
RESEARCH ARTICLE

Strontium isotopes reveal diverse life history

variations, migration patterns, and habitat use

for Broad Whitefish (Coregonus nasus) in

Arctic, Alaska

Jason C. LeppiID
1,2*, Daniel J. Rinella3, Mark S. Wipfli4, Randy J. Brown5, Karen

J. SpaletaID
6, Matthew S. Whitman7

1 Alaska Cooperative Fish and Wildlife Research Unit, College of Fisheries and Ocean Sciences, University

of Alaska Fairbanks, Fairbanks, Alaska, United States of America, 2 Research Department, The Wilderness

Society, Anchorage, Alaska, United States of America, 3 Fish and Wildlife Field Conservation Office, U.S.

Fish and Wildlife Service, Anchorage, Alaska, United States of America, 4 U.S. Geological Survey, Alaska

Cooperative Fish and Wildlife Research Unit, Institute of Arctic Biology, University of Alaska Fairbanks,

Fairbanks, Alaska, United States of America, 5 U.S. Fish and Wildlife Service, Fairbanks Fish and Aquatic

Conservation Office, Fairbanks, Alaska, United States of America, 6 Alaska Stable Isotope Facility, Water

and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks,

Fairbanks, Alaska, United States of America, 7 Arctic District Office, Bureau of Land Management,

Fairbanks, Alaska, United States of America

* jcleppi@alaska.edu, jason_leppi@tws.org

Abstract

Conservation of Arctic fish species is challenging partly due to our limited ability to track fish

through time and space, which constrains our understanding of life history diversity and life-

long habitat use. Broad Whitefish (Coregonus nasus) is an important subsistence species

for Alaska’s Arctic Indigenous communities, yet little is known about life history diversity,

migration patterns, and freshwater habitat use. Using laser ablation Sr isotope otolith micro-

chemistry, we analyzed Colville River Broad Whitefish 87Sr/86Sr chronologies (n = 61) to

reconstruct movements and habitat use across the lives of individual fish. We found evi-

dence of at least six life history types, including three anadromous types, one semi-anadro-

mous type, and two nonanadromous types. Anadromous life history types comprised a

large proportion of individuals sampled (collectively, 59%) and most of these (59%) migrated

to sea between ages 0–2 and spent varying durations at sea. The semi-anadromous life his-

tory type comprised 28% of samples and entered marine habitat as larvae. Nonanadromous

life history types comprised the remainder (collectively, 13%). Otolith 87Sr/86Sr data from

juvenile and adult freshwater stages suggest that habitat use changed in association with

age, seasons, and life history strategies. This information on Broad Whitefish life histories

and habitat use across time and space will help managers and conservation planners better

understand the risks of anthropogenic impacts and help conserve this vital subsistence

resource.
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Introduction

Global freshwater biodiversity is in decline and many fish species are at risk of extinction [1–

4]. Freshwater ecosystems cover less than 1% of the global surface but support about half of the

30,000 described fish species [5]. Consequently, environmental impacts on freshwater ecosys-

tems can have a disproportionate effect on interspecific and intraspecific fish diversity [6–8].

Arctic freshwater ecosystems are no exception and recent assessments confirm that ongoing

climate-driven changes [9] threaten Arctic freshwater biodiversity [10].

The accelerated impacts of climate change at high latitudes [11, 12] are a major threat to

Arctic freshwater ecosystems [13], altering streamflow [14–17], warming [18, 19] and drying

[20] aquatic habitats; causing eutrophication [21] and browning of lakes [22, 23]; and allowing

for northward range expansion of eurythermic species [24]. To a lesser extent, long-range pol-

lution [7], habitat loss and degradation, and flow modification from oil and gas development

[25] can occur independently or interact with climatic change to alter Arctic freshwater eco-

systems [26]. New regional and global emerging threats, such as invasive species [27], diseases,

or algal blooms [28] may add additional stress to ecosystems [7], potentially reducing genetic

and life history diversity within populations and further accelerating biodiversity loss [29–31].

Understanding lifelong habitat use for Arctic fishes is challenging due to their high mobility

and our limited ability to track fish as they move among a suite of habitats (i.e., foraging, over-

wintering, spawning) that are geographically dispersed, change over time, and are often tem-

porary [32]. As a response to dispersed resources and constantly changing conditions, Arctic

fish populations have developed numerous life history strategies to exploit food resources, seek

refugia from harsh environmental conditions [33], and maximize reproductive success and

survival [34, 35].

Foraging strategies include ontogenetic or seasonal movements to marine habitats [36–39] but,

due to extreme winter conditions, fish must leave productive marine habitats and find overwinter-

ing refugia in freshwater or brackish habitat to avoid lethal low temperatures [40]. An iteroparous

reproductive strategy is typical for fishes that use habitats with high environmental variability [41,

42] and, when coupled with a longer life, it hedges against unpredictable conditions [43]. The

proximity of safe rearing habitats at or downstream of spawning areas also helps to facilitate juve-

nile survival [44, 45] and, for anadromous fishes, a diversity of age at ocean entry helps to buffer

the effects of unfavorable conditions [29]. This diversity in life history facilitates long-term popula-

tion stability, helping to stabilize ecosystems and buffer populations from environmental pertur-

bations that may reduce habitat quality and increase mortality [46–48].

