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Abstract

Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population
followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation
of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to
recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously
suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we
present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on
substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the
synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is
possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an
array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-
based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A
Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/,tomersh/tools).
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Introduction

In recent years, metabolic engineering has emerged as a

discipline that utilizes modern genetic tools for the construction of

organisms capable of fuel and chemical production. Metabolically

engineered microbial strains are now being used in the industry for

the production of various chemicals [1,2], while significant

ongoing efforts are made to engineer microbes to synthesize

additional chemicals of interest [3,4,5,6]. The engineering of

microbial metabolism follows two paradigms: (i) A rational design

approach - focused on the engineering of cellular phenotypes using

rational modifications (typically gene additions, deletions, up and

down regulation, etc) based on existing stoichiometric, kinetic, and

regulatory knowledge of a system [7,8]. (ii) A combinatorial approach -

generating genetic diversity in a population followed by screening

and selection for improved phenotypes [9]. This approach is

sometimes followed by inverse metabolic engineering (IME), which aims

to discover the genetic factors that confer the phenotype and

transfer them to another strain by directly applying these genetic

modifications [10].

Computational modelling in metabolic engineering has tradi-

tionally been used to rationally design the effect of genetic

modifications on metabolism. However, such modeling approach-

es commonly involve either kinetic analysis [11] which requires

detailed enzyme kinetic information that is still mostly unknown,

or Metabolic Control Analysis [12] that requires experiment-based

measurements of flux control coefficients that are also mostly

unavailable. An alternative modeling approach, called constraint-

based modeling (CBM), analyzing the function of genome-scale

metabolic networks through relying solely on simple physical-

chemical constraints[13,14]. Such genome-scale network models

are currently available for a variety of microorganisms

[15,16,17,18,19]. Various CBM methods focus on different types

of genetic manipulations that can be performed by engineering

microbial strains, including gene knockouts (OptKnock and

RobustKnock), gene additions (OptStrain), and up- and down-

regulation of metabolic enzymes (OptReg and OptForce)

[20,21,22,23,24]. However, although rational design of genetic

strategies for chemical production has been successful in some

applications (see [25,26] for reviews), in many cases, the sheer

complexity of biological networks and simplifying assumptions that

underlie current methods lead to inexact predictions.

The combinatorial approach for metabolic engineering via

random mutagenesis followed by screening for specific phenotypes

of interest, has long been the gold standards for strain

improvement in industry. A variety of recombinant DNA

techniques are available for generating random genetic changes,

thus introducing the possibility of uncovering regulatory, kinetic,

or unknown/poorly understood targets not encompassed in

current models (see [9] for a review). This approach is commonly

used for functional genomics and phenotypic engineering [27,28],

and has been shown to be remarkably successful for the case of

lycopene production in E. coli [29]. However, while much progress

has been made in the development of experimental techniques for
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generating combinatorial strain diversity, efficient methods to

perform high-throughput screening for chemical producing strains

are still lacking. Indeed, a major hurdle with this approach is that

many chemicals do not have easy to recognize attributes, making

the process of identifying their secretion (using common screening

methods such as GC-MS) expensive and time consuming. Pfleger

et al. related to this issue, claiming that ‘‘Combinatorial strategies

are only as good as the screens used to distinguish individual

library members’’ [30]. This problem has led previous research to

focus mainly on the production of easily recognizable chemicals,

such as pigments that can be detected based on color

discrimination [25].

To address the challenge of performing high-throughput

screening for chemical production in combinatorial engineering

experiments, the usage of microbial bio-sensors for small molecules

was suggested [30,31]. Auxotrophy-dependent microbial biosen-

sors are engineered strains that are auxotrophic to a chemical of

interest and hence can be used to detect and quantify the

concentration of a chemical in the environment. E. coli based

biosensors have been previously constructed for vitamins [32] and

various amino-acids [30,33,34,35,36]. Pfleger et al. describe a

manual design of an E. coli strain, auxotrophic to mevalonate that

expresses a green fluorescent protein and reports on the

mevalonate concentration in the growth medium through a

change in growth rate. In brief, the method involves the

generation of a random library of potential producer strains of

mevalonate grown in separate cultures, then they are removed via

centrifuge and their spent media is moved to new cultures

inoculated with the biosensor for mevalonate. The biosensor’s

growth under each spent media culture reflects the concentration

of mevalonate, secreted earlier by a producer strain.

