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Abstract Seasonality is a complex force in nature that affects multiple processes
in wild animal populations. In particular, seasonal variations in demographic pro-
cesses may considerably affect the persistence of a pathogen in these populations.
Furthermore, it has been long observed in computer simulations that under seasonal
perturbations, a host–pathogen system can exhibit complex dynamics, including the
transition to chaos, as the magnitude of the seasonal perturbation increases. In this
paper, we develop a seasonally perturbed Susceptible-Infected-Recovered model of
avian influenza in a seabird colony. Numerical simulations of the model give rise
to chaotic recurrent epidemics for parameters that reflect the ecology of avian influ-
enza in a seabird population, thereby providing a case study for chaos in a host–
pathogen system. We give a computer-assisted exposition of the existence of chaos in
the model using methods that are based on the concept of topological hyperbolicity.
Our approach elucidates the geometry of the chaos in the phase space of the model,
thereby offering a mechanism for the persistence of the infection. Finally, the methods
described in this paper may be immediately extended to other infections and hosts,
including humans.
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1 Introduction

Colonial animals, generally, and marine birds in particular, are at risk from both micro-
and macropathogens (Brown and Brown 1996; Nuttall et al. 1984; Wittenburger and
Hunt 1985). The recent emergence of a wide range of diseases in colonial bird popula-
tions is a cause for concern among conservation biologists (Chen et al. 2005; O’Brien
et al. 2011; Sovada et al. 2008). Most seabird species form large colonies that may
contain thousands, and sometimes, millions of birds (Croxall 1987) on inaccessible
mainland cliffs and offshore islands. Nests are often in close proximity to each other.
Seabird colonies seemingly provide ideal conditions for the transmission and persis-
tence of pathogens. Major outbreaks of avian cholera and avian pox have occurred
in seabird populations (Descamps et al. 2009; Österblom et al. 2004; Rolland et al.
2009; Young and VanderWerf 2008). Puffinosis is enzootic among manx shearwa-
ters (Puffinus puffinus) on isolated colonies off the coast of Wales (Dane et al. 1953;
Nuttall and Harrap 1982). However, the mechanisms behind the persistence of that
virus remain unclear. On the other hand, epidemics involving mass mortalities of sea-
birds are rarely reported (Descamps et al. 2009; Muzaffar and Jones 2004; Waller
and Underhill 2007). There is little information available on the impacts of diseases
on seabird populations because seabirds are difficult to monitor continuously, espe-
cially during winter (Bogdanova et al. 2011). Therefore, there is a need to gain a deeper
understanding of how pathogens might persist in seabird populations, especially when
emerging infectious diseases continue to pose a major threat to humankind and wildlife
(Daszak et al. 2000; Jones et al. 2008).

In this paper, we investigate the long-term impacts of the introduction of a directly
transmitted microparasite, highly pathogenic H5NI avian influenza virus, to a sea-
bird population. Highly pathogenic H5NI avian influenza virus is one of a number
of zoonotic emerging infectious diseases that is a cause for serious concern for the
world’s public health systems. The occurrence of mass mortality events in wild bird
hosts (Chen et al. 2005) has led to the hypothesis that migratory birds may trans-
port the H5N1 virus between countries (Kilpatrick et al. 2006; Peterson et al. 2007).
Furthermore, there are fears that areas where various species of aquatic birds congre-
gate, e.g., Delaware Bay in the US, are “hotspots” for the evolution of avian influenza
viruses, which may lead to the appearance of another novel pandemic strain (Krauss
et al. 2010). Clearly, the introduction of highly pathogenic H5N1 avian influenza to a
seabird population with no pre-existing herd immunity would be of grave concern to
public health specialists, as well as marine conservationists. In particular, we examine
how the seasonality of seabird breeding behavior impacts upon the long-term persis-
tence of pathogens such as avian influenza. Marine birds at higher latitudes generally
abandon the breeding site during the non-breeding season, unlike non-migratory land
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birds that may remain in the general area of the territory for most, if not all, of the year
(Hamer et al. 2001). For example, the common guillemot Uria aalge returns to its
breeding colonies in the British Isles in March, with eggs generally being laid in April
and May (Nettleship and Birkhead 1985). Most guillemots will have departed from the
breeding colonies by the end of August (BWP 2007). Likewise, the northern gannet
lays its eggs in April but the young may be found at the colony into late September
(Nelson 1978).

In this paper, we develop a seasonally perturbed Susceptible-Infected-Recovered
(SIR) model of avian influenza in a seabird colony. We perturb the rate of recruitment
of infectives in our model. We show that the model exhibits chaotic behavior for very
small amplitude of the recruitment of infectives to the population. Furthermore, we
provide a careful description of the chaotic behavior using the tools of topological
hyperbolicity, which were developed in Pokrovskii (1997) and are discussed in detail
in Sect. 5 of this paper. The topological hyperbolicity method can be applied to prove
chaos in the Smale sense, see Guckenheimer and Holmes (1983) or Wiggins (2003) for
an introduction to Smale-type chaos. Computer-assisted applications of the method
were used to prove the existence of chaotic trajectories for the extended Korteweg-de
Vries-Burgers wave equations (Cox et al. 2005), for the Kaldor model of the trade
cycle with a hysteretic nonlinearity (McNamara and Pokrovskii 2006) and for a piece-
wise linear oscillator (Pokrovskii et al. 2007). A proof of the existence of chaos in
a singularly perturbed system using the method, which was not computer-aided, was
provided by Pokrovskii and Zhezherun (2008). While it is well known that seasonally
perturbed population–pathogen systems can exhibit a variety of dynamics, including
chaotic behaviour (Aron and Schwartz 1984; Dushoff et al. 2004; Earn et al. 2000;
Keeling et al. 2001; Olsen and Schaffer 1990), it is a highly non-trivial task to provide
a proof of the existence of chaos in such a system. The goal of this paper is to illustrate
the topological hyperbolicity theory, which provides a careful computer-assisted anal-
ysis of chaos in the seabird–pathogen system. The method identifies a series of sets
in the phase space in which there is chaotic behaviour. Our approach illustrates the
geometry of chaos in the phase space of the seabird–pathogen system for parameter
values that are relevant for H5N1 avian influenza in a seabird colony. Our approach
also provides insight into the conditions under which a pathogen will persist in a
population of long-lived colonial seabirds that congregate to breed on an annual basis.