Broad Whitefish (Coregonus nasus), a long-lived migratory species, is an important subsis-

tence resource for Alaska’s Indigenous communities. Little is known about the specifics of habi-

tat use within and across life stages in Arctic populations, but previous research in other parts of

its range supports the theory of a highly mobile species that utilizes various aquatic habitats

[49–52]. Broad Whitefish reach sexual maturity around the age of eight but can live 30 or more

years [49]. Habitat use across time and space likely results in a variety of life histories with vary-

ing amounts of time spent in freshwater, estuarine, and marine habitats [38, 53]. Broad White-

fish larvae are thought to be passively advected downstream to deltas, estuaries, and nearshore

areas by spring breakup flows, based on their hatch timing, inability to resist spring streamflow

as larvae, and general abundance in coastal and estuarine habitat [54–57]. Referred to as

Aanaakliq in the Iñupiaq language, Broad Whitefish, are valued due to their relatively large size

(up to 4.5 kg) and abundance during migrations [58, 59], accounting for about half the total

mass of fishes harvested across all Beaufort Sea communities [60]. However, without informa-

tion on life history diversity and habitat use, land and resource managers lack essential informa-

tion for the management and conservation of this important subsistence fish.
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Otolith microchemistry is an effective tool to understand life history diversity and habitat

use of fishes [51, 61–66]. Otoliths, paired inner ear stones used for hearing and balance in all

teleost fishes, are laid as concentric layers of metabolically inert biogenic minerals, primarily

calcium carbonate. Elements are permanently incorporated into their organic matrix, and

compositional changes across the layers reflect changes across an individual’s life [67]. Stron-

tium (Sr), a naturally occurring element derived from geologic material, has four stable iso-

topes (88Sr, 87Sr, 86Sr, 84Sr), in which only 87Sr is radiogenic. The ratio of 87Sr to 86Sr

(87Sr/86Sr), which roughly has similar proportions of elemental Sr abundance and can be mea-

sured at similar precisions, reflects Sr released into freshwater sources (e.g., rivers, lakes,

streams) and is driven by differences in lithology, age, chemical composition [68–70], and

weathering rates of surficial geology [71–73].

Fish take up dissolved Sr through the gills, and the Sr isotopes are incorporated into the oto-

lith matrix [67, 74], forming a continuous record of Sr isotope values that directly reflects habi-

tats inhabited across an individuals’ life [75]. Compared to freshwater habitats, 87Sr/86Sr in

marine habitats are generally lower, homogenous, and constant due to the long residence time

and mixing of oceans [71]. The concentrations of total Sr and 88Sr, the most abundant of the

four stable isotopes and a reliable proxy for total Sr, increase with water salinity and are consis-

tently higher in marine versus freshwater habitats. For diadromous fishes, these relative differ-

ences in Sr isotopes can be used to indicate the timing and duration of freshwater, estuarine,

and marine habitat use [38, 76].

Broad Whitefish populations use the Colville River watershed for foraging [77], rearing

[77], and spawning [78]. With headwaters in the rugged Brooks Range, the Colville River is

one of the few rivers in the region that contains abundant gravel substrate and deep channels,

which are both likely essential for egg survival [49]. Due in part to its watershed size, the Col-

ville River also has the largest delta on the Alaskan Beaufort Sea coast, which provides abun-

dant rearing habitat for larval and juvenile fishes [79]. Broad Whitefish can live for 30+ years,

and they return to the Colville River ecosystem regularly to reproduce [59], likely migrating

from a variety of productive foraging areas in coastal lagoons and rivers across the Beaufort

Coastal Plain. Thus, by sampling the Colville River’s spawning run, we may learn about life-

history patterns of Broad Whitefish at the regional scale.

Conservation of freshwater fish diversity requires an understanding of lifelong habitat use.

For many Arctic fishes, this information is lacking because movement between key habitats

changes with age and life history strategy and is difficult to monitor. To fill important knowl-

edge gaps about Broad Whitefish habitat use, we used Sr isotope (87Sr/86Sr, 88Sr) otolith chro-

nologies across individuals’ lives to quantify life history attributes and reconstruct migration

patterns of migrating fish captured within the Colville River, Alaska. Our specific objectives

were to (i) document the range of life history types and explore how individuals are distributed

among several predefined life history types, (ii) determine the proportion of Broad Whitefish

that are anadromous and investigate the timing of marine habitat use, and (iii) determine if

freshwater natal and freshwater juvenile rearing region 87Sr/86Sr remain constant across life

history groups. Understanding the diversity of lifelong habitat use will provide managers and

conservation planners essential information to begin to understand Broad Whitefish exposure

to changing habitats.

Materials and methods

Study area

The Central Beaufort Sea region study area (Fig 1) contains a diversity of fish habitats. Situated

between the Ikpikpuk and Canning rivers in Arctic Alaska, the coastline is a spectrum of bays
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and inlets, tapped basins (basins that are breached by the sea due to erosion), lagoons behind

barrier islands, and exposed bluffs [80]. River deltas are frequent along the coast, the size vary-

ing based on physiography and watershed size [80]. Thermokarst and riverine lakes that vary

in size, depth, and connectivity [81, 82] cover 30% of the region’s surface area [83]. Stream

habitats vary by watershed and geomorphic setting [84, 85], resulting in colluvial channels in

foothill and mountainous headwaters, beaded headwater streams in low-gradient coastal

plains, and meandering alluvial streams and rivers lower in watersheds [82]. Geologic lithology

consists of materials from Precambrian and Paleozoic fragments and continental margin

materials dating to the Cretaceous period [68]. Modeled 87Sr/86Sr are estimated to be highest

in the Brooks Range (ca. 0.7200), which contains sedimentary noncarbonate lithology with

minor areas of intrusive mafic and ultramafic lithologies, and lowest near the coast (ca. 0.7070)

within marine and eolian deposits [69]. Modeled stream 87Sr/86Sr tend to be higher in water-

sheds that drain high relief areas of the Brooks Range but also remain relatively high in the

mainstem Colville River until the tidally influenced areas of the lower river [68, 69]. Modeled

stream 87Sr/86Sr use bedrock and chemical weathering models within a streamflow accumula-

tion model to estimate values at 1 km grid cell, which have been tested against local field data-

sets [68, 69], but does not account for modification of isotope values during transport [86].

The Central Beaufort Sea region, within the Arctic tundra biome, is characterized by per-

mafrost, extreme climate, low-growing plants, and large seasonal variations in day length. The

region’s stark seasonality can be divided into two main seasons, cold and warm, but the former

controls many of the physical and biological processes. Cold season air temperatures are con-

sistently well below freezing, creating a landscape dominated by snow and ice for about eight

months [87]. The warm season is brief but, with 24 hours of daylight and moderate air temper-

atures [87], the area becomes productive foraging and rearing habitat for many resident and

migratory fishes and other animals. Annual precipitation is generally low, with more falling in

the foothills than along the coast (30 and 20 cm, respectively) and about half falling as snow

[87].