This paper presents a novel approach for rationally designing

microbial biosensors that can be used within combinatorial

experiments towards the production of chemical of interest.

Specifically, we present computational methods to (i) design

microbial biosensors for chemicals of interest based on substrate

auxotrophy (Figure 1a) that can be used to perform high-

throughput screening for their production (Figure 1b). (ii) Predict

engineering strategies for coupling the synthesis of a chemical of

interest with the production of a proxy metabolite for which high-

throughput screening is possible via a designed bio-sensor

(Figure 1c). We show that predicted chemical production rates

achievable via the biosensor-based approach may potentially

improve upon those achievable via current rational design

methods.

Results

Computational design of microbial biosensors based on
substrate-auxotrophy

Given a metabolic network model for some microbial species, a

chemical to be sensed denoted by C, and a definition of a growth

medium denoted by M, the biosensor design method aims to

search for genetic modifications such that: (i) The bio-sensor strain

would grow in a medium that consists of at least nutrients that are

in M and C, and (ii) would not grow in a medium where C is

Figure 1. A schematic illustration of metabolite over-production strategies based on microbial biosensors. (a) The first step involves
the design of a microbial biosensor whose growth depends on the presence of some metabolite, denoted by X, in the growth medium. (b) The
designed biosensor can be directly used within combinatorial metabolic engineering experiments to perform high-throughput screening for
producer strains that secrete chemical X. (c) Here, we suggest that a biosensor for chemical X can be used within combinatorial metabolic
engineering experiments to over-produce a different chemical of interest, denoted by Y, whose production is coupled to the secretion of X (based on
rationally designed genetic manipulations in the producer strain).
doi:10.1371/journal.pone.0016274.g001
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absent, even if it consists of all metabolites (other than C) that can

be transported into the biosensor strain. Notably, the common

definition of substrate-auxotrophy is less restrictive than the above,

and in many cases, strains considered auxotrophic for a chemical

C, may actually also grow in the absence of C, utilizing a different

substrate as input to synthesize C. We hence refer to a microbial

strain that realizes the above growth constraints as being ultra-

auxotrophic for chemical C. A microbial strain that is ultra-auxotrophic

for C (considering some medium M), can be used as a biosensor

within combinatorial metabolic engineering experiment, to detect

and quantify the concentration of C (similarly to the experiment

performed by [30]). Specifically, in these experiments, after the

producer strains are grown, their spent media is moved to new

cultures, where medium M is added, and the biosensor strains are

grown. The ability of the biosensor to grow indicates whether

chemical C is present in the spent medium (i.e. secreted from the

producer strain), with the total biomass of the grown biosensor

strain reflecting the concentration of C (as further explained

below). The requirement for ultra-auxotrophy guarantees that the

biosensor strain would not grow in case C is absent from the spent

media, regardless of which additional chemicals were potentially

secreted by the producer strains.

The search for a set of gene knockouts that would give rise to

ultra-auxotrophy is performed via a bi-level optimization problem,

considering stoichiometric mass-balance, reaction directionality,

and knockout constraints (i.e. zero flux through knocked-out

reactions; Methods) (Figure 2). This optimization is formulated as

a mixed-integer linear programming (MILP) problem [20,24],

which is optimally solved in a manner of seconds to minutes on a

standard PC. Notably, while previous studies have already

employed bi-level and MILP optimizations for various purposes

in the context of metabolic network analysis [20,21,37,38,39], this

is the first application of this approach for the design of

auxotrophic biosensors – and specifically for the search of gene

knockout combinations that would give rise to different growth

phenotypes under two different growth media.

We applied the above method on a genome-scale metabolic

network model of E. coli metabolism iJR904 [18], consisting of 143

different chemicals that have a transport reaction in the model,

allowing their potential uptake from the growth medium. The

network model includes 904 metabolic enzyme-coding genes,

accounting for 1075 reactions and 761 metabolites. We considered

two possible growth media for the biosensor strains: a glucose

minimal medium and a rich medium (consisting of all metabolites

that may potentially be taken up by E. coli, other than the sensed

chemical). The latter medium, in which a large number of

nutrients are expected to be manually added to the spent media is

more complex from an experimental perspective, though as shown

below, it increases the number of designed biosensors and enables

to better quantify the concentration of sensed chemicals. We

restricted the analysis to allowing up to a total of three knockouts.

When considering a minimal medium, we predict biosensor

designs for 43 chemicals, and when considering a rich medium, we

predict additional biosensor designs for 10 chemicals (Figure 3).

