
Evolutionary Distances in the Twilight Zone—A Rational
Kernel Approach
Roland F. Schwarz1*, William Fletcher2, Frank Förster3, Benjamin Merget3, Matthias Wolf3, Jörg Schultz3,

Florian Markowetz1*

1 Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, United Kingdom, 2 Department of Genetics, Evolution and Environment and

Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom, 3 Department of Bioinformatics,

Biocenter, University of Würzburg, Würzburg, Germany

Abstract

Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the
validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-
free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems.
However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus,
it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use
of indel information and known substitution models without the need for a multiple alignment. Here we propose a new
evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity
score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence
similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We
describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing
phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and
beyond the twilight zone of sequence alignments that is suitable for large datasets.
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Introduction

State-of-the art phylogenetic reconstruction methods are

currently being challenged. For a long time, multiple sequence

alignments followed by maximum-likelihood (ML) tree recon-

struction have been seen as the computationally expensive gold

standard for phylogenetic analyses [1,2]. Distance approaches that

base their inference on summary statistics have traditionally been

seen as a fast but less precise alternative [3]. However, recent

results point out that the gap between ML and distance methods

may be less pronounced than previously thought. For example, the

expected required sequence length for the reconstructed tree to

converge to the true tree phylogeny is not worse in distance-based

approaches than in ML [4]. Additionally the quality of the

multiple sequence alignment heavily affects reconstruction accu-

racy, a situation worsened by the NP-hardness of the alignment

problem and the heuristics used to cope with it [5–9]. The

problem of alignment errors arises especially on large-scale

phylogenies with many taxa that span a broad divergence range

[10], where many homologies lie in the twilight-zone of sequence

alignments [11].

In the light of these findings, alignment-free distance-based

reconstruction methods deserve special attention, as they circum-

vent potential pitfalls of the multiple alignment approach,

especially with respect to divergent sequences, and can be

advantageous in speed possibly without sacrificing reconstruction

accuracy. Unfortunately many purely alignment-free approaches

[12,13] lack unique biological motivation (for a comparison see

also [14]). Joint estimation of trees and alignments is computa-

tionally expensive and relies heavily on heuristics and/or sampling

approaches [15–19]. The question of reconstructing phylogenies

directly without multiple alignment has only recently been tackled

[20] with promising results. We follow the basic principles of this

approach but here wish to present the phylogenetic reconstruction

problem in a different light.

Since there exists a one-to-one relationship between binary trees

and additive metrics [21] the phylogenetic problem of finding the

true tree is equivalent to finding the true additive dissimilarity

matrix. Finding additive distances is hard, thus distance-based

approaches usually aim at finding a distance which is as close as

possible to the true additive one, so that the tree reconstruction

process which turns these non-additive distances into additive trees

finds the true tree as often as possible. Metrics in general, including

additive distances, can be thought of as being induced by a dot

product v
:,:w in some Hilbert space of possibly infinite

dimension [22]. Key to phylogenetic reconstruction is constructing

a Hilbert space and associated dot-product such that distances

between sequences are indeed a measure of evolutionary

divergence. Doing this explicitly is impossible, if the space is of

infinite dimension. However, it can be achieved implicitly by
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applying the so-called kernel-trick [22]: A positive-definite (pd)

kernel function k(:,:) in the input space (i.e. directly on the

sequences in our case) computes the scalar value of the dot-

product in the Hilbert space without explicitly constructing it.

The kernel trick has been applied successfully in a variety of

different fields, including natural language processing, face

recognition, speech recognition and computational biology. Here

we extend its use to the problem of phylogenetic reconstruction.

The major challenge here is finding the right pd kernel. The

pairwise similarity measure between sequences must map

sequences to an evolutionary feature space ruled by the

modification of sequences in terms of insertions, deletions and

substitutions. The natural distance in this space should then come

as close as possible to the true evolutionary distance on the

sequences.