2 Basic model

According to the classic assumption that goes back to the Kermack–McKendrick
model (Kermack and McKendrick 1927), we divide an adult seabird population into
three classes, namely susceptible birds S(t), infected birds I (t) and recovered (and
immune) birds R(t). We assume that the population is constant, i.e., S + I + R = N .
We assume frequency-dependent bilinear (or mass-action) transmission in which the
number of contacts between the susceptibles and the infectives is independent of the
population size. The infection is transmitted through direct contact between the suscep-
tible and the infected birds at a rate β̃ I S/N , where β̃ is the contact rate per infectious
individual. For convenience we set β = β̃/N . After an instance of infection, the
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infected bird immediately becomes infectious; that is, the model disregards a latent
period. This is a reasonable assumption because the latent period of avian influenza
is about 2 days (Gani et al. 2005; Tiensin et al. 2007). The infected birds recover and
become immune to the disease at a rate γ I . The size of a colony N is limited only
by the availability of the breeding spots, and the number of these are constant. When
a guillemot chick is born, it remains in the colony for about 22 days before leaving
(Nettleship and Birkhead 1985). The chicks that departed subsequently return to the
colony as adults after 4–5 years to breed (Crespin et al. 2006). We assume that all
these birds return as susceptible adults. Space is scarce, and vacant nesting spots are
immediately occupied by a candidate. Therefore, for a seabird colony the recruitment
exactly balances the mortality, disregarding whether it is inflicted by the disease (at a
rate ωI I ) or by natural causes (at a rate ωI ). Under these assumptions, we arrive at
the following system of differential equations:

Ṡ = ω(S + I + R) + ωI I − βSI − ωS,

İ = βSI − γ̃ I, (1)

Ṙ = γ I − ωR,

where γ̃ = (γ + ω + ωI ).
Since we have assumed the total population N is constant, it suffices to consider

a two-dimensional system, and thereby omit one of the equations of system (1). The
equation for R is traditionally omitted; it is easy to see that under the assumption of
constant population size, this equation is decoupled from the first and second equation
of system (1). The condition N = S + I + R may then be used to find R. However,
this choice is arbitrary, and the equations for S or I may be omitted instead of the
equation for R. Omitting the equation for S yields the following system of ordinary
differential equations,

İ = (p − β(I + R))I,

Ṙ = γ I − ωR, (2)

where p = βN −γ̃ may be interpreted as the recruitment rate of infectious individuals.
The resulting two-dimensional system is equivalent for SIR and SIRS models, includ-
ing those models with vertical transmission. Furthermore, system (2) always has an
infection-free equilibrium state that is conveniently located in the origin. In addition,
it is readily seen that the positive quadrant is a positive invariant set of this system, and
hence any phase trajectory initiated in this quadrant indefinitely remains there. Finally,
when the system parameters are constant, this system is globally asymptotically stable
(O’Regan et al. 2010). That means that this system always has a globally attractive
equilibrium state. Depending on the basic reproduction number R0 = βN/γ̃ , this
equilibrium state is either positive (endemic), or infection-free.

Seasonality may be introduced into an autonomous SIR model by incorporating a
periodical forcing term into the system. The most common approach of introducing
seasonality to epidemic models is periodically perturbing the transmission constant
β (Altizer et al. 2006; Aron and Schwartz 1984; Bolker and Grenfell 1993; Keeling
et al. 2001; Olsen and Schaffer 1990; Stone et al. 2007). However, the seasonality in
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a seabird colony is mostly associated with the seasonal breeding pattern of the birds,
i.e., with seasonally-varying recruitment rate. Therefore, it makes sense to perturb the
recruitment rate p in system (2).

If R0 = βN/γ̃ > 1 for system (2), then the constant p is strictly positive. Let
p(t) = p(1 + ε(t)), where p is the mean value of the periodic function p(t) and
|ε(t)| < 1. We assume that the function p(t) oscillates with a period of 1 year since
seabirds (e.g., the common guillemot) have an annual breeding season. Here, we
assume that p(t) has the form p(t) = p(1 − p1 sin 2π t). Therefore, we may write the
following system of non-autonomous differential equations:

İ = (p(t) − β(I + R))I,

Ṙ = γ I − ωR. (3)

3 Numerical evidence of complicated trajectories

We examined the effect of increasing seasonal variation in the recruitment rate p on
long-term infection dynamics by gradually increasing the amplitude of seasonality
p1. The numerical values that we used for the parameters in the seasonally perturbed
SIR model (3) reflect the ecology of H5N1 avian influenza virus in an isolated seabird
population (see O’Regan et al. 2008 for details). We plotted bifurcation diagrams using
Mathematica 7.0.