The predictions include biosensors for 19 amino acids and 14

sugars among others. Each predicted biosensor strain is expected

to grow in a spent medium (supplemented with either glucose

minimal or rich medium) in the presence of its sensed chemical,

and not grow in its absence, regardless of which additional

chemicals were potentially secreted by the producer strain. The

specific details of the predicted knockout combinations for each

bio-sensor are shown in Table S1.

Comparing the predicted amino-acids biosensors with a list of

known amino-acid auxotrophic strains (extracted from the Coli

Genetic Stock Center (CGSC); http://cgsc.biology.yale.edu/)

shows a good match between the two (Table 1). Specifically, for

10 amino-acids, the predicted knockouts match those of the known

auxotrophic strain. For 5 amino-acids the predicted knockouts

differ from the ones described in the CGSC database, though

further literature search revealed experimental evidence showing

that all predicted knockouts also lead to the desired auxotrophy

[40,41,42]. Simulating the knockouts that give rise to these 5

Figure 2. A schematic representation of the bi-level optimization problem that underlies the biosensor design method. The outer
optimization problem searches for a set of gene knockouts and a feasible flux distribution with maximal growth rate when chemical C is present in
the growth medium. The inner optimization problem is used to enforce a maximal growth rate of zero (reflecting no growth) when C is absent from a
rich growth medium.
doi:10.1371/journal.pone.0016274.g002
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auxotrophic strains in CGSC showed that they indeed lead to

substrate auxotrophy, though not to the desired ultra-auxotrophy

– i.e. these strains should also be able to grow under rich media,

even in the absence of the corresponding metabolites in the

medium. For example, for the tryptophan biosensor, we predicted

the double knockout of indole-3-glycerol-phosphate and indole

transporter, while the known CGSC auxotroph consists only of the

former knockout (Table 1). Our analysis shows that if only 3-

glycerol-phosphate synthase enzyme is knocked-out then E. coli

should be able to utilize indole as a substrate to produce

tryptophan (Figure 4). Notably, the double knockout predicted

by our method was previously implemented by [43] and was

shown to be able to grow on rich media, though, its ability of grow

on a media containing only glucose and indole was not tested. For

3 additional amino-acids, the knockouts of the CGSC auxotrophic

strains are falsely predicted not to lead to substrate auxotrophy,

though in 2 of the cases, the knockout of an additional reaction

does lead to auxotrophy predictions. I.e., in the later cases, the

model over-predicts the number of modifications required to

guarantee the desired ultra-auxotrophy. The latter false predic-

tions of gene knockouts required to achieve auxotrophy may result

from genetic down regulation of these genes that is not explicitly

accounted for in the metabolic network model.

The predicted biosensors can be used not only to detect the

presence of chemicals of interest in a medium, but also to assess their

actual concentration based on the total biomass of the grown

biosensor strains (which can be easily detected experimentally, e.g.,

by a utilizing green fluorescent protein, as done in [30]). When rich

medium is assumed to be added to the spent medium, the

biosensor’s biomass yield should not be affected by the potential

secretion of additional metabolites by the producer strains (which

are ‘masked’ by the manual addition of all metabolites that may be

taken up by E. coli). Hence, in this case, the concentration of the

sensed chemical can be accurately determined based on the total

biomass of the grown biosensor strain. When only glucose minimal

medium is assumed to be added to the spent media, the biosensor’s

biomass yield may change depending on the secretion of additional

chemicals by the producer strain. For example, the xylose biosensor

achieves a significantly higher biomass yield when additional

metabolites (other than xylose) not included in glucose minimal

media are present in the media (Figure S1a). On the other hand, the

galactose biosensor’s biomass yield does not change when additional

metabolites (not present in glucose minimal medium) are added to

the spent media (Figure S1b). Overall, out of the 43 predicted

biosensors for glucose minimal media, the biomass yield of 13 was

found to be insensitive to the specific metabolite composition of the

Figure 3. A list of metabolites with predicted biosensor designs. The 43 biosensors predicted under glucose minimal medium are marked in
green, while the additional 10 biosensors predicted under a rich medium are colored red. Biosensors whose biomass production yields are predicted
to be insensitive to the exact metabolite-composition of the spent medium are underlined. The number of gene knockouts predicted for the various
biosensors is shown in superscript.
doi:10.1371/journal.pone.0016274.g003
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spent media (marked with an underline in Figure 3). The remaining

biosensors may not provide an accurate estimation of chemical

concentrations under glucose minimal media, though the latter can

still be achieved by growing the biosensors on a rich media. Notably

though, the higher biomass yields achieved in rich media may limit

chemical detection ranges due to practical consideration involving

excess biomass production of the biosensor strain (while the later

may be tuned experimentally by lowering the amount of secreted

chemical by the producer strain, by lowering the amount of

nutrients given in its growth medium).