Fish sampling and otolith collection

We collected sagittal otoliths from adult Broad Whitefish migrating up the Colville River (Fig

2A) during 2015. The Colville, the largest river in Arctic Alaska, flows about 560 km north-

ward from its headwaters in the partially glaciated Brooks Range to a large delta on the edge of

the Central Beaufort Sea coast, near the Native Village of Nuiqsut (Fig 1). We set gill nets ca.

30 m in length composed of braided nylon and monofilament with 10-cm and 12-cm stretched

mesh to target adult fish large enough to spawn (> 35 cm; [49, 88]). We positioned nets at

gravel point bars, along eddy lines, and perpendicular to flow in low-gradient reaches at three

separate sites (Sites 1–3; Fig 1). We sampled at Puviksuk on July 23–27, at Umiat on August

21–26, and at Itkillik on October 10–11. We euthanized captured Broad Whitefish with a sin-

gle sharp blow to the cranium and recorded fork length (n = 98, all of which were adults� 39

cm; [49]), total weight, gonad weight, and sex (44 males, 47 females, 7 undetermined; S1

Table). We collected sagittal otoliths from individuals using the Guillotine method [89], rinsed

in water, and stored in paper envelopes (Table 1). The planned sample size of 50 individuals

per site was smaller than anticipated at Umiat (n = 23) and Itkillik (n = 17), as opposed to

Puviksuk (n = 57), due to unexpectedly high streamflow at the former and an early freeze-up

at the latter that inhibited our ability to capture fish. Research was conducted under Bureau of

Land Management NPR-A permit #FF097006 and the Alaska Department of Fish and Game

Fish Resource permit #SF2015-200. All collections were performed using methods to minimize

suffering.
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We caught fish at three locations (Puviksuk, Umiat, Itkillik) in the Colville River, AK, USA.

N = number of unique otoliths or individuals, mm = millimeters, g = grams, yrs = years,

SD = standard deviation. The sex of seven individuals from Puviksuk capture location were

undetermined. Weight and age for one individual from the Puviksuk capture location was

undetermined due to predation damage.

Sr isotope analysis of otoliths

Otolith preparation. We mounted sagittal otoliths on individual microscope slides using

CrystalbondTM 509, smoothed using a 1200-grit grinding wheel, and then thin sectioned in the

transverse plane. We then polished thin-sectioned otoliths with 3-μm alumina slurry until the

core was visible [90], photographed, and visually aged using standard methods [91] and an

OlympusTM microscope with MicroPublisherTM imaging attachment. For age analysis we uti-

lized an ad hoc two independent reader approach for older individuals with condensed annuli.

In preparation for isotope analysis, we remounted otoliths on petrographic slides (2.7 x 4.6

Fig 1. Study area. The Central Beaufort Sea region in Arctic Alaska, situated between the Ikpikpuk and the Canning rivers, AK, contains a diversity of

aquatic habitats. The large Colville River, AK, USA (ca. watershed area 60,000 km2), located in the middle of the Central Beaufort Sea coast, AK,

contains minor and major tributaries (grey lines) that drain from the Brooks Range, AK that flow toward a large delta on the edge of the Beaufort Sea,

near the community of Nuiqsut, AK. We collected fish at three sites (black triangles) within the Colville River (site 1 = Itkillik, site 2 = Puviksuk, site

3 = Umiat).

https://doi.org/10.1371/journal.pone.0259921.g001
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cm) and repolished using 3-μm alumina slurry. A total of five petrographic slides held all 97

otoliths and each otolith was tracked and labeled using a numerical ID.

Laser ablation. Due to instrument constraints (i.e., time, funding, instrument availabil-

ity), we measured Sr isotope concentrations (88Sr, 87Sr, 86Sr, 84Sr) from a subset of the otoliths

(69 of 98 individuals sampled). To ensure that the full range of life history variation was repre-

sented, we subsampled otoliths from across the range of δ13C0, δD, and δ18O tissue values,

which we expected to represent time spent in different habitat types (e.g., freshwater, estuarine,

marine) over the three months prior to capture (S3 Table; [78]) and ensure that subsampled

otoliths were roughly proportional to the number collected at each field site [78]. We acknowl-

edge that our subsampling approach, which favored rare types in the tails of the isotopic distri-

butions at the expense of common ones near the middle, may have biased the proportional

abundance of the otolith-derived life history types in our data set.

We used an Analyte G2 Excimer 193-nm Laser Ablation System (LA; Teledyne Photon

Machines, Bozeman, USA) with a Helex cell coupled to a Neptune PlusTM multi-collector

inductively coupled plasma mass spectrometer (MC-ICP-MS; Thermo ScientificTM, Bremen,

Fig 2. Otolith collection, laser analysis, and life history type classification. (A) Broad Whitefish (Coregonus nasus)
from the Colville River, AK, USA (Photo credit: Jason C. Leppi), (B) Broad Whitefish otolith showing the core, annuli,

and laser ablation path (Photo credit: Dan Bogan), (C) Flow diagram showing the life history classification criteria

approach used to group Broad Whitefish.

https://doi.org/10.1371/journal.pone.0259921.g002

Table 1. Summary of otoliths collected from Broad Whitefish (Coregonus nasus) caught in the Colville River, AK, USA.