Figure 1 shows the bifurcation diagram for system (3) for R0 = 10. For equally
spaced values of p1, we solved the seasonally perturbed SIR model (3) with the initial
condition (I (0), R(0)) = (1, 0) to determine the long-term solution. For each value of
the bifurcation parameter p1, 900 transient years were discarded before the maximum
value of the infected population was recorded each year for 100 years. A single point
corresponding to p1 represents a 1-year cycle of epidemics, two points corresponding

Fig. 1 The bifurcation diagram
for the seasonally perturbed SIR
model (3), within the range
p1 = 0.0185–0.025, is shown,
for N = 10,000, R0 = 10,

β = 0.0924, γ = 91.25, ω =
0.1, ωI = 0.75, p = 831.928.
The diagram shows a cascade
of period-doubling bifurcations,
eventually leading to chaos,
when the amplitude of
seasonality exceeds
approximately 0.0235
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Table 1 Parameter values for
the mapping Φ along numerical
trajectories of system (3)

Parameter Symbol Parameter
value

Total population N 10,000

Basic reproduction rate R0 10

Transmission rate constant β 0.0924

Recovery rate constant γ 365/4

Natural death rate constant ω 1/10

Disease-associated death rate constant ωI 3/4

Mean value of p(t) p 831.928

Amplitude p1 0.025

to p1 describe a 2-year cycle, etc. Figure 1 shows the transition from one-periodic
behaviour to complicated dynamics as p1 is increased from 0.0185 to 0.025.

The period-doubling route to chaos has been observed in seasonal SEIR models,
e.g., Aron and Schwartz (1984). For each value of p1, we observe stable trajectories
that oscillate with period T in the long-term, which may have n local maxima in an
arbitrary time period τ to τ + T years. The number of epidemics n, or local maxima,
need not equal the period T of a trajectory. The n local maxima have different values
and repeat every T years. We plot the maximum value of the set of local maxima of the
trajectory in each year for 100 years. Therefore, for a T -periodic trajectory, we observe
T points, corresponding to those maximum values, for each value of p1 in Fig. 1.

The output of the translation operator (Krasnosel’skii and Zabreiko 1984) for time
one along a particular trajectory of system (3) provides further evidence of chaotic
behaviour. The output of the translation operator is the solution of system (3) shifted
by 1 year, i.e., it is simply the time-one map of system (3). The map is iterated from
a given initial condition, the infected and recovered populations at the end of 1 year
are recorded and then the iteration is repeated, starting from this point. We denote
by Φ the time-one translation operator along trajectories of the seasonally perturbed
system with the parameters given in Table 1. We have chosen the amplitude of the
perturbation p1 to be 0.025, which is well within the chaotic region shown in Fig. 1.
We will carefully study the chaotic behaviour of this model in terms of Φ, which we
construct numerically.

We plotted the long-term output (8,500 values) of Φ in Fig. 2a, after discarding the
first 1,500 transient values of the output. It is noteworthy that the numerically observed
attractor closely resembles the famous strange attractor of the Hénon map (Hénon
1976), shown in Fig. 2b for comparison. The chaotic attractor of the Hénon map is
a typical example of a quasiattractor, i.e., it encloses non-robust singular trajectories
(Anishchenko et al. 1998). Therefore, perturbations of the parameters giving rise to
such attractors can result in the disappearance of the attractor and the appearance of
stable periodic trajectories. The quasiattractor consists of a map of Smale’s horseshoe
type and a denumerable set of stable periodic orbits with very narrow basins of attrac-
tion. The non-transversal intersection of the stable and unstable manifolds of unstable
fixed points of the mapping is a typical signature of a quasiattractor.
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Fig. 2 a The output of the translation operator of the seasonally perturbed SIR model (3) for time one, for
the parameters given in Table 1 and starting from I (0) = 1, R(0) = 0. This closely resembles the chaotic
attractor of the Hénon mapping, f (x, y) = (1 − ax2 + y, bx), with a = 1.4, b = 0.3, shown in b for
comparison. b was plotted using Mathematica
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Fig. 3 Observe a horseshoe-type shape in a, obtained from zooming in on the “vertical line” in the top
left-hand corner of Fig. 2a. This demonstrates self-similarity, a characteristic of chaos. A close-up of the
curve in the bottom-left hand corner of Fig. 2a also reveals a “horseshoe” (b)

In contrast to Fig. 2b, the top left-hand corner of Fig. 2a has a vertical line of points
close to the I (n) = 0 axis. Figure 3a shows on closer inspection, that the line has frac-
tal structure and is a miniature version of Fig. 2a. Upon closer examination of the curve
in the bottom left-hand corner of Fig. 2a, a similar horseshoe-like structure is apparent
(Fig. 3b). Such structures are associated with the unstable manifolds of saddle cycles,
which are in turn associated with the “dangerous” trajectories that can lead to the
appearance of stable periodic windows. In the neighbourhood of such trajectories of
the Hénon map for the parameters that give rise to the chaotic attractor shown in Fig. 2b,
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there is a map of Smale’s horseshoe type (Anishchenko et al. 1998). Finally, it is also
clear from these figures that the infected population persists, albeit at very low levels.

4 Introduction to chaos

Characteristic features of chaos include sensitive dependence on initial conditions, an
abundance of unstable periodic trajectories of arbitrary period and an irregular mixing
effect. Generally proofs of chaos involve establishing a correspondence between the
dynamical system and the appropriate symbolic dynamics. For example, Zgliczynski
(1996) used the Kronecker index to prove that the left shift on two elements is a
factor of any dynamical system for which numerical integration gives the Poincaré
map resembling Smale’s horseshoe. Computer-assisted proofs of chaotic dynamics of
the Hénon map and Rössler equations have been achieved using the Kronecker index
(Zgliczynski 1997). The Conley index has also been used to establish the existence
of chaos in various systems, e.g., see Mischaikow and Mrozek (1998), Mischaikow
(2002), Day et al. (2004), Gameiro et al. (2007) and the references therein. Other meth-
ods for proving the existence of chaos do not rely upon fixed point index theories, e.g.,
Pireddu and Zanolin (2008), Pireddu (2009).