Over-producing chemicals of interest using the designed
biosensors

To demonstrate the applicability of the predicted biosensors in

over-producing chemicals of interest via combinatorial metabolic

engineering experiments (such as that performed by [30]), we

compare the optimal possible outcome of such experiments with

that achievable by existing rational design approaches. Since

combinatorial experiments utilize biosensors to iteratively select

producer strains with high chemical production yields, the

maximal possible production rate achievable by this approach is

computed via FBA (Methods). Similarly, previous studies have

shown that FBA is able to correctly predict the maximal possible

biomass production rate following adaptive evolution of E. coli

[44,45,46]. Notably, in practice, purely combinatorial experiments

may not necessarily reach the maximal production rate predicted

by FBA, the latter requiring further metabolic engineering

interventions.

Here, we considered combinatorial experiments that utilize E.

coli also as the producer organism, aiming to over-produce various

chemicals that have predicted biosensors (from the above section).

FBA is applied to predict the maximal theoretical production yield

Table 1. A comparison between predicted amino-acid biosensor designs and a list of known amino-acid auxotrophic strains.

Chemical Known knockouts leading to auxotrophy
Predicted knockouts leading to ultra-
auxotrophy

MATCH BETWEEN KNOWN AND
PREDICTED KNOCKOUTS

Cysteine serine O-acetyltransferase serine O-acetyltransferase

Lysine diaminopimelate decarboxylase diaminopimelate decarboxylase

Methionine homoserine O-succinyltransferase homoserine O-succinyltransferase

Tyrosine prephenate dehydrogenase prephenate dehydrogenase

Histidine histidinol-phosphatase histidinol-phosphatase

imidazoleglycerol-phosphate dehydratase imidazoleglycerol-phosphate dehydratase

Glutamine glutamine synthetase glutamine synthetase

Leucine 3-isopropylmalate dehydrogenase 3-isopropylmalate dehydrogenase

2-Oxo-4-methyl-3-carboxypentanoate
decarboxylation

2-Oxo-4-methyl-3-carboxypentanoate
decarboxylation

Phenylalanine prephenate dehydratase prephenate dehydratase

Serine phosphoglycerate dehydrogenase phosphoglycerate dehydrogenase

Asparagine asparagine synthetase asparagine synthetase

asparagine synthase (glutamine-hydrolysing) asparagine synthase (glutamine-hydrolysing)

KNOWN KNOCKOUTS PREDICTED
TO LEAD TO AUXOTROPHY, BUT
NOT TO ULTRA- AUXOTROPHY

Arginine cetylornithine deacetylase argininosuccinate lya

N-acetylornithine deacetylase

Tryptophan indole-3-glycerol-phosphate synthase indole-3-glycerol-phosphate synthase

phosphoribosylanthranilate isomerase Indole transport via proton symport

Leucine dihydroxy-acid dehydratase (2,3-dihydroxy-3-
methylbutanoate)

2-isopropylmalate synthase

Valine dihydroxy-acid dehydratase (2,3-dihydroxy-3-
methylbutanoate)

acetohydroxy acid isomeroreductase

Isoleucine dihydroxy-acid dehydratase (2,3-dihydroxy-3-
methylbutanoate)

2-aceto-2-hydroxybutanoate synthase

MISMATCH BETWEEN KNOWN
AND PREDICTED KNOCKOUTS

Glycine glycine hydroxymethyltransferase glycine hydroxymethyltransferase

Threonine Aldolase

L-threonine dehydrogenase

Threonine threonine synthase threonine synthas

4-Hydroxy-L-threonine synthase Threonine Aldolas

Proline glutamate-5-semialdehyde dehydrogenase pyrroline-5-carboxylate reductase

For the first 10 amino-acids (rows in the table), the predicted knockouts match exactly those of the known auxotrophic strains. For the next 5, the known knockouts are
correctly predicted as causing auxotrophy (when simulated via FBA in the model), but not to ultra-auxotrophy, while the biosensor design method yielded different
knockouts that are predicted to lead to the desired ultra-auxotrophy. For the last 3 amino-acids in the table, the predicted and known knockouts differ.
doi:10.1371/journal.pone.0016274.t001
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of a chemical of interest, while enforcing a minimal growth rate of