In this article we derive such a kernel. Making use of classical

results from global pairwise alignment we show how a different

formulation of the alignment problem can map sequences to a

feature space of insertions, deletions and substitutions and gives

rise to a pd kernel. We study this similarity measure in its

topological reconstruction accuracy of phylogenetic trees from

simulated and real data. We show its superiority over conventional

methods for phylogenetic studies with a broad range of sequence

divergence in and beyond the twilight zone of remote homology.

We further investigate possible benefits of including suboptimal

alignments into the score.

Materials and Methods

Hidden Markov Models (HMMs) have been extensively used for

probabilistic modeling of sequence families, database searches and

other tasks. Pair-HMMs work on two sequences simultaneously

and are capable of probabilistic modeling of pairwise alignments

[23]. The field of natural language processing uses close relatives

of HMMs, so called finite-state transducers (FST), for modeling the

transformation of one sequence into another or describing joint

distributions on two sequences [24]. Their advantage over pair-

HMMs is the rigorous and general definition which allows not

only for probabilistic interpretations, but for any set of values that

follows specific rules (more precisely all semirings) to be used as

weights. These include, for example: probabilities, logarithmic

numbers (where the weights are summed along a path instead of

multiplied); and boolean values. In the following we use FSTs to

create our kernel for evolutionary sequence comparison. We make

use of two major observations: (i) The classical problem of pairwise

alignment can be posed as a shortest-path problem on a log-

weighted FST [25]; and (ii) FSTs that can be decomposed into

another FST and its inverse give rise to pd rational kernels [26].

Semirings
The different classes of weights that can be used for FSTs are

the so-called semirings. They define two operations on a set, an

abstract sum and multiplication. In the case of the real semiring,

the final score for two sequences is the (conventional) sum of all

possible paths generating those two sequences, where the weights

in each path are (conventionally) multiplied. Weights on the real

semiring can be converted to the log semiring by the link function

y(x)~exp({x). In the log semiring, multiplication is turned into

summation and the sum is replaced by the logarithm of the sum.

The tropical semiring is a special instance of the log semiring in that

the log-sum over all paths is replaced by the minimum, and

corresponds to the Viterbi approximation in conventional HMMs.

For a more formal definition of semirings, see Text S1 or [26,27]

and references therein.

Alignment Problems as FSTs
Any edit-distance can be computed via a FST over the tropical

semiring [26]. This includes the classical edit-distance [28] as well

as any generalized alignment problem. The alignment score is

then the minimum of all possible paths of transforming one

sequence into another. More formally, for a FST T over the

tropical semiring, the alignment score is defined as

T½ �½ �(x,y)~ minp[P(q,x,y,F )

P
w½pi�, where P(q,x,y,F ) is the set of

all paths going from the initial states q to the final states F thereby

transforming x to y. The standard global pairwise alignment

problem for example is a three state FST with a map, an insert and

a delete state. The self-transitions in the match state are weighted

with the scores of the used substitution matrix, the transitions to

the gap states and the self-transitions in the gap state are weighted

with the gap open/gap extend costs respectively.

PD Rational Kernels and distances
A FST T over the real semiring associates a real-valued number

with every pair of sequences (x,y). This score is then the sum over

all possible paths transforming x to y, multiplying instead of

summing the weights along the path. This mapping from two-

tuples of the space of sequences to the reals is called a rational

kernel. If the transducer T can further be decomposed into a

transducer S and its inverse S{1 (T~S0S{1), the kernel is known

to be pd [26] (for details on FST composition and inversion see

Text S1 or [27]). In this setting, the transducer S performs the

feature space mapping. It encodes the prior knowledge about the

features important for our problem domain. From a pd kernel we

can directly compute distances in the feature space via

d(x,y)~Ex{yE2
k~k(x{y,x{y)~k(x,x){2k(x,y)zk(y,y).

Pairwise alignments as pd rational kernels
It is our goal to modify the pairwise alignment problem in a way

that we can prove the resulting alignment score to be pd. To

achieve this we replace the min operation by the log-sum, thereby

changing semirings from the tropical to the log. The resulting

score includes all possible (suboptimal) alignments. By making use

of the link function y(x)~exp({x) we can convert that

logarithmic score into a real value. The result is the score of a

rational kernel [26].