We will provide a computer-aided exposition of chaos in system (3) for the parame-
ters in Table 1 using a topological method called topological hyperbolicity (Pokrovskii
1997), which we describe in detail in Sect. 5. Topological hyperbolicity combines the
methods based on the Kronecker index described by Zgliczynski (1996) with the
technique of topological shadowing (Pokrovskii 1997). The topological hyperbolicity
method can be applied to prove chaos in the Smale sense, i.e., to show the existence
of a correspondence between the left shift mapping on the set of symbolic sequences
and a restriction of some fixed iterate of the translation operator of the dynamical
system under consideration to an invariant set. The method has been applied to prove
the existence of chaotic trajectories for a wide variety of strongly nonlinear systems
(Cox et al. 2005; McNamara and Pokrovskii 2006; Pokrovskii et al. 2007; Pokrovskii
and Zhezherun 2008). We will illustrate the theory using the seasonally perturbed SIR
model of the seabird-avian influenza system.

In Sect. 6, we will introduce symbolic dynamics, which are required to rigorously
analyse dynamical systems that exhibit chaotic behaviour. In Sect. 7, we will describe
our definition of chaos and we will outline the theorems that may be employed to prove
its existence. In Sect. 8, we will apply these theorems to the seasonally perturbed SIR
model. The theorems in Sect. 7 require the existence of a sequence of topologically
hyperbolic parallelograms, whose construction we will describe in Sect. 8. We will
provide a summary of our results in Sect. 9.

5 Topological hyperbolicity

5.1 Informal introduction to topological hyperbolicity

Topological hyperbolicity is a tool that can be used to perform computer-aided analysis
of long periodic trajectories and chaotic behaviour. A formal treatment of the subject is
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Fig. 4 A topologically hyperbolic parallelogram P and its image F(P). A topologically hyperbolic par-
allelogram always contains a fixed point of the mapping F . The red boundaries of P are mapped to the
red boundaries of F(P) and similarly the blue boundaries are mapped to the blue boundaries of F(P).
The mapping F “expands” along the unstable direction (parallel to the red boundary of P) and “contracts”
along the stable direction, which is parallel to the blue boundary of P (color figure online)

given by Pokrovskii (1997). Informally, a parallelogram P is said to be topologically
hyperbolic if the image of P under a continuous mapping F, F(P), intersects P in
such a way that they form a distorted “cross-shape” with one another (Fig. 4). Note
that a “stretching” behaviour is observed in one direction (the unstable direction) and
a “compression” is observed in the other (stable) direction. If P and its image, F(P)

intersect in this manner, then, from the two-dimensional version of topological degree
theory (Krasnosel’skii and Zabreiko 1984), there exists a fixed point of the mapping
F in the intersection of P and F(P). A fixed point exists because the principle of
non-zero rotation (Krasnosel’skii and Zabreiko, 1984, Theorem 4.2, pp 9) is satisfied,
i.e., the rotation of the vector field I−F at the boundary of P is non-zero, where I is the
identity map. Informally, the rotation is the number of full turns of the vector x − F as
x runs through the boundary of P anti-clockwise (Krasnosel’skii and Zabreiko 1984).
A formal definition of the rotation will be stated in Sect. 5.2.

Next, suppose we have a chain of parallelograms P1, . . . , Pm , where the image
of the preceding parallelogram in the chain intersects the next parallelogram in the
manner outlined above. Figure 5 shows three such parallelograms, P1, P2 and P3, and
their images under the mapping F . In this figure, the image of P1, F(P1), crosses
P2, F(P2) crosses P3, and F(P3) crosses P1. Then the product theorem for rotations,
(Krasnosel’skii and Zabreiko, 1984, Theorem 7.2, pp 18) guarantees that there exists
a periodic trajectory with minimal period, in this case, with period three, whose ele-
ments belong to the corresponding intersections. The product theorem states that the
rotation of the composition of mappings with respect to the boundary of P is well
defined, i.e., it offers a formula for the rotation of the composition of mappings in
terms of the rotations of those mappings. We can see this if we consider the mapping
G = F3. By the principle of non-zero rotation, there is a fixed point of the mapping
G but the product theorem guarantees existence of a fixed point with minimal period
three. The assertion is true for a chain of parallelograms of arbitrary length m > 1.

In Fig. 6, in addition to F(P1) crossing P2, F(P2) crossing P3, and F(P3) crossing
P1, the parallelogram P1 is also in a cross-type position with respect to its image
F(P1). Applying the product theorem once more, we can guarantee that there exist
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Fig. 5 A topologically hyperbolic chain of three parallelograms. By the product theorem for rotations,
there exists a periodic orbit with minimal period three

Fig. 6 A topologically hyperbolic chain of three parallelograms. Note that the set F(P1) intersects P1 in a
“cross” shape, in addition to intersecting P2. Therefore, there exist periodic orbits with any given minimal
periods that are greater than or equal to three. This is an example of a nine-periodic orbit

periodic orbits with any given period that are greater than, or equal to three. This is
because if F(P1) crosses P1 in the desired manner, then by the principle of non-zero
rotation, there exists a fixed point of the mapping F in P1. This fact, together with the
existence of a periodic trajectory with minimal period three, allows arbitrarily many
period-one orbits to be “appended” to period-three orbits. For example, in Fig. 6, there
exists a nine-periodic orbit whose elements belong to the intersections of the parallel-
ograms and their images. The orbit is close to the union of two period-three orbits and
three period-one orbits. The assertion is true for a chain of parallelograms of arbitrary
length m > 1.