0.1 mmol/gr(DW)h to maintain viability (the same threshold used

in the implementation of OptKnock and RobustKnock; other

choices of this threshold gave quantitatively similar results). The

results show that combinatorial metabolic engineering experi-

ments aiming to over-produce chemicals using the predicted

biosensors would enable to produce 25 metabolites with a rate

greater than zero (Figure 5a). These include important metabolites

for industrial purposes, such as indole (used in the perfume

industry) and glycerol (widely used in pharmaceutical industry).

We compared these predicted combinatorial-biosensor results to

those that may be achieved using two leading rational design

Figure 4. Gene knockouts that are predicted to give rise to a tryptophan biosensor. The known E. coli auxotrophic to tryptophan has trpC
gene knocked-out (marked with a red X), blocking the synthesis of tryptophan from an intermediate metabolite in the pentose phosphate pathway.
Our predictions show that if only this gene is knocked-out then E. coli may be able to utilize indole as a substrate to produce tryptophan, suggesting
that a biosensor strain whose growth should depend specifically on the presence of tryptophan should hence also have its indole-to-tryptophan
pathway knocked-out (marked with a green X).
doi:10.1371/journal.pone.0016274.g004

Figure 5. Chemical production via rational design versus the biosensor-based combinatorial approach. (a) A Venn diagram showing
the overlap between the set of metabolites which have predicted biosensors, the set of metabolites that may potentially be produced and secreted
by E. coli under glucose minimal media, and the sets of metabolites whose over-production can be rationally designed via OptKnock and
RobustKnock. Out of a set of 25 metabolites that may potentially be produced by E. coli and have a predicted biosensor (which can be used in
combinatorial engineering experiment to over-produce them), only 10 metabolites can also be over-produced by OptKnock or RobustKnock. (b) The
achievable over-production yields of the 25 metabolites predicted by OptKnock and by RobustKnock versus the maximal theoretical yield potentially
achievable via the biosensor-based approach (as predicted via FBA).
doi:10.1371/journal.pone.0016274.g005
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methods, OptKnock [20] and RobustKnock [24], for predicting

gene knockout strategies for over-producing the same chemicals

using E. coli. OptKnock works by searching for a gene knockouts

combination that couples the production and secretion of a

chemical of interest with the production of biomass (and hence

with the bacterial growth rate). RobustKnock is a robust variant of

OptKnock that searches for knockout combinations that maxi-

mizes the minimal (guaranteed, based on the model constraints)

secretion rate of the chemical, considering the presence of the

alternative pathways in a metabolic network that may prevent the

organism from reaching the maximal theoretical chemical

production rate predicted by OptKnock (Methods). For both

OptKnock and RobustKnock were allowed up to three concurrent

gene knockouts, in accordance with the number of knockouts

considered in the biosensor designs.

The application of OptKnock predicted gene deletions

strategies that enable the production of only 10 chemicals out of

the 25 metabolites whose production is achievable via biosensors.

The application of RobustKnock shows that a non-zero secretion

of only 6 of the 25 metabolites can be guaranteed (considering the

model constraints) by coupling their production with biomass

formation. Furthermore, the maximal possible production yields

predicted by OptKnock and RobustKnock for these chemicals are

significantly lower than the optimal yields that may theoretically

be achieved by the biosensor-based approach (Figure 5b),

testifying for the potential added value of the latter approach

over current rational design methods. Notably, while our

application of OptKnock and RobustKnock was limited to no

more than three concurrent knockouts, previous studies have

shown that in many cases, higher order knockouts still do not lead

to optimal production yields [47,48]. For example, in the case of

glycerol, allowing up to 10 concurrent gene knockouts has led to a

production yield of only 66% of the maximal theoretical yield,

compared to 89% achieved by directly using a biosensor for

glycerol (see Table S2 and S3 for details). For L-Serine allowing 10

concurrent knockouts has still led to zero guaranteed production

yield using rational design.

Over-producing chemical of interest using biosensors to
screen for proxy metabolites

As described above, the predicted biosensors can be used in

combinatorial metabolic engineering experiments to directly

screen for strains that over-produce 25 out of a total of 50

metabolites producible by E. coli under glucose minimal medium.