Capture Location Month Caught Sample Size (N) Male (N) Female (N) Length (mm) Weight (g) Age (yrs)

Mean SD Mean SD Mean SD

Puviksuk July 57 24 26 473 37 1292 323 17 5

Umiat August 23 12 11 551 54 2286 872 21 6

Itkillik October 17 8 9 547 50 2237 750 22 5

https://doi.org/10.1371/journal.pone.0259921.t001
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Germany) for strontium isotope analyses at the University of Alaska Fairbanks’ Alaska Stable

Isotope Facility. We selected an ablation path perpendicular to annuli across each otolith and,

to ensure that the freshwater natal region was identified, our ablation path encompassed the

entire first year of growth (Fig 2B) [63]. We performed an initial ablation cleaning using

80 μm circle spot size and 15 μm/s scan speed over the surface of otoliths prior to analysis. For

isotope analysis, the laser was set to 35 μm beam diameter, a pulse rate of 10 Hz, a speed of

5 μm/s, and a laser fluence of 6.64 J/cm2. We mixed the laser stream with the output of an Ari-

dus IITM membrane desolvation system via a mixing chamber immediately prior to the plasma

inlet, which allowed for optimization of the signal of the MC-ICP-MS and facilitated external

intra-elemental correction of the instrument isotope fractionation (IIF) [92]. We used a

National Institute of Standards and Technology (NIST1) solution of ~13 ng g-1 SRM 987

(SrCO3 isotopic standard) and ~20 ng g-1 Zr standard to optimize the instrument and also

aspirated via the Aridus IITM every 30 minutes for IIF correction via bracketing from standard

to sample acquisition. While we ablated samples, the Aridus IITM aspirated a 2% solution of

HNO3 that was double distilled via sub-boiling distillation (Savillex DST-1000) from trace

metal grade concentrated HNO3. We then used American Society for Testing and Materials

(ASTM) Type I water from a Milli-Q1 IQ 7000 system, which had been further purified via a

double sub-boiling distillation, for dilution. Instrumental parameters used during laser abla-

tion isotopic analysis are listed in the S2 Table of the Appendix.

Data reduction. We processed ablation data as outlined in Irrgeher (2016) [93]. We

blank-corrected data by subtracting the mean gas blank values obtained during the 30-second

laser-warmup period prior to each ablation for all measured isotopes. We calculated calcium

(Ca) dimer (CaCa) and Ca argide (CaAr) corrections based on the blank corrected signals at

mass to charge number (m/z = 82 and 83) using the natural abundances of Ca and argon (Ar)

and applied to the blank corrected signals at m/z 84, 85, 86, 87, and 88. We calculated rubid-

ium (Rb) interference correction on m/z 87 using Russell’s law via mass 85 and applied via

peak stripping in which the fractionation of Rb was assumed to be equal to strontium (Sr) due

to the low levels of Rb naturally occurring in sample materials like otoliths. We corrected the
87Sr/ 86Sr ratio via standard/sample bracketing of the NIST SRM1 987 solution. Instrumental

isotopic fractionation (IIF) was corrected externally, also using the NIST SRM1 987 solution.

Otolith 87Sr/ 86Sr data post-processing. We individually inspected strontium data from

otolith laser ablation for data quality, trimmed, and adjusted accordingly. We removed otoliths

from the dataset if Sr data contained unreliable values due to cracks (n = 9). We used a Leica1

microscope with a micrometer to measure the length of the ablation path from age-1 dorsal

side to the otolith edge on the ventral side (Fig 2B). We visually identified otolith core and

annuli following standard methods [91] and measured the length of each annuli from the

beginning of the ablation transect using a Leica1microscope with a micrometer. We then

cropped data in R statistical program (http://cran.r-project.org/), from the estimated otolith

core to the edge, to facilitate comparison between otoliths. Finally, to facilitate classification we

inspected strontium data for each otolith and made minor adjustments to the ratio data

(87Sr/86Sr) to align them with the global marine value (GMV = 0.70918 ± 0.00006 2 standard

deviations (SD)) when 88Sr concentrations were above 12.26 V and ensure that non-elevated
88Sr concentrations (< 12.26 V) fell outside of this range.

Statistical analysis. We used Generalized Additive Models (GAMs) to analyze the
87Sr/86Sr variation from each otolith core to edge. We fit GAMs to each otolith 87Sr/86Sr profile

using the MGCV package in R, which is similar to previous methods used to analyze otolith
87Sr/86Sr of Slimy Sculpin (Cottus cognatus) [94] and Chinook salmon (Oncorhynchus tsha-
wytscha) [62]. MGCV implementation of GAMs uses penalized iteratively re-weighted least

squares (P-IRLS) to maximize goodness-of-fit, solving the smoothing parameter estimation
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problem and the Generalized Cross-Validation Criterion to minimize overfitting of the data

[95, 96]. We determined GAM model parameters through iterative model fit comparisons and

for final GAMs we set the lambda (λ) smoothing parameter to 0.6 and knots parameter (k) to

100. Finally, we calculated Bayesian 95% confidence intervals along each 87Sr/86Sr profile.

Life history attributes and classification

We visually compared the 88Sr concentrations and 87Sr/86Sr across each otolith core-to-edge

chronology and, based on inferred life history patterns, developed a classification criteria

approach that grouped individuals into life history types. Initial life history types included

anadromous, semi-anadromous, and nonanadromous, but during initial visual inspection of

otolith profiles it was apparent that subgroups existed within these groups. We estimated oto-

lith Sr concentrations (Sr mg/kg) by dividing the concentration of Sr in the FEBs-1 standard

(i.e., 2055 mg/kg) by the average 88Sr FEBs-1 standard value during ablation and multiplying

by 88Sr otolith values at individual points across the ablation path. We considered a otolith 88Sr

signal below 6.13 V (corresponding to ca. 850 mg/kg) to be time spent in freshwater habitat, a

signal greater than 6.13 V and less than 12.26 V (corresponding to ca.1700 mg/kg) to be time

spent in estuarine water and a signal greater than 12.26 V (corresponding to ca.1700 mg/kg) to

be marine habitat use [38, 76].