To see that this kernel is indeed pd we need to decompose it in

to a feature space mapping FST and its inverse T~S0S{1. On

the real semiring and ignoring epsilon transitions (gaps), it is easy

to see that by the definition of composition this equals a Cholesky

Decomposition of the transition weight matrix, which requires the

pointwise exponential of the substitution matrix used to be pd. If

we wish to include gaps we need to construct the feature space

explicitly:

We can think of a feature space mapping where each position in

a biological sequence can either be retained, substituted or deleted

using some intermediate alphabet s1 . . . sn. For an example of such

a FST with weights derived from a standard nucleotide

substitution matrix and gap scores of 16=4 see Figure 1a.

Composition of this FST with its own inverse, obtained by

reversing input and output symbols, leads to the FST in Figure 1b.

It can easily be seen how the composed FST again resembles

the topology of a global alignment FSA [23], with a match state

and two states corresponding to insertions or deletions. The

additional fourth state contained in the transducer is a result of the

epsilon filter used. Different epsilon filters lead to different

topologies [24,27] where the three-state backbone of match,

insertion and deletion states are always retained. This additional

path theoretically allows for the opening of a new gap within a

Evolutionary Distances in the Twilight Zone
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gap, something which is automatically excluded if looking for the

shortest path or best-scoring alignment between two sequences.

In summary, reformulation of the classical global pairwise

alignment paradigm allows for the interpretation of the alignment

score as a shortest-path approximation of the kernel score of a pd

rational kernel working on biological sequences.

The impact of suboptimal alignments on the kernel score
If the absolute difference between the summands of a

logarithmic sum is large the sum is heavily dominated by its

smaller summand. Therefore, in cases where the optimal

alignment score is distinctively smaller than any suboptimal

alignment the kernel score including all suboptimal alignments will

be close to the shortest-path approximation. In cases where even

the best alignment score is not significantly smaller than its closest

suboptimal siblings the full score will differ. In order to be able to

study the effect of the inclusion of suboptimal alignments in terms

of reconstruction accuracy we project the exponential of the

matrix of pairwise alignment scores to the next positive semi-

definite [29]. This shortest-path approximation is not neccesarily

pd anymore. How big the difference is depends on the optimality

of the best score as discussed above.

Results

We performed repeated simulation experiments to validate our

distance measures using nucleotide and amino acid sequences over

two different tree topologies and on each with increasing sequence

divergence.

Sequence simulation
Amino acid and nucleotide sequences were generated according

to two tree topologies with 18 and 52 taxa in realistic scenarios

using INDELible [30] (see also Text S1). Trees were reconstructed

and topologically compared to the true tree using the quartet

distance [31]. The studied methods were (i) traditional multiple

alignment using Muscle [32] followed by Jukes-Cantor distance

estimation using Phylip [33], (ii) statistical consistency alignment

using ProbCons based on pair-HMMs [34] followed by RAxML

maximum-likelihood tree reconstruction [35], (iii) an alignment-

free method of distance estimation based on the Lempel-Ziv

complexity [12], (iv) a pattern-based maximum-likelihood ap-

proach for alignment-free distance estimation [36] and (v) the

classical Levenshtein distance [28]. Comparison according to (iv)

had to be performed on a much smaller sample size due to the

high computational demand of the method [14]. In a preliminary

study we found (iv) to perform only slightly better than (iii) for

closely related sequences. We thus kept method (iii) as a

representative for alignment-free methods.

Sequence divergence leads to poor alignment quality
To assess the impact of sequence divergence on multiple

alignment accuracy we first compared the alignments from Muscle

with the true INDELible alignments. We calculated two scores to

quantify this accuracy (Figure 2 A,B): The column score (CS) is the

proportion of columns from the true alignment that are present

and correct in the test alignment. The sum-of-pairs score (SPS) is the

proportion of aligned pairs of nucleotides/amino-acids from the

true alignment that are also aligned together in the test alignment.

The first is a very stringent measure as all nucleotides/amino-acids

in a column must be correctly placed for that column to be

deemed correct. The latter is a more lenient measure as it rewards

correct alignment between some sequences even if other sequences

in that column are mis-aligned [9].