To over-produce the remaining 25 metabolites, we suggest a novel

approach, this time focused on engineering the producer strain

(rather than the detecting, biosensor strain) via gene knockouts to

couple the production of a metabolite of interest with the

production of a proxy metabolite for which a biosensor design

has already been found (and hence can be used to maximize the

production rate of this proxy metabolite; Figure 1c). The

prediction of an engineering strategy for the producer strain is

facilitated via variants of OptKnock and RobustKnock (referred to

as OptKnock-proxy and RobustKnock-proxy), aiming to couple

the production rate of a chemical of interest with the production of

a given proxy metabolite (instead of coupling it with biomass

formation; Methods). OptKnock-proxy’s predictions reflect the

maximal theoretical production yield of a chemical of interest,

assuming a maximal secretion rate of the proxy metabolite.

RobustKnock-proxy’s predictions reflect the maximal guaranteed

secretion rate of a chemical of interest (considering alternative

pathways in the metabolic network), assuming a maximal

production rate of the proxy metabolite. Both OptKnock-proxy

and RobustKnock-proxy additionally consider a lower bound on

biomass production rate, to maintain viability, similarly to

OptKnock and RobustKnock.

We applied OptKnock-proxy and RobustKnock-proxy to

predict gene knockouts that would enable the coupling the

production of each of the 25 metabolites for which no biosensor

design is available with each of the 25 metabolites that do have a

predicted biosensor design as a potential proxy (Table S3). We find

that OptKnock-proxy predicts knockout strategies that enable the

production of 20 out of the 25 metabolites (which have no

predicted biosensor of their own), utilizing at least one out of the

25 predicted biosensors. Comparing the predicted production

yields with those achievable by rational design, via OptKnock

(which aims to couple the chemical production with biomass

formation), shows higher potential production yields for Opt-

Knock-proxy for 5 out the 20 metabolites (Figure 6a; Table S3).

Applying RobustKnock-proxy predicts knockout strategies for

guaranteed, over-production of 11 metabolites, with markedly

higher production yields in 5 cases than those predicted by the

standard RobustKnock method (Figure 6b; Table S3). Interest-

ingly, we find that knockout combinations predicted by

OptKnock-proxy and RobustKnock-proxy (for the entire set of

chemicals and proxy metabolites) spans a high number of 86

different knocked-out reactions. Figure 7 shows which proxy

metabolites were predicted to facilitate the over-production of

various chemicals by OptKnock-proxy and RobustKnock-proxy.

As shown, for each chemical whose production is enabled via

OptKnock-proxy and RobustKnock-proxy (without a direct

sensore), we find that an average number of 6.95 and 3.31

different biosensors, respectively, could lead to its production in a

rate higher than zero. We find that several ‘hub’ biosensors,

tryptophan, indole, glycerol and glyceraldehyde, enable Opt-

Knock-proxy to design the over-production of a high number of

metabolites (Figure 7a). On the other hand, we find that the usage

of these hub biosensors cannot guarantee the over-production of

many metabolites based on RobustKnock-proxy predictions, with

a variety of different biosensors required for guaranteeing the

over-production of various metabolites (Figure 7b).

Discussion

In this paper, we describe a computational method for designing

microbial biosensors that can be used to perform high-throughput

measurements of the concentration of various small molecules.

Applying our method to design biosensors based on E. coli, we

predict gene knockout strategies for deriving E. coli-based sensors

for 53 metabolites. The utilization of these biosensors to screen for

E. coli strains that over-produce the corresponding chemicals is

predicted to potentially improve achievable production rates,

compared to those predicted by current rational design methods,

OptKnock and RobustKnock. Furthermore, we present a new

approach for over-producing metabolites by performing gene

knockouts that would couple their production and secretion with

the production of a proxy metabolite that does have a biosensor

(and hence its production rate can be maximized via standard

metabolic engineering techniques). The latter approach is

predicted to improve the potential production and secretion rates

of several metabolites.

A major limitation of current constraint-based rational design

approaches in metabolic engineering is that they all aim to couple

the production of a chemical of interest with biomass formation,

such that evolutionary pressure towards growth rate maximization

would lead to increased chemical production rates [20,21,22,24].