We inferred occupied habitats and behaviors based on otolith 88Sr concentrations and
87Sr/86Sr at different ages, determined by reading annuli and identifying important otolith

regions. We defined natal regions as areas distal to the core and without detectable maternal

strontium that had 88Sr concentrations representative of freshwater and relatively constant
87Sr/86Sr, which were assumed to precede the onset of exogenous feeding and downstream

migration to rearing habitat [97]. We defined freshwater juvenile rearing regions as all values

distal to the natal region, but before migration to marine habitats and prior to age-1(i.e., fresh-

water age-0 juvenile rearing period). We considered freshwater regions to be isotopically dis-

tinct from each other, inferring movement to a different habitat, if the difference between

mean 87Sr/86Sr was > 0.00005 [94]. This value was chosen because it was sufficiently greater

than the mean ± 2 S.E. of all juvenile and natal region values and would be large enough to

detect differences [62, 94]. For individuals that did not migrate to marine habitat at age-0, this

region encompassed all values during the growth period (identified as the opaque region with

wide growth bands) before the winter period [91]. We determined age at marine entry by com-

paring 88Sr concentrations and 87Sr/86Sr in relation to annuli and we assigned all anadromous

individuals with marine entry values (e.g., age-0, age-1) based on when the first maximum 88Sr

concentrations were above 12.26 V and 87Sr/86Sr were near the GMV.

We grouped individuals into six life history types using a classification criteria approach

that was informed by visual inspection of otolith 88Sr concentrations and 87Sr/86Sr profiles. We

considered individuals with otolith 88Sr concentrations above 12.26 V and 87Sr/86Sr near the

GMV anadromous, and we considered all other individuals as nonanadromous [38, 51, 63].

We classified anadromous individuals into four subgroups based on the type of rearing habitat

inhabited at age-0 and duration in fresh water prior to marine entry (Fig 2C). We classified

individuals as follows: i) early marine anadromous (Type 1) if age at migration from fresh

water was less than one; ii) as late freshwater anadromous (Type 2) if age-0 87Sr/86Sr repre-

sented time spent in fresh water and age at migration was greater than one; and iii) late transi-

tional anadromous (Type 3) if age zero 87Sr/86Sr represented time spent in both fresh and

estuarine water and age at migration was greater than one (Fig 2C). We classified individuals

as semi-anadromous if 87Sr/86Sr at the natal region was near GMV (Type 4; Fig 2C). Semi-

anadromous individuals had no detectable age-0 freshwater otolith signature, likely spending
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limited time in fresh water as larvae and frequently moving between freshwater, estuarine, and

marine habitats (Fig 2C). We classified nonanadromous individuals into two subgroups based

on the habitat used throughout their life. We classified individuals as freshwater estuarine non-

anadromous (Type 5) if they spent time in fresh and brackish water but 88Sr concentrations

and 87Sr/86Sr never indicated they entered marine habitats. The remaining nonanadromous

individuals showed no evidence of using brackish habitat and therefore we classified these

individuals as freshwater residents (Type 6) (Fig 2).

Results

Life history types

Anadromous life history (Types 1–3) comprised a significant proportion of individuals sam-

pled (59%; Fig 3A). Early marine anadromous (Type 1) comprised 21%, late freshwater anad-

romous (Type 2) comprised 23%, and late transitional anadromous (Type 3) comprised 15%

(Fig 3A). All anadromous individuals spent a portion of time (months to years) in fresh water

(Fig 4A–4C) and had similar natal (Fig 3B) and juvenile rearing 87Sr/86Sr (Fig 3C). Following

initial migration to marine habitats, our results suggested that numerous anadromous individ-

uals shifted from annual marine habitat use (Fig 5A) to constant freshwater residency (Fig 5B).

Semi-anadromous (Type 4) individuals were the most common life history type and com-

prised 28% of the population sampled (Fig 3A). The majority of these individuals had lower

natal (Fig 3B) and juvenile freshwater rearing (Fig 3C) 87Sr/86Sr reflective of estuarine habitats

and 87Sr/86Sr near the GMV that remained somewhat constant across time (Fig 4D). Nonana-

dromous individuals (Type 5–6) were comparatively rare (13%; Fig 3A), with freshwater estua-

rine nonanadromous (Type 5) comprising 3%, and freshwater resident (Type 6) comprising

10% (Fig 3A). These nonanadromous individuals had elevated freshwater natal region
87Sr/86Sr compared to the other life history groups (Fig 3B) but had similar freshwater juvenile

rearing 87Sr/86Sr (Fig 3C). Freshwater estuarine life history types mainly used habitat with
87Sr/86Sr within the range of fresh waters, but on occasions these individuals used estuarine

habitat (Fig 5C). Within the freshwater resident life history type, some individuals appear to

use freshwater habitats across a spectrum of 87Sr/86Sr (Fig 4F), while others remain in habitat

with relatively uniform values (Fig 5D).

Anadromous migration patterns

Among the 59% classified as one of the three anadromous types, most individuals (67%) ini-

tially migrated to sea between ages 0 and 2 (Table 2). All anadromous individuals spent

months to years in fresh water, but comparisons of GAM values indicate that distinct patterns

exist for anadromous types (Fig 3A). Age of marine migration varied based on life history

(Table 2), but we found that 39% of individuals migrated to marine habitats at age-0, 25%

migrated at age one, 3% migrated at age two, 6% at age three, no fish migrated at age 4, and 3%

migrated at age 5 (Fig 3D). Results also show large variation in the duration of marine habitat

use (S1 File), with some individuals using marine habitats for only a few years, while others

consistently use marine habitat until captured (Fig 5A; S1 File). Interestingly, our results also

show that some adults later in life stop migrating to marine habitats and switch back to using

freshwater habitats (Fig 5B; S1 File).

Freshwater natal and juvenile rearing region 87Sr/86Sr

A comparison of freshwater natal and juvenile rearing region 87Sr/86Sr across life history

groups revealed several patterns. Anadromous life history types (early marine, late freshwater,
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late transitional) had similar values with mean natal region 87Sr/86Sr ranging from 0.71052 to

0.71083 (Table 3). Individuals with the semi-anadromous life history type had natal region
87Sr/86Sr centered at 0.70961 and were the lowest values observed (Table 3). Nonanadromous

individuals (freshwater estuarine, freshwater resident) had mean natal region 87Sr/86Sr ranging

from 0.71106 to 0.71122 and were the highest values observed (Table 3).