5.2 Formal discussion of topological hyperbolicity

We require the following topological tools. If f : R
d �→ R

d is a continuous mapping,
U ⊂ R

d is a bounded open set, y ∈ R
d does not belong to the image f (∂U ) of the
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boundary ∂U of U , then deg( f, U, y) denotes the topological degree of f at y with
respect to U . Properties of the topological degree are described by Deimling (1985). If
0 /∈ f (∂U ), then the number γ ( f, U ) = deg( f, U, y) is well-defined, where γ ( f, U )

denotes the rotation of the vector field f at ∂U (see Deimling 1985 for a proof of this
result). Properties of the rotation are described by Krasnosel’skii and Zabreiko (1984).

For an isolated root a of the equation f (x) = 0, the rotation of f is the same for
all open balls of sufficiently small radius ε. Formally, the Kronecker index ind(a, f )

is defined as the common value of the numbers γ ( f, Ba(ε)) with ε > 0 sufficiently
small and Ba(ε) denotes the open ball of radius ε and centered at a (Krasnosel’skii
and Zabreiko 1984). The Kronecker index counts the generalised multiplicity of a
root of the equation f (x) = 0. As a result of the Kronecker formula (Krasnosel’skii
and Zabreiko 1984), γ ( f, U ) may be interpreted as the algebraic number of roots of
the equation f (x) = 0 located inside U . Strogatz (1994) gives a nice introduction to
index theory.

Formally, topological hyperbolicity may be defined as follows. Denote the closure
of a set S by S. Fix two positive integers du, ds such that du + ds = d. The indices
u and s signify “unstable” and “stable” respectively. Let V and W be bounded open
convex product-sets

V = V (u) × V (s) ⊂ R
du × R

ds , W = W (u) × W (s) ⊂ R
du × R

ds ,

satisfying the inclusions 0 ∈ V, W , and let f : V �→ R
du × R

ds be a continuous
mapping. It is convenient to treat f as the pair ( f (u), f (s)) where f (u) : V �→ R

du

and f (s) : V �→ R
ds .

Definition 1 The mapping f is (V, W )-hyperbolic, if the equalities

f (u)
(
∂V (u) × V

(s)
) ⋂

W
(u) = ∅, (4)

f (V )
⋂ (

W
(u) × (Rds \W (s))

)
= ∅ (5)

hold, and

deg( f (u)(·, 0), V (u), 0) �= 0. (6)

Condition (4) means geometrically that the image of the “unstable” boundary of

V, ∂V (u) × V
(s)

, does not intersect the infinite cylinder C = W
(u) × R

ds . Relation-
ship (5) means that the image of the entire set f (V ) can intersect the cylinder C only

through its central fragment W
(u) × W (s). Thus, condition (4) means that the mapping

“expands” in a rather weak sense along the first, unstable u-coordinate in the Cartesian
product R

du × R
ds , whereas condition (5) describes a type of “contraction” along the

second, stable s-coordinate. Condition (6) means that the rotation of the vector field
f (u) at the boundary of V (u) with respect to the origin is non-zero. Figure 7 shows the
relationships (4) and (5) in the two-dimensional case (i.e., du = ds = 1).

If du = 1, then the mapping f (u)(·, 0) is one-dimensional, V (u) is simply an interval
(α, β) with αβ < 0 and inequality (6) holds if and only if f (u)(α, 0) f (u)(β, 0) < 0.
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Fig. 7 The horizontal axis represents R
du and the vertical axis shows R

ds for du = ds = 1. The dark
shaded rectangle shows the rectangle W = W (u) × W (s). The light-shaded region is part of the infinite

cylinder C = W
(u) × R

ds . The deformed quadrilateral shows an admissible location for f (V ). The image

f (V ) cannot intersect the light-shaded region. Furthermore, the images of ∂V (u) × V
(s)

cannot intersect
W . The dark blue borders of f (V ) represent the image of the sets V (u) × ∂V (s) and the red borders are

the images of ∂V (u) × V
(s)

(color figure online)

Therefore, condition (6) verifies that the images of the boundary points of V (u) do not
lie on the same side of the R

ds axis.
Establishing the (V, W )-hyperbolicity of a particular group of sets provides infor-

mation on the existence of long periodic trajectories of a mapping.

6 Symbolic dynamics

Symbolic dynamics were developed as a tool to analyse dynamical systems rigor-
ously; they are useful because restrictions of smooth dynamical systems to certain
invariant sets resemble symbolic systems. Here, we briefly describe a class of topo-
logical dynamical systems based on sequences of symbols. We will see that symbolic
dynamics are important for exhibiting the chaotic properties of the translation operator
of the seasonally perturbed SIR model (3).

The following is a summary of the discussion presented by Katok and Hasselblatt
(1995). Given a positive integer m ≥ 2, the space of two-sided sequences Ω(m) on m
symbols is given by

Ω(m) = {ω = (. . . ω−1, ω0, ω1, . . . )|ωi ∈ {1, . . . m} for all i ∈ Z}.

Similarly, the space of one-sided sequences is given by

Ω R(m) = {ω = (ω0, ω1, ω2, . . . )|ωi ∈ {1, . . . m} for all i ∈ N0}.

Taking the discrete topology on Zm , we put the product topology on Ω(m). The
left-shift σm : Ω(m) �→ Ω(m) is defined by

σm(ω) = ω′,
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where ω′
i = ωi+1 for all i ∈ Z. The one-sided left shift σ R

m : Ω R(m) �→ Ω R(m) is
defined by

σ R
m (ω0, ω1, ω1, . . . ) = (ω1, ω2, ω3, . . . ).