A recent work by Ranganathan et al., addresses this issue by

suggesting a novel method, OptForce, that does not rely on a
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definition of a cellular objective function, though it requires

additional experimental flux measurements as input [23]. The

presented biosensors-based approach addresses the same problem

and similarly, does not rely on a coupling between growth rate and

chemical production. Notably, while here, our biosensor design

method was applied to predict knockout strategies that are limited

to no more than three concurrent knockouts, running this method

on powerful computer-clusters would enable the prediction of four

and even five concurrent knockouts [49,50]. An additional scale

up in terms of number of concurrent knockouts could be achieved

by applying heuristic search methods, such as those employed in

OptGene [48]. Whereas various metabolic engineering mecha-

nisms may be used in the design of microbial biosensors, the

approach described here focuses strictly on the prediction of

knockout strategies. A natural extension of the described method

could account for additional genetic manipulations in the form of

gene up- and down-regulation [22] and gene addition [21]. The

latter manipulations are of a particular interest, and may

potentially extend the repertoire of metabolites that can be sensed

by a microorganism to metabolites that are not taken up by the

wild-type strain.

To demonstrate the applicability of the biosensor design method

and OptKnock-proxy and RobustKnock-proxy, we chose to focus

on E. coli (grown under standard glucose minimal media), which is

a common target of metabolic engineering experiments and has a

highly accurate metabolic network model. Considering the

growing interest computational approaches in metabolic engi-

neering and the current rapid reconstruction of metabolic

networks (giving rise to more than 50 highly curated metabolic

reconstructions published to date [51]), we expect the presented

methods, which are obviously general and species independent, to

significantly contribute to rational design of combinatorial

metabolic engineering experiments with many other of those

species in the future.

Methods

Constraint-based modelling (CBM) and Flux Balance
Analysis (FBA)

Constraint-based modeling (CBM) is a mathematical modeling

approach for metabolic networks that utilizes knowledge of the

network structure together with constraints on its possible

behaviors, to predict possible functional metabolic states. Mass-

balance constraints imposed by stoichiometry in a chemical

network at steady state enforce the sum of all production and

consumption rates of each metabolite to be zero:

S:�vv~0 ð1Þ

where S denotes a stoichiometric matrix in which Sij corresponds

to the stoichiometric coefficient of metabolite i in reaction j. S

dimensions are n|m, where n is the number of metabolites in the

network and m is the number of reactions. �vv denotes an m-

dimensional vector of flux rates, where �vvj is the flux rate of

reaction j at steady state. Additional constraints, including those

pertaining to the availability of nutrients in the growth media or to

the maximal flux that can be supported by specific enzymes can be

introduced via the following inequality:

Figure 6. Chemical production via rational design versus the biosensor-proxy approach. Maximal chemical production yields predicted
by the biosensor-based methods OptKnock-proxy and RobustKnock-proxy (achieved with one of the 25 designed biosensors), compared with those
predicted by the rational design methods, OptKnock and RobustKnock, which couple chemical production rate with biomass.
doi:10.1371/journal.pone.0016274.g006
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�vvLBƒ�vvƒ�vvUB ð2Þ

where �vvLB and �vvUB denote lower and upper bounds on metabolic

flux rates, respectively. For example, for a substrate uptake flux �vvj ,

one can set �vvj,LB and �vvj,UB to be equal to the corresponding

measured or imposed values. This constraint can also be used to

distinguish reversible and irreversible reactions, where �vvLB,j~0 is

set for the latter.

Taken together, the constraints limit the allowable functional

states of a metabolic network. In mathematical terms, the range of

allowable network states is described by a solution space W that

represents the phenotypic potential of an organism. For an

underdetermined system, as is typically the case in models of

cellular metabolism [26], W is a convex set in the m-dimensional

space of fluxes [52]. Flux Balance Analysis (FBA) is a particular CBM

method that assumes that the network is regulated to maximize a

certain cellular function [53,54]. A natural choice of an objective

function in metabolic models of microorganisms is that of biomass

maximization [26,55], as it is reasonable to assume that unicellular

organisms have evolved towards maximal growth performance.

This process is formalized by introducing a growth reaction

(denoted by �vvbiomass) that transforms a linear combination of

fundamental metabolic precursors into biomass formation. The

presence of alternative pathways in a metabolic network causes

FBA to predict a space of feasible flux distributions with a maximal

growth rate, rather than a single solution [56].