Fig 3. Otolith life history classification. Classification of 61 Broad Whitefish (Coregonus nasus) from the Colville River, AK, USA into

six life history types based on strategy (anadromous, semi-anadromous, nonanadromous), rearing habitat used (marine, brackish,

freshwater), and age at marine migration. Anadromous individuals (Types 1–3), semi-anadromous (Type 4), and non-anadromous

(Types 5–6) are individually colored by life history type. Fitted Generalized Additive Model values of the first 850 raw 87Sr/86Sr (solid-

colored lines) and 95% confidence interval (grey shading) for each individual and life history type are shown in panel (A). The

horizontal light blue line represents the global mean oceanic value (GMV = 0.70918 ± 0.00006 2 SD). Panel (B) and (C) show boxplots of

the freshwater natal region and the freshwater juvenile rearing region. Panel (D) shows boxplots for the age of first marine migration for

each life history group. Each boxplot shows the median value (87Sr/86Sr value or age) for each life history type (horizontal black line),

IQR (box outline), the maximum value within 1.5 times the IQR (vertical black line), and outside values greater than 1.5 times the IQR

(black dots).

https://doi.org/10.1371/journal.pone.0259921.g003
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Freshwater juvenile rearing 87Sr/86Sr remained relatively constant for some life history

types, while others varied. Freshwater juvenile rearing 87Sr/86Sr for anadromous life history

types remained similar (range: 0.71048–0.71092), but early marine anadromous life history

type values decreased slightly (-0.00010), while late freshwater anadromous and late transi-

tional anadromous 87Sr/86Sr increased (+0.00009, +0.00004; Table 3). Semi-anadromous life

history type 87Sr/86Sr remained at the lowest values, but freshwater juvenile rearing 87Sr/86Sr

increased from natal values (+0.00005; Table 3). Freshwater estuarine nonanadromous life his-

tory type 87Sr/86Sr decreased by -0.00018 to a mean value of 0.71087, and freshwater resident

life history type 87Sr/86Sr decreased slightly (-0.00009) to 0.71108 (Table 3).

Discussion

Otolith microchemistry revealed a diversity of life histories in Broad Whitefish in the Colville

River. Six different 87Sr/86Sr life history types were evident in the individuals examined, which

included three anadromous, one semi-anadromous, and two nonanadromous life history

types. Within each life history group, there also appears to be variation within freshwater habi-

tats occupied during juvenile and adult stages and the time and duration spent in marine habi-

tats. The majority of Broad Whitefish had anadromous life history types, but migration timing

varied greatly within life history types. These results support the pattern of increased life his-

tory diversity among species that live in environments subjected to frequent perturbations and

Fig 4. Broad Whitefish life history examples. Selected otolith 87Sr/86Sr profiles for six Broad Whitefish (Coregonus
nasus) from the Colville River, AK, USA, representative of each life history type. Fitted Generalize Additive Model

values (solid-colored lines), 95% confidence interval (grey shading), and raw 87Sr/86Sr for each life history type (black

dots) from the otolith core to edge are shown. Life history types shown; early marine anadromous (A), late freshwater

anadromous (B), late transitional anadromous (C), semi-anadromous (D), freshwater estuarine nonanadromous (E),

freshwater resident (F). Thin dashed vertical black lines represent the end of each winter annular growth (annuli) for

the first four years. The horizontal light blue line represents the global mean oceanic value (GMV = 0.70918 ± 0.00006

2 SD).

https://doi.org/10.1371/journal.pone.0259921.g004
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extreme seasonal changes (e.g., shifting river channels, river ice growth up to 2 m thick), which

can increase mortality risks [98].

Broad Whitefish life history diversity

The observed diversity of life histories and habitats utilized by Broad Whitefish in this study is

generally consistent with other studies conducted on coregonins in Arctic and Boreal regions

[38, 51, 63, 99]. Research in the Mackenzie River watershed, in Yukon, Canada, showed multi-

ple Broad Whitefish life histories [100], including anadromous, semi-anadromous, and nona-

nadromous (riverine and lacustrine) forms [38, 53, 101], with large variability in migration

patterns and utilization of the watershed [102]. High variation in the timing of marine entry

(years) by anadromous individuals was observed in the Mackenzie River, along with a high

degree of variability in freshwater, estuarine, and marine habitat use [38]. In the Yukon River,

Alaska, otolith Sr concentrations suggest a slow, gradual downstream movement by some indi-

viduals from freshwater to marine habitat over multiple years [51, 88]. Our results generally

corroborate this but also provide evidence for increased variation in occupied habitats within

Fig 5. Variation within anadromous and nonanadromous life history types. Variation within anadromous and

nonanadromous life history types. Selected otolith 87Sr/86Sr profiles of four Broad Whitefish (Coregonus nasus) from

the Colville River, AK, USA, displaying unique variation in anadromous and nonanadromous life history types. Fitted

Generalized Additive Model values (solid-colored lines), 95% confidence interval (grey shading), and raw 87Sr/86Sr for

each life history type (black dots) from the otolith core to edge are shown. Freshwater late anadromous life history type

displaying continued marine habitat use (A), freshwater late anadromous life history type displaying a switch to

freshwater habitat later in life (B), freshwater estuarine nonanadromous life history type demonstrating delayed

estuarine habitat use (C), and freshwater resident life history type demonstrating relatively stable 87Sr/86Sr across time

(D). The horizontal light blue line represents the global mean oceanic value (GMV = 0.70918 ± 0.00006 2 SD).

https://doi.org/10.1371/journal.pone.0259921.g005

Table 2. Age at migration for anadromous life history types of Broad Whitefish (Coregonus nasus) caught in the Colville River, AK, USA.

