energy loss during the tensile process. 
By setting fix‑stretch‑increment=0.01, per unit increment of 
ΔWNeo-Hookean and ΔWOgden had been calculated and compared 
(Fig. 5B). The change of per unit increment of strain energy 
loss in the two groups demonstrated a similar trend; however, 
the maximum value appeared at stretch=1.61 in ΔWNeo-Hookean 
and at stretch=2.24 in ΔWOgden. Combining this result with the 
inflexion points on the polynomial fitting curve in the present 
study, the level of damage in stretch could be divided into four 

phases: Undamaged (λ≤1.343); slight damage (1.343≤λ≤1.863); 
serious damage (1.863≤λ≤2.241); and fracture (λ≥2.241).

Taking the polynomial fitting model (equation xxi) as 
a constitutive function, Fig. 6 demonstrated Mises- and 
S22-stress distribution under the different stretch lengths 
based on the study by Franceschini et al (8). The simulation 
demonstrated a strong agreement with the experimental results 
that both sides of a specimen had been fixed on a stretching 
device so that the deformation of both ends was less than the 
mid part in the stretching direction. The concentration Mises 
stresses were located in the corner regions in contact with 
the stretching device, and tensile stress was concentrated in 
the mid part. The tensile load on the end of the white matter 
agreed with experimental data in checkpoints (λ=1.343, 1.863 
and 2.241), as demonstrated in Fig. 6A, C and E. Results also 
indicated that the tissue broke in experiments described by 
Franceschini et al (8), when the S22 reached ~4.676 kPa.

Figure 6. Finite element analysis of uniaxial tension experiment on white mater. (A) S22 stress distribution and (B) Mises stress distribution at λ=1.343. (C) S22 
stress distribution and (D) Mises stress distribution at λ=1.863. (E) S22 stress distribution and (F) Mises stress distribution at λ=2.241. λ, stretch. 
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Stress distribution. Fig. 7 demonstrated the Mises stress 
distributions of the loading caused by the mass effect of the 
hematoma. Stress increased around the crack as the pressure 
was applied on the crack edges, and maximum stress was 
located in both ends of the crack. As demonstrated in Fig. 6F, 
the maximum tolerance of Mises stress was set to 4.908 kPa 
(mean of Mises stress on the mid part). The area of ventricle 
close to the hematoma was evidently reduced when the loading 
was set to 5.96 kPa, caused by the mass effect of the hema-
toma. Apart from at both ends of the crack, the stress was 
concentrated at regions located in the ventricle side. Fig. 7C-E, 
respectively, demonstrated the strain distribution in the X-axis, 
Y-axis and X-Y-axis directions. The maximum value of strain 
derived from numerical simulation was 1.543 and the experi-
mental expectation value was 1.241.

Discussion

Spontaneous intracerebral hemorrhages commonly occur in 
the white matter, which is described as a particular location 
where axons gather and interact with each other by fibers (21). 
Due to hemorrhage, the effect of a tear on white matter is the 
direct physical injury; however, the potential damage, which 
is caused by tissue deformation and mass effect, cannot be 
ignored. Within a small deforming range, the deformation 
behavior of brain tissue is considered to obey nonlinear hyper-
elastic law, as does the majority of biological soft tissues (20). 
However, within a larger deforming range, the deformation 
has been indicated to be entirely different due to structural 
damage of the biological tissue itself (7), which may be 
predominantly attributed to the failure of cellular structure 

Figure 7. Von Mises stress and strain distributions in the simulation of intracerebral hemorrhage. (A) Deformation of whole parenchyma after hematoma 
accumulation. (B) Distribution of the stress concentration. Deformation distributions in (C) NE11, (D) NE22 and (E) NE12 direction. NE11, horizontal direc-
tion; NE22, shear direction; NE12, vertical direction. 



REN et al:  EVALUATING BRAIN TENSILE DAMAGE BASED ON STRAIN ENERGY4850

and cell junctions. As demonstrated in Fig. 8, common cell 
junctions may have a role in linking cells with other cells 
or the surrounding matrix, regardless of what physiological 
functions or connection strength they had. The degree of 
irreversible distortion determines whether the cell junctions 
have been damaged (22). In former literature, according to 
nonlinear mechanical law, the stretch-stress curves obtained 
in the present study may be divided into five parts: An initial 
stiff response; hardening behavior; locking behavior; hard-
ening; and softening (8). However, before white matter suffers 
irreversible structural damage, it is a reasonable condition to 
treat white matter as a simple homogeneous material, although 
it will not be sufficient to describe mechanical properties of 
white matter under large deformation. It is reasonable to infer 
that each part corresponds to a certain degree of failure of cell 
or tissue structure and junctions. With the deformation inten-
sified, the mechanical behavior of brain tissue may change 
constantly, and it is difficult to abstract mechanical parameters 
according to mechanical law, such as continuum mechanics or 
fracture mechanics (23). Therefore, in the present study, the 
method, which combines strain or stretch with strain energy 
loss, should be an effective way to gauge the damage degree of 
brain white matter.