The dynamics of shift maps on symbol sequences are well-understood mathemat-
ically; they are known to possess chaotic properties (Katok and Hasselblatt 1995;
Hirsch et al. 2004). The restriction of the left shift σm to a closed shift-invariant
subset of Ω(m) is called a symbolic dynamical system. Here, we require the follow-
ing special class of symbolic dynamical systems. A binary matrix is a square matrix
A = (ai, j )

m
i, j=1 of dimension m, whose entries are in the set {0, 1}. Given a binary

matrix A, we set

Ω(A) = {ω ∈ Ω(m)|aω j ,ω j+1 = 1 for all j ∈ Z}.

The set Ω(A) is closed and shift-invariant. The matrix A defines the admissible transi-
tions between the symbols {1, . . . m}. The corresponding symbolic dynamical system,
sometimes referred to as a subshift of finite type because not all sequences of m symbols
are allowed, is defined below.

Definition 2 The restriction

σA = σm�Ω(A)

is called the topological Markov chain determined by the matrix A.

We are interested in topological Markov chains that have orbits with “strong recur-
rence properties” (Katok and Hasselblatt 1995). For example, iterates of any open
set that from time to time intersect any other open set, is one such strong recurrence
property that the existence of chaos requires. Formally, the following definition should
hold:

Definition 3 A topological dynamical system f : X �→ X is called topologically
mixing if for any two open nonempty sets U, V ⊂ X , there exists a positive integer
N = N (U, V ) such that for every n > N , the intersection f n(U ) ∩ V is nonempty.

Moreover, periodic points for the shift maps σm and σ R
m are dense in Ω(m) and Ω R(m)

respectively and both transformations are topologically mixing (Katok and Hasselblatt
1995). In particular, we require the following strong recurrence property:

Definition 4 A binary matrix A is called k-transitive if for some positive k, all entries
of the matrix Ak are positive numbers. We will call a topological Markov chain σA
transitive if A is a k-transitive matrix.

The directed graph corresponding to A (Katok and Hasselblatt, 1995, pp 50) must
be strongly connected to guarantee that A is k-transitive (Kitchens 1998). Furthermore,
if A is k-transitive, then the following proposition holds:
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Proposition 1 If A is a k-transitive matrix then the topological Markov chain σA is
topologically mixing and its periodic orbits are dense in Ω(A).

Proof The proof may be found in Katok and Hasselblatt (1995). ��

Therefore, a topological Markov chain has two of the classical characteristics of
chaos.

7 Theory for existence of chaotic trajectories

7.1 Definitions required for the existence of chaotic trajectories

Throughout Sect. 7, we assume that f : R
d �→ R

d is a continuous map. Denote the set
of bi-infinite trajectories of the dynamical system generated by f by T r( f ). Note that
x ∈ T r( f ) if and only if x = {xi }i∈Z satisfies xi+1 = f (xi ) for all i ∈ Z. Let σ f be
the left-shift mapping naturally defined on T r( f ), i.e., σ f (x) = x′, where x ′

i = xi+1
for all i ∈ Z.

Definition 5 Let A be a binary matrix of dimension m and X be a finite family of
compact connected subsets of R

d ,X = {X1, . . . , Xm}. A continuous mapping
f : R

d �→ R
d is (X , σA)-compatible if there exists a mapping ϕ : Ω(A) �→ T r( f )

that satisfies the following:

(i) for all sequences ω ∈ Ω(A), the trajectory x = ϕ(ω) satisfies xi ∈ Xωi for all
i ∈ Z;

(ii) a shift of a sequence ω ∈ Ω(A) induces a shift of the trajectory ϕ(ω), i.e.,

ϕ(σA(ω)) = σ f (ϕ(ω)); (7)

(iii) if a sequence ω ∈ Ω(A) is p-periodic, the trajectory x = ϕ(ω) is also p-periodic.

If f is (X , σA)-compatible, the topological Markov chain σA is a factor of a restric-
tion of the mapping f to some set S ⊂ ⋃

Xi , i.e., there exists a continuous surjective
mapping h : S �→ Ω(A) such that h ◦ f�S = σA ◦ h (Katok and Hasselblatt, 1995,
pp 68).

Recall that Ω(A) contains sequences of m symbols, where m is the dimension
of A. Note that part (i) of Definition 5 states that each xi in the trajectory x satis-
fies xi ∈ Xωi , where ωi ∈ {1, . . . , m}, i.e., each element of x must belong to some
set Xi ⊂ X . Therefore, if f is (X , σA)-compatible, the image of ϕ must satisfy
ϕ(Ω(A)) ⊆ ⋃m

i=1 Xi .
To illustrate part (ii) of the definition, we note the following. Let y = σ f (x),

where x = ϕ(ω). Then the trajectory y satisfies yi ∈ Xωi+1 = X(σA(ω))i because
yi = (σ f (x))i = xi+1 ∈ Xωi+1 for each xi ∈ x for all i ∈ Z. On the other hand, for
each ωi ∈ ω, ϕ(σA(ω)i ) = ϕ(ω)i+1 = xi+1 ∈ Xωi+1 for all i ∈ Z. Renaming each yi

by xi+1, equality (7) holds. The following example clarifies Definition 5.

123



Chaos in a seasonally perturbed SIR model 307

Example 1 Let A be defined by the following 3 × 3 matrix,

a1,1 = a1,2 = a2,3 = a3,1 = 1,

ai, j = 0, for all (i, j) otherwise.