Anadromous Life History Types Age at Marine Migration

Age 0 Age 1 Age 2 Age 3 Age 5

Early marine (Type 1, n = 13) 100% 0% 0% 0% 0% 0%

Late Freshwater (Type 2, n = 14) 0% 71% 7% 14% 0% 7%

Late Transistional (Type 3, n = 9) 0% 56% 44% 0% 0% 0%

https://doi.org/10.1371/journal.pone.0259921.t002
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anadromous types than previously documented in Broad Whitefish. We found major differ-

ences in the duration of freshwater and estuarine use prior to marine migration, which ranged

from as little as a month or so to several years. In other fish species, juvenile life history diver-

sity appears to be driven by differences in habitat quality and availability and the response of

individuals to maximize fitness [103, 104]. Chinook Salmon, for example, exhibit a continuum

of juvenile life history pathways, which are defined by the timing and transition among life

stages and freshwater and marine habitats used for rearing [104]. These life history pathways

are influenced by local habitat and environmental conditions, such as water temperature,

which influences factors such as incubation duration, growth rate, and downstream migration

[104]. In many instances, Chinook Salmon that are exposed in warmer post-emergence water

temperature display higher growth rates, which generally results in earlier downstream migra-

tion [105]. Similar processes along with genetically-controlled traits, such as adult fish spawn

timing and adaptation to spawning environments, likely influence the diversity of Broad

Whitefish life histories documented here.

Semi-anadromous life history types occurred within our samples of Colville River Broad

Whitefish but, to our surprise, the vast majority of these individuals did not exhibit a freshwa-

ter natal signature, suggesting they had been advected into estuarine and or marine environ-

ments soon after hatching. Subsequently, these individuals frequently moved between

estuarine and marine habitats throughout their lives, with minimal time spent in fresh water.

This pattern suggests that adult adaptation to spawning environments near coastal estuarine

and marine habitats may influence life history trajectory [106], as seen in other fish species

such as Atlantic Salmon (Salmo salar) and Brown Trout (S. trutta) [107]. Semi-anadromous

individuals were the most common life history type documented, which suggests that near-

shore and marine habitats are significantly important for juvenile Broad Whitefish born in the

Colville River.

Nonanadromous Broad Whitefish have also been documented in the Yukon and Macken-

zie rivers [51, 38, 100]. In the Yukon River drainage, nonanadromous individuals are less com-

mon than anadromous individuals [51], with the exception of sites far inland (i.e., 2000 km

Table 3. Summary of GAM predicted 87Sr/86Sr for freshwater natal and freshwater juvenile rearing regions across life history types of Broad Whitefish (Coregonus
nasus) captured in the Colville River, AK, USA.

87Sr/86Sr

Freshwater natal region Mean Median Min Max SE N

Early marine anadromous 0.71058 0.71063 0.71025 0.71083 0.000023 12

Late freshwater anadromous 0.71083 0.71088 0.71036 0.71097 0.000022 14

Late transitional anadromous 0.71052 0.71051 0.71020 0.71084 0.000018 9

Semi-anadromous 0.70961 0.70960 0.70958 0.70986 0.000011 6

Freshwater estuarine nonanadromous 0.71106 0.71108 0.71055 0.71114 0.000026 2

Freshwater resident 0.71117 0.71122 0.71062 0.71122 0.000020 6

Freshwater juvenile rearing region

Early marine anadromous 0.71048 0.71050 0.70997 0.71091 0.000016 12

Late freshwater anadromous 0.71092 0.71105 0.70981 0.71114 0.000020 14

Late transitional anadromous 0.71056 0.71057 0.70992 0.71104 0.000009 8

Semi-anadromous 0.70966 0.70962 0.70957 0.71008 0.000013 7

Freshwater estuarine nonanadromous 0.71087 0.71090 0.71002 0.71113 0.000012 2

Freshwater resident 0.71108 0.71115 0.70982 0.71120 0.000013 6

Mean = mean 87Sr/86Sr, Median = median 87Sr/86Sr, Min = minimum 87Sr/86Sr, Max = maximum 87Sr/86Sr, SE = standard error of 87Sr/86Sr, and N = number of unique

otoliths within the classified life history type.

https://doi.org/10.1371/journal.pone.0259921.t003
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from the coast) and in upstream tributaries like the Porcupine River. Similar patterns have

been observed in the Mackenzie River drainage, where nonanadromous individuals are

uncommon and tend to be associated with lentic habitat [38, 101] or smaller tributaries (e.g.,

Arctic Red River) [102]. Our results show a similar pattern in the Colville River watershed but

provide evidence for additional diversity within nonanadromous life history types. The

observed habitat use of freshwater estuarine nonanadromous life history types suggests that

certain individuals do not remain in one location and rather move between a variety of fresh-

water and estuarine habitats. Collectively, these findings suggest that migrating to sea is not

energetically profitable for all Broad Whitefish, such as those requiring particularly long jour-

neys, and that enough resources to reach sexual maturity can be acquired solely in fresh water.

Age-0 movements

The majority of Broad Whitefish appear to be transported from natal habitat to rearing habitat

within the first year of life. Generally, otoliths indicated that individuals with life history types

1–2 and 5–6 left natal habitat and utilized freshwater rearing habitat with isotopically different

values. Our results suggest that most larvae do not use natal habitat for rearing and instead are

likely transported downstream to new habitat. In contrast to previous research, we found that

numerous individuals (n = 13) entered marine habitat at age-0 after spending little time in

freshwater. To our knowledge, the rapid transition over days instead of weeks has not been

documented but might be due to the proximity of spawning habitat to marine environments

and the intensity of spring breakup streamflow on certain years. Across numerous freshwater

fish species, there is evidence that spawning areas tend to be associated with shallow habitats

[108] and provide refugia for eggs where instream conditions facilitate embryonic develop-

ment and predation is minimal [109]. For example, salmon and trout commonly use small

streams or braided channel networks to spawn, taking advantage of habitat that often contains

high hyporheic flow, consistent water temperatures, and gravel substrate [110–112]. Within

heterogenous riverine environments, it is common for spawning habitats to differ from juve-

nile rearing habitats, which may also be distinct from adult habitats [44, 45]. These patterns of

habitat use have been documented for Broad Whitefish in the Yukon and Kuskokwim river

drainages, where adults feed in lakes during the summer, spawn in upper reaches of the drain-

age during the fall, and larvae and juveniles rear in downstream delta or estuary habitat [49,

50, 52].