During uniaxial stretching of white matter, the curve of 
nominal stretch vs. nominal stress demonstrated mechanical 
behavioral changes at different stages, and the entire process 
could be divided into three parts: 1) nondestructive deforma-
tion; 2) destructive deformation; and 3) fracture. The axonal 
microstructure in the optic nerve demonstrated an undulated 
appearance (22), which possesses the ability to withstand some 
degree of distortion for deformation, and individual axons 
in white matter demonstrate a similar appearance (2). While 
deforming, if the degree of deformation exceeds the limit, cell 
junctions and cytoskeletons will fracture, and cell structure will 
collapse (22). When structural damage reaches the critical level, 
severe tear ictus may occur (24). It was comparatively easy to 
match nondestructive deformation and fracture with a section of 
the stress-stretch curve; however, the degree of structure damage 
under destructive deformation is difficult to measure. The fitting 
curves for nominal stretch to nominal stress had been studied 

for the correlation between the degree of structure damage and 
the concavity and convexity of fitting function. In the present 
study, regarding deformation before the point (1.343, 0.648) as 
nondestructive deformation, and after the point (2.241, 2.685) as 
fracture, the inversion point (1.863, 1.738) was likely to partition 
destructive deformation into two sub-phases, which corresponds 
to certain structural failure. A study by Bain and Meaney (7) 
investigated tissue-level thresholds for axonal damage in central 
nervous system white matter injury, and their results, which 
agreed with the result in the present study, demonstrated that 
the 90% probability value strain of 0.34 defined the liberal 
threshold for morphological injury. 

In this simple tension experiment, when the stretch was 
<1.15, the stress-strain relationship may be presented by 
Mooney-Rivlin, Ogden and Neo-Hookean models (20), which 
were commonly used for modeling nonlinear elastic material 
and brain tissue (11,16,25,26). The Mooney-Rivlin model was 
not stable for extending to a larger scale despite demonstrating 
an improved fitting effect compared with the other models. 
The present study indicated that there was not only a negligible 
difference of WDMG between the Ogden and Neo-Hookean 
fittings, but also between ΔWNeo-Hookean and ΔWOgden; however, 
per unit increment of ΔW demonstrated different trends in the 
late tension stage. The increment of ΔWOgden increased with 
increasing stretch, and the increment of ΔWNeo-Hookean demon-
strated a trend of fluctuations. The former implied that stretch 
increase aggravated structural failure, while the latter declined 
gradually after reaching its maximum. It may be inferred that 
structural failure of white matter is not an irregular linear 
process, but a process controlled by multiple structures, and 
the failure of different structures is not synchronized.

3D FEA results demonstrated that Franceschini et al (8) 
experimental data cannot expound the stress distribution. The 
maximal von Mises stress focused on both fixed surfaces, and it 
highlighted the influence of the fixation method on the results. 
S22 stress distribution demonstrated that the stresses were 
concentrated in the mid part rather than at both ends of the spec-
imen. In the experiment by Franceschini et al (8), the fracture 
took place in the region near the ends where the large range of 
tension stress was distributed; this result was in conformity with 

Figure 8. Sketch map of cell junctions.
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previous FEA results. The polynomial fitting function could be 
reliably used as a constitutive function to model the mechanical 
behavior of white matter under tension. The present study 
indicated that deformation caused by hematoma compression 
is predominantly distributed around the hematoma, and made 
the ipsilateral ventricle smaller. After ICH ictus, the space occu-
pied by hematoma, which is called mass effect, causes direct 
tearing injury and will produce deformation on the region of 
stress concentration, resulting in varying degrees of structural 
failure (3). The distribution of stress and strain demonstrate 
the potential damage distribution, but stress, which may be 
calculated with constitutive function and the variable of strain, 
depend on the material itself and cannot be directly measured, 
particularly in vivo. Therefore, it is reasonable to use strain as an 
evaluating standard for brain tissue damage in ICH.

Uniaxial tension experimental data (8) was analyzed and 
evaluation criterion of tissue damage based on strain was 
discussed in the present paper. However, the deformation of 
brain tissue is a complex process that simultaneously includes 
tension, compression and shear (10). The lack of similar 
experimental data under simple shear makes it difficult to 
obtain a revised evaluation criterion. Nevertheless, biological 
tissues are so complex and specific that it is difficult to ensure 
the result reproducibility of experiments, even if the test 
tissues are taken from the same sample (19). Additionally, the 
test tissues cannot be intact after suffering any mechanical 
load greater than the maximum tolerance. Fortunately, FEA 
software, such as ABAQUS and ANSYS, are able to evaluate 
mechanical parameters of material by analyzing a single type 
of strain-stress data if soft tissues are assumed to be hyper-
elastic material in a certain range of deformation, and the 
uniaxial tension test is a common way of obtaining parameters. 
Through these methods, the model has a limited applica-
tion area, for instance, it cannot evaluate damage caused by 
compression and shear. In the stage of this research, damage 
evaluation under compression and shear will be investigated.

White matter is anisotropic and heterogeneous, and each 
independent sample demonstrates different mechanical 
parameters (13). The evaluation in the present study was only 
able to accurately evaluate the damage degree of a single 
specimen and would be unable to obtain an accurate and 
universal assessment standard unless we knew precisely the 
stress-stretch relationship of each evaluation object. In the 
present study, the strain rate dependency was ignored because 
the majority of medical images are acquired 4 h after ICH 
ictus. The deformation of brain tissue in ICH may be treated 
as a one-way process if the process of cerebral hemorrhage 
is simplified to the process of hematoma increasing continu-
ously; however, in reality, cerebral hemorrhage is a complex 
biochemical and physical process.

With further simulation studies, animal experiments and 
tissue-level mechanical experiments, direct evidence for tissue 
damage may be obtained. Despite gaining understanding of 
the relationship between stress and strain, the keystone of 
future work may be to design a device that is able to realize 
the quantitative deformation of brain tissue, including tension, 
compression and shear in vitro. An ICH tensile damage evalu-
ation method based on CT or MRI images may be developed 
by composing digital image processing technology with the 
results of the present study.
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