Hence, Ω(A) consists of sequences of the symbols {1, 2, 3}. For example, let

ω = {. . . , 1, 2, 3, 1, 1, . . . } ∈ Ω(A),

where ω−1 = 1, ω0 = 2, ω1 = 3, ω2 = 1, ω3 = 1, etc. From (i) in Definition 5,
x = ϕ(ω) satisfies xi ∈ Xωi , e.g., the image under ϕ of the given sequence is the
following trajectory

ϕ(ω) = {. . . , x−1 ∈ X1, x0 ∈ X2, x1 ∈ X3, x2 ∈ X1, x3 ∈ X1, . . . }.

Applying the left shift σ f to this trajectory, we obtain

σ f (ϕ(ω)) = {. . . , x0 ∈ X2, x1 ∈ X3, x2 ∈ X1, x3 ∈ X1, . . . }
= {. . . , y−1 ∈ X2, y0 ∈ X3, y1 ∈ X1, y2 ∈ X1, . . . }, (8)

where y−1 = x0 ∈ X2, y0 = x1 ∈ X3, y1 = x2 ∈ X1, etc. To verify the left hand side
of equality (7), note that

σA(ω) = ω′ = {. . . , 2, 3, 1, 1, . . . },

i.e., ω′−1 = ω0 = 2, ω′
0 = ω1 = 3, ω′

1 = ω2 = 1, ω′
2 = ω3 = 1, etc. Applying the

mapping ϕ to the above sequence, we obtain in accordance with equality (7)

ϕ(ω′) = {. . . , x−1 ∈ X2, x0 ∈ X3, x1 ∈ X1, x2 ∈ X1, . . . } (9)

because each xi ∈ Xω′
i
= Xωi+1 . Therefore, the sequences (8) and (9) agree.

We define chaos as follows.
Let U = {U1, . . . , Un} , n > 1, be a family of disjoint subsets of R

d . Sequences in
the space of one-sided sequences Ω R(n) will be used to prescribe the order in which
the sets Ui are to be visited. For x ∈ ⋃n

i=1 Ui we define I (x) to be the number i
satisfying x ∈ Ui . We say that a set S is f -invariant if f (S) ⊆ S, i.e., for each x ∈ S,
we have f (x) ∈ S.

Definition 6 A mapping f is called (U , k)-chaotic, if there exists a compact f -invari-
ant set S ⊂ ⋃

i Ui with the following properties:

(p1) for any sequence ω ∈ Ω R(n), there exists x ∈ S such that f ik(x) ∈ Uωi for
i ≥ 1;

(p2) for any p-periodic sequence ω ∈ Ω R(n) there exists a pk-periodic point x ∈ S
with f ik(x) ∈ Uωi ;
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(p3) for each η > 0, there exists an uncountable subset S(η) of S, such that the
simultaneous relationships

lim sup
i→∞

∣∣∣I ( f ik(x)) − I ( f ik(y))

∣∣∣ ≥ 1, lim inf
i→∞

∣∣∣ f ik(x) − f ik(y)

∣∣∣ < η,

hold for all x, y ∈ S(η), x �= y.

Furthermore, the one-sided left shift σ R
n is a factor of the restriction of the kth iter-

ate f k of f to the set S, f k
�S , i.e., there exists a semiconjugacy between the space of

one-sided sequences containing n symbols and the set S ⊂ R
d . Definition 6 describes

rigorously the important attributes of chaotic behavior of a mapping f : R
d �→ R

d .
These attributes are sensitive dependence on initial conditions, which means that any
two trajectories that begin from arbitrarily close initial conditions will diverge from
one another as time t increases. Other characteristics of chaos are an abundance of
unstable periodic trajectories of arbitrary period and an irregular mixing effect, i.e.,
the existence of a finite number of separated subsets U1, . . . , Un that can be visited
by trajectories of some fixed iterate f k of f in any prescribed order. The definition
resembles the statement of the Smale homoclinic theorem (Ruelle 1989) except that we
do not require the existence of an invariant Cantor set. Instead, the definition includes
property (p2), which is usually a corollary of uniqueness of the trajectory, and (p3),
which is a form of sensitivity and irregular mixing that is similar to that in the Li–Yorke
definition of chaos (Li and Yorke 1975), with the subset S(η) corresponding to the
Li–Yorke scrambled subset S0. A set S0 is called scrambled (Li and Yorke 1975), if
for any x, y ∈ S0,

(i) lim sup
n→∞

| f n(x) − f n(y)| > 0,

(ii) lim inf
n→∞ | f n(x) − f n(y)| = 0.

Li and Yorke (1975) stated a third property, which is known to be redundant.
Informally, property (p3) means that if the map f k is repeatedly applied to x, y ∈

S(η), x �= y, then the two trajectories will intermittently become η-close together and
diverge far apart into sets Ui and U j i �= j , no matter how long we wait (i.e., after any
given moment N ).

7.2 Results required for the existence of chaotic trajectories

The following assertions require the existence of a family of mappings gi, j applied to
a sequence of product sets Vi . The gi, j mappings are (Vi , Vj )-hyperbolic for certain
combinations of i and j ; the nature of these mappings will become clear in Section 8.
In addition, the gi, j mappings can be represented by a binary m × m matrix A, whose
entries ai, j are one if gi, j is (Vi , Vj )-hyperbolic and are zero otherwise.

The following theorem establishes that the mapping f is compatible with a family
of compact connected subsets X and the topological Markov chain σA.
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Theorem 1 Let A be an m × m matrix whose entries are either zeros or ones, hi :
R

du × R
ds �→ R

d be homeomorphisms and Vi be bounded, open and convex product
sets. Suppose that gi, j = h−1

j f hi is (Vi , Vj )-hyperbolic whenever ai, j = 1. Then
there exist compact sets Xi ⊂ hi (Vi ) such that f is (X , σA)-compatible.