A subset of individuals exhibited minimal isotopic change between natal and juvenile rear-

ing regions. The late transitional anadromous life history type (Type 3), for example, displayed

minimal isotopic change, which could be caused by individuals being advected downstream to

new rearing habitat that were isotopically similar prior to marine entry. The semi-anadromous

type (Type 4) also had minimal isotopic change and, in this case, it is possible that they are not

advected far or end up rearing in nearby freshwater habitat with isotopic values similar to

natal areas (e.g., lakes, riverine habitat).

Identifying freshwater natal and juvenile rearing specific habitat is difficult due to the lack

of empirical 87Sr/86Sr data, but several broad patterns emerged from comparing our results to

coarse estimates of surface water 87Sr/86Sr (1 km2 grids) for surface waters across Alaska [68,

69]. Broad Whitefish are known to spawn in wide channels with moderate braiding and gravel

substrate [49, 50, 88]. Recent research in the Colville River estimates mainstem habitat to have

the greatest intrinsic spawning potential [78], which is where we would expect natal habitat to

be located, as opposed to smaller tributaries with similar 87Sr/86Sr. Anadromous individuals

that migrated to sea at age-0 (Type 1) had natal region 87Sr/86Sr that were higher than juvenile

freshwater rearing region 87Sr/86Sr, suggesting that individuals were born in the middle
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watershed where estimated 87Sr/86Sr is near 0.711 and then gradually decreases downstream.

Late migrating anadromous individuals (Type 2–3) had juvenile region 87Sr/86Sr that were

higher than natal regions. This pattern could be explained by individuals hatching from eggs

spawned higher in the watershed, where the estimated 87Sr/86Sr range was near 0.710, drifting

downstream to rear in habitats in the middle and lower watershed where estimated 87Sr/86Sr

was generally higher (ca. 0.711). Semi-anadromous individuals (Type 4) had natal and juvenile

region 87Sr/86Sr near the GMV (0.70918 ± 0.00006 2 SD), which suggests they moved between

areas in the lower river, delta, and estuary. Nonanadromous individuals (Type 5–6) had higher

natal region and lower juvenile rearing values, suggesting they may have hatched in the middle

watershed drifted downstream to rear in the lower river or estuary, or in the case of the fresh-

water resident life history type, remained in the spawning area.

Broad Whitefish conservation

Our research provides new insights into the complex patterns of lifetime habitat use by Broad

Whitefish. A portfolio of life history types suggests that Colville River Broad Whitefish largely

remain free from anthropogenic impacts that fragment or homogenize habitats. Within life

history types, individuals appear to use different habitats (freshwater, estuarine, and marine)

for varying durations (months to years) across each life stage, which suggests further complex-

ity. For example, an individual may hatch and spend less than one month or as much as five

years in freshwater before heading to sea. Once at sea, some individuals continue annual pat-

terns of marine migrations through life, while others migrate as mature adults to freshwater

habitats they have not previously occupied. There is certainly greater life history variation than

the small number of otolith 87Sr/86Sr profiles examined here would suggest. Similar diverse

patterns of habitat use have been documented for other fish species. Recent otolith micro-

chemistry work with juvenile Chinook salmon, for example, demonstrated that individuals

used a complex array of habitat types to achieve maximum growth prior to ocean migration

[113]. The diversity of life histories found here suggests that Broad Whitefish populations

experience frequent disturbance or high environmental variability [98, 106, 114].

Our research revealed the complexities of Broad Whitefish life histories and habitat use, but

further research is needed for the effective conservation of this important subsistence resource.

Understanding the variation in 87Sr/86Sr across the watershed is important for identifying

spawning habitats, which are essential to sustain Broad Whitefish populations and may be dis-

proportionally small [78] compared to other key habitats (e.g., feeding habitat). Once identi-

fied, it will also be possible to understand the contribution of each spawning area to the

Nuiqsut subsistence fishery and potentially to other fisheries [62]. Broad Whitefish are a highly

migratory and long-lived fish, making it conceivable that fish caught outside the watershed

(e.g., in the Utqiagvik, AK, fishery), may have originated from the Colville River. Lastly,

another challenge is understanding where fish go when they leave the Colville River watershed.

Future research that tracks the marine migration patterns and movement between watersheds

across the Arctic will likely provide key insights into a diversity of juvenile and adult foraging

patterns and migration routes.

Despite its historical and current importance as a subsistence species for Alaska’s Indige-

nous Beaufort Sea communities, little is known about the nature and distribution of their

essential habitats. Currently, infrastructure from oil and gas development is minimal within

the Colville watershed. However, as development continues to expand across the region,

potentially crossing and altering habitats in the Colville River and other watersheds utilized by

Broad Whitefish, it is important for land managers and conservation planners to understand

the risks. Oil and gas development in the central Beaufort Sea region has caused cumulative
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impacts to permafrost, such as flooding and pooling of water, and loss of vegetation due to

heavy road dust [115, 116], which can cause flow modifications that affect habitat quality and

connectivity. Arctic oil and gas infrastructure (e.g., roads, pipelines) fragments and disrupts

aquatic ecosystems along linear paths [25], which can further introduce stressors to juvenile

and adult fishes [25, 117], such as increased sedimentation [118–121], modifications of stream-

flow [122], obstructions to passage [123–125], and reduced instream habitat quality [126], as

well as pollution [127]. Climate change is also altering Arctic hydrologic regimes; variability in

runoff is increasing [14], and discharge from large Arctic rivers is increasing both annually

[15, 16] and during winter [17], and snow-dominated runoff regimes are shifting toward rain-

fall-dominated regimes [128]. Maintaining habitats to support complex life histories is critical

for the long-term conservation of Broad Whitefish and the loss of life history diversity will

make the population more susceptible to fluctuations in abundance and will increase the risk

of extinction [129–131].
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