The results show that the number of correctly aligned positions

exponentially decreases with increasing sequence divergence for

nucleotide sequences. Amino acid sequences showed a more linear

trend, possibly due to the higher information content introduced

by the larger alphabet size of amino acids as compared to

nucleotides, but suffer from the same effect.

FST distance for divergent sequences
Quartet distances between the estimated and true trees for

nucleotide as well as amino acid sequences over all tree topologies

(Figure 2, C–F) show that the traditional approach of a multiple

alignment followed by distance estimation is highly accurate for

closely related species. When entering the twilight zone of

sequence alignments reconstruction accuracy drops exponentially.

Above average branch lengths of w0:1 substitutions per site for

the 52 taxa nucleotide tree and w0:4 substitutions per site for the

18 taxa protein tree the multiple alignment becomes erroneous

(red and black lines) and tree reconstruction accuracy gets weak as

the number of quartets in common with the true tree approaches

that of a random tree (dotted line). This effect is about 3 times

stronger for nucleotide then for protein trees and about 2 times

stronger in the 52-taxa tree as compared to the 18-taxa tree. To

exclude aligner-specific artifacts, we included ProbCons (black

Figure 1. Feature space mapping and kernel function transducers for the evolutionary sequence space. A: Feature space mapping for
biological sequences using a FST over the log semiring: Every transition has an attached input and output symbol separated by a colon, and an
associated weight. Symbols can either be kept, substituted or deleted. Composition of such a transducer with its own inverse yields a pd rational
kernel. The alphabet has been reduced to two symbols for illustration purposes, { depicts a gap or epsilon transition. B: Result of the composition of
the transducer encoding the feature space mapping with its inverse: The starting state (state 0) corresponds to the match state, the additional two
colored states (states 1, 2) encode insertion and deletion states. The transitions to the gap states are scored with gap open costs and the self
transitions in the gap state with gap extend costs. The additional fourth state (3) is a result of the epsilon filtering process during composition.
doi:10.1371/journal.pone.0015788.g001
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line, Figure 2) into the analysis. We additionally included ClustalW

which was found to perform slightly worse than Muscle. We also

computed maximum-likelihood trees on the alignments to assess

the difference in reconstruction accuracy between simple distance-

based and character-based approaches. The RAxML trees

outperformed the distance based trees by a margin which was

more profound for amino acid sequences than for nucleotide

sequences, but still suffered drastic loss in reconstruction accuracy

with increasing sequence divergence, due to the accumulation of

alignment errors. The ProbCons results showed that aligners

specifically designed to address these issues indeed perform slightly

better to moderately better across all experiments but still suffer

from a rapid loss in reconstruction accuracy with increasing

sequence divergence. The alignment-free methods generally

performed worse than other methods tested on the 18 taxa tree

but were close to the best alignment-based methods for the 52 taxa

trees.

Distance estimation using our proposed finite-state transducers

(blue and green lines) came close to the performance of classical

multiple alignment for closely related species. It showed only a

gradual decrease in reconstruction accuracy with increasing

evolutionary divergence, being significantly more accurate than

any other method tested. This evidently shows that the classical

approach of multiple alignment followed by tree reconstruction is

superior only if the alignment is correct. From a certain distance

on, multiple sequence alignments cannot be reconstructed

accurately any more, leading to poor reconstruction power in

the downstream phylogenetic analysis. This seems to hold for

classical progressive multiple alignment as well as statistical

consistency alignment.

The influence of suboptimal alignments on the kernel
score

When comparing both proposed kernel scores, one incorporat-

ing all suboptimal alignments into the score, the other only using

the optimal alignment, we noticed differences between the two tree

topologies: In the 18-taxa case both variants perform equally well.