A computational method for predicting biosensor
designs based on substrate auxotrophy

The biosensor design method is based on a bi-level optimization

problem that searches for gene knockouts such that a feasible flux

distribution that satisfies stoichiometric mass-balance, reaction

directionality, and knockout constraints, will enable high growth

rate when chemical C is present in the spent media and no growth

when it is absent. The problem is formulated as following:

Figure 7. Chemical production yield via the biosensor-proxy approaches utilizing each of the 25 designed biosensors. (a) Maximal
chemical production yields predicted by OptKnock-proxy using each of the 25 designed biosensors. (b) Minimal, guaranteed chemical production
yield predicted by RobustKnock-proxy using each of the designed biosensors. Blue table entries denote zero metabolite production yields while red
entries denote maximal theoretical production yields (as predicted via FBA). The rightmost columns represent the predicted over-production rates
computed by OptKnock (a) and RobustKnock (b), by coupling chemical productions to biomass production.
doi:10.1371/journal.pone.0016274.g007
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maximize
�yy,�vv,�uu

�uubiomass

s:t

maximize
�vv

�vvbiomass

s:t

S:�vv~�00 1:1ð Þ
�vvsensorƒ0 1:2ð Þ

�yyT :diag �vv
LB

� �
ƒ�vvƒ�yyT :diag �vv

UB

� �
1:3ð Þ

2
66666664

3
77777775

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

~0 1ð Þ

S:�uu~�00 2:1ð Þ
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�yyT :diag �uu
LB

� �
ƒ�uuƒ�yyT :diag �uu

UB

� �
2:3ð Þ

2
6664

3
7775 2ð Þ

�iiT :�yy§m{k 3ð Þ
�yy[f0,1gm

ð3Þ

The outer optimization problem searches for a set of gene

knockouts (Boolean variables �yy[f0,1gm
) and a feasible flux

distribution (�uu[Rm) with maximal growth rate when the sensed

chemical is present in the growth medium. The inner optimization

problem is used to search for a feasible flux distribution �vv[Rm

which satisfies the gene knockout constraints when the sensed

chemical is absent from the growth medium, enforcing its maximal

growth rate to zero. The knockout of the i’th reaction is

represented by �yyi~0 (equations (1.3) and (2.3)), with the total

number of concurrent knockouts limited to no more than a pre-

defined threshold, k (where �ii is a vector containing all ones;

equation (3)). The symbol diag �xxð Þ is used to represent a square

matrix with �xx on the diagonal, with all other entries equal to zero.

Stoichiometric mass-balance, enzyme directionality and knock-

out constraints are enforced for the flux distribution �vv by

Equations (1.1) and (1.3) and for �uu by Equations (2.1) and (2.3),

respectively. Lower and upper bounds on flux rates for both �vv
( �vvLB,�vvUB½ �) and �uu( �uuLB,�uuUB½ �) were taken from the metabolic

network model of [18]. The upper bounds on exchange reactions

for flux distribution u enable the uptake of nutrients present in

either glucose minimal or rich media. Reaction upper bounds for �vv

enable the uptake of nutrients present in a rich media (i.e.

consisting of all metabolites that may potentially be taken up by E.

coli). The uptake of the sensed chemical is enabled only for flux

distribution �uu (Equation 2.2), and not for �vv (Equation 1.2).

Alternative optimal knockout combinations were obtained using

integer-cuts, as described in [21].

Supporting Information

Figure S1 The predicted growth rate of the D-xylose (a)
and D-galactose (b) biosensors, as a function of sensed
chemical update rate, under both poor and rich media.
As shown, the growth yield (represented by the slope of the curve)

of the D-xylose biosensor significantly differ between poor and rich

spent media. Hence if the D-xylose biosensor is grown after a

minimal medium is supplemented to the spent medium, the

potential secretion of additional metabolites by the producer strain

may affect its biomass yield, leading to inaccurate estimation of the

chemical concentration (an accurate estimation of D-xylose

concentration can still be achieved by growing the biosensor after

adding all nutrients from a rich medium (other than D-xylose, of

course) to the spent. On the other hand, the D-galactose biosensor

is predicted to have the same biomass yield in both poor and rich

medium, facilitating the direct quantification of chemical concen-

tration also in poor medium.

(TIF)

Table S1 The specific details of the predicted knockout
combinations for each bio-sensor.

(XLS)

Table S2 Secretion rates of chemical as predicted by
OptKnock and RobustKnock.

(XLS)

Table S3 Secretion rates of chemical (using different
proxies) as predicted by OptKnock-proxy and Robust-
Knock-proxy.

(XLS)
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