Proof The proof of this statement is given by Pokrovskii et al. (2001). The proof
requires methods from topological degree theory and mappings of the form h−1

j f hi .
��

Moreover, if f is (X , σA)-compatible, we have the following:

Proposition 2 Let X = {X1, . . . , Xm} be a family of compact sets and let the matrix
A be k-transitive. Suppose that the mapping f is (X , σA)-compatible and suppose
that the family U of connected components of the union set U = ⋃m

i=1 Xi has more
than one element. Then the mapping f is (U , k)-chaotic.

Proof The proof of this statement is given by Pokrovskii et al. (2001). Properties (p1)
and (p2) of Definition 6 follow naturally from properties (i) and (iii) of Definition 5.
The proof of property (p3) relies on the connectedness of the components of the union
set U. ��

Recall that a binary matrix A determines a topological Markov chain, which is a
particular type of symbolic dynamical system. If A is k-transitive for some positive
k, then by Proposition 1, the topological Markov chain determined by A has chaotic
properties.

Proposition 2 guarantees the existence of some fixed iterate f k of the mapping
f , which visits the family of sets U = ⋃n

i=1 Ui , i.e., the connected components
of

⋃m
i=1 Xi , in any given order. Hence, the mapping f k and the one-sided left shift

mapping on n symbols are “compatible” with one another. Moreover, if f is (U , k)-
chaotic, then f k behaves chaotically in a set S ⊂ ⋃n

i=1 Ui . Note that k is the same
positive integer for which A is k-transitive.

In addition, Theorem 1 and Proposition 2 imply the following result for a sufficiently
small uniform perturbation f̃ of the mapping f (Pokrovskii et al. 2001):

Corollary 1 Let f : R
d �→ R

d be a continuous mapping. Let X = {X1, . . . , Xm}
be a family of compact sets and let the matrix A be k-transitive. Let there exist homeo-
morphisms hi and product sets Vi such that gi, j = h−1

j f hi is (Vi , Vj )-hyperbolic if
ai, j = 1 and let the family U of connected components of the union set U = ⋃

hi (Vi )

have more than one element. Then any mapping f̃ , which is sufficiently close to f in
the uniform metric, is (U , k)-chaotic.

Finally, Theorem 1 may be used to prove the abundance of unstable periodic tra-
jectories of any given period (Pokrovskii et al. 2001) because it may be used along
with the Sullivan–Shub result (Katok and Hasselblatt 1995):
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Proposition 3 Let V = V (u) × V (s) be a product set. Let a smooth mapping f be
(V, V )-hyperbolic and suppose that the inequality

|deg( f (u)(·, 0), V (u), 0)| > 1

holds. Then f has infinitely many periodic orbits in V .

Proof An outline of the proof is given by Pokrovskii et al. (2001). ��
The following theorem is the formal analogue of the informal discussion of topological
hyperbolicity:

Theorem 2 Let f : R
d �→ R

d be a continuous mapping. Let there exist homeomor-
phisms hi and bounded, convex and open product sets Vi such that h−1

j f hi is (Vi , Vj )-
hyperbolic for all j = i + 1 mod m, and let the family U of connected components
of the union set

⋃
hi (Vi ) have more than one element. Then the mapping f has a

periodic orbit with minimal period m. If, in addition h−1
1 f h1 is (V1, V1)-hyperbolic,

then there exist periodic orbits with all minimal periods greater than or equal to m.

Proof See the results of Pokrovskii (1997) and Pokrovskii et al. (2001). ��

8 Illustration of the theory

We show that a topologically hyperbolic sequence of mappings gi, j may be con-
structed using the translation operator Φ of the seasonally perturbed SIR model (3),
which is defined by the numerical values in Table 1. Firstly, we constructed a sequence
of topologically hyperbolic parallelograms in the I R plane. The parallelograms were
then transformed into product sets, i.e., each (I, R)-pair was transformed into an
(Rdu , R

ds )-pair, where R
du = R

ds = 1. We performed all calculations using Math-
ematica 7.0.

8.1 Construction of topological parallelograms using the translation operator Φ

To identify suitable topologically hyperbolic parallelograms in the I R plane, we
located a pseudo-periodic orbit of length m of the mapping Φ along trajectories of the
seasonally perturbed SIR system (3). The orbit should have elements Yi , i = 1, . . . , m,
in a small vicinity of a fixed point of Φ and have elements that are far away from this
fixed point. Pokrovskii and Rasskazov (2004) developed the broken orbits method
to find the fixed point. We found the fixed point by calculating the rotation number
along the boundary of a small enough rectangle. As a consequence of the stiffness of
system (3) (its stiffness results from parameter values that have very different magni-
tudes, see Table 1), calculating the rotation number in this manner may not be precise
enough for identifying a suitable pseudo-periodic point close to the fixed point of Φ.
Instead, we used an alternative procedure: a small rectangle around the fixed point
was identified, the iterated mapping Φm was then defined and a routine was used
to search for a suitable pseudo-periodic point Y ∗

m such that ‖Y ∗
m − Φm(Y ∗

m)‖ � 1,
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where ‖ · ‖ denotes the Euclidean norm. By using successively smaller rectangles,
this point was refined by choosing the point with the smallest norm. In this case, we
identified a pseudo-periodic point with period m = 15.

We define parallelograms Πi oriented around the points Yi = (Ii , Ri ) of the pseudo-
periodic orbit of period 15 by

Πi = {Yi + κ1a(u)
i x (u)

i + κ2a(s)
i x (s)

i }, i = 1, . . . 15,

where |κ1|, |κ2| ≤ 1. The vectors x (u)
i and x (s)

i are oriented in the unstable and stable

directions respectively. The scalars a(u)
i and a(s)

i are the “sizes” of the parallelograms
in the unstable and stable directions. The scalars may be suitably adjusted until