In the 52-taxa case the suboptimal alignments added more noise to

the score than signal and the kernel using only the optimal score

came out ahead. Even though the average branch length in the 52

taxa tree is moderate the variance of pairwise distances between

sequences is higher when the tree contains more branches. When

comparing sequences beyond the twilight zone the scores of the

optimal and subsequent suboptimal alignments are similar,

influencing the kernel score (see Methods section). The good

performance of the score based on the optimal alignment is

especially attractive as this shortest-path approximation can be

computed with standard global alignment implementations, such

as the Stretcher program from the EMBOSS package followed by

projection to the next pd matrix. We were already able to test this

procedure in a real-world application, comparing 500 human

kinases with 2600 kinases from Paramecium tetraurelia. We showed

that the kinome of P. tetraurelia is more than 5 times the size of the

human kinome. In addition to whole genome duplications, further

Figure 2. Alignment accuracy results and reconstruction accuracy results on simulated sequences with increasing divergence. A,B:
Alignment accuracies measured in column and sum-of-pairs scores. With increasing branch lengths multiple alignments accumulate errors, which
leads to the poor reconstruction accuracies observed. C–F: Simulation results for nucleotide sequences (left) and protein sequences (right): All
experiments were repeated 100 times, standard error estimates are shown. The traditional approach of multiple alignment followed by distance
estimation performs well for closely related sequences (red and black lines). The error curve of the two FST approaches has a significantly lower slope
and performs well even for divergent sequences (green and blue), so does the classical edit-distance (yellow) which is still behind the FST distances.
Statistical consistency aligners (black) perform better than traditional aligners (red) but suffer from the same rapid decay in reconstruction accuracy.
The Lempel-Ziv complexity-based distance only achieves good results for the 52 taxa tree (purple). The dotted black line at the top gives the
maximum expected quartet distance from a random tree.
doi:10.1371/journal.pone.0015788.g002
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duplications lead to the expansion of specific subfamilies. More

than 20 ciliate specific domain architectures were discovered [37].

The most traditional way of pairwise comparison between

sequences is the edit-distance or Levenshtein distance [28]. Results

show, that like our own pairwise sequence comparisons the

Levenshtein distance is not prone to the multiple alignment pitfall

and therefore performs well for divergent sequences. It provides a

relatively accurate estimator for distances between nucleotide

sequences but performs worse for protein sequences. This is not

surprising as the EDNAFULL matrix traditionally used for

nucleotide alignments scores matches with 5 and all substitutions

equally with {4. The information content of this matrix is not

higher than that of the edit-distance matrix which scores matches

with 0 and any edit operation with {1. The picture changes in the

case of protein substitution matrices that carry dense information

about the exchangeability of amino acids.

FST distance places Sphaeroplea clade correctly without
information about secondary structures

We applied our method to a set of 52 internal transcribed spacer

II (ITS2) sequences of the Chlorophyceae [38]. The group consists

of 6 major clades of high within-group sequence similarity (90%
median pairwise sequence identity) but significant divergence

between groups (down to 67% total average sequence identity).

Over the last few decades there has been ongoing discussion about

placement of the Sphaeroplea clade within this set of taxa [39–41].

Even though most authors agree on the existence of a

monophyletic DO-group comprising the Sphaeroplea, Hydrodictyon

and Scenedesmus clades, the position of the Sphaeroplea clade within

this group was only recently verified by taking structural properties

of the ITS2 into account [38].

We applied our FST distance method to the set of ITS2

sequences and compared it to both classical distance estimation

and maximum likelihood tree reconstruction on a multiple

sequence alignment (Figure 3). Comparing the MSA with the

manually curated sequence structure alignment taken from [38]

shows that the Muscle alignment contains many misaligned

columns (CS 0:096, SPS 0:59). The reconstructed trees differ from

the true tree, especially with respect to the placement of the

Sphaeroplea clade. The distance tree places the Sphaeroplea clade

between the Hydrodictyon and Scenedesmus clades (Figure 3 right top),

whereas the ML tree again places the Sphaeroplea clade within the

reinhardtii-subgroup (Figure 3 right bottom). Our FST distance,

which circumvents the multiple alignment step, correctly places

the Sphaeroplea clade next to the Hydrodicton/Scenedesmus sister clade.

In other methods this position can only be inferred by using

additional secondary structure information to reduce alignment

errors. Our method was additionally able of correctly grouping a

monophyletic Gonium clade.

Discussion

In this paper we have shown that a kernel-based distance

measure circumvents problems of MSA quality and performs very

well in and beyond the twilight zone of remote homology. We

intentionally used known substitution matrices and gap scores as

parameters to illustrate the link to classical global alignments.

Custom parameters estimated by e.g. expectation maximization

over alignments of a given divergence range will supposedly

perform even better.

Using FSTs to derive the distance has several advantages. For

example, the inputs to the distance calculation are currently two

individual sequences, formulated as finite-state acceptors that emit

exactly the sequence under study. This can seamlessly be extended

to acceptors emitting distributions over sequences, i.e. Hidden

Markov Models like profile-HMMs [42] to compute distances

between sequence families with possible applications in e.g.

Profile-Neighbor-Joining [43]. The construction of a pd kernel

using composition of two individual FSTs is a necessary step, as

generalized edit-distances like the classical pairwise alignment

score, are not negative definite and therefore can not easily be

turned into a pd kernel by exponentiation alone [26].

The methods we compare ourselves against are amongst the

most frequently applied, such as Muscle followed by a distance-

based tree reconstruction, but also include state-of-the art

statistical consistency aligners like ProbCons followed by ML tree

reconstruction. As both JC distance and ML reconstruction

methods suffer from the same decrease in accuracy we show that it

Figure 3. Reconstructed phylogenetic trees of the Chlorophyceae group. Three different methods were compared: FST distance (left) using
the full kernel score, F84 distance estimation on a Muscle alignment (top right) and maximum-likelihood tree on the same Muscle alignment (bottom
right). Only the FST tree reveals the same grouping of the major clades as discussed in [38], which we use as a ‘gold standard’. The distance tree
erroneously places the Sphaeroplea clade between the Hydrodictyon and Scenedesmus clades, while the ML tree places them within the reinhardtii-
subgroup.
doi:10.1371/journal.pone.0015788.g003
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is not simply the modeling of insertions and deletions that is

improved in our distance measure as compared to JC. We

additionally clustered sequences by length to see if the sheer

number of insertions and deletions in divergent sequences were

mainly responsible for this effect. This clustering performed very

poorly as expected.

Sophisticated methods of statistical alignment [44] are capable

of computing joint probabilities for sequence comparison, but the

derivation of distances remains arbitrary to a degree. Furthermore,

such statistical methods can be found lacking because of

simplifications such as assuming that indel events involve only

one residue (TKF91 model, [15]) or that sequences are made from

non-overlapping indivisible fragments (TKF92 model, [16]).

Maximum-likelihood estimates for the time elapsed between two

species given the sequences additionally involve reversibility

assumptions and solving non-convex optimization problems.

Other algorithms, such as [45], are only practical in analyses

involving a small number of sequences. They necessarily need to

be coupled to numerical optimization methods to find maximum

likelihood estimates of parameters such as insertion and deletion

rates, substitution parameters, and branch lengths. In contrast, our

approach is capable of directly using substitution matrices that are

known to perform well for certain evolutionary distances.

In summary, the present fast and MSA-free methodology allows

us to compute pairwise distances between sequences that mirrors

the global pairwise alignment process. Our methodology interprets

alignment scores as values of a kernel that implicitly maps

sequences to a feature space with a biologically motivated

topology: it is built of modifications of that sequence using

insertions, deletions and substitutions. Our methodology can

directly be applied to compute distances between distributions of

sequences. The resulting pd kernel matrix can be used in any

method that can be expressed in terms of dot products alone (e.g.

classification via support vector machines). The distances are

meaningful in evolutionary terms and outperform other phyloge-

netic inference methods on divergent sequences in and beyond the

so-called twilight zone of remote homologies. Thus, our methods

complement traditional approaches for more closely related

sequences. Future work will focus on assessing the robustness of

the kernel score (bootstrapping) and the question of mapping

sequences directly to an additive space, i.e. from which additive

distances can be immediately derived, to remove the final

approximation step when going from the matrix of pairwise

distances to the tree.

Supporting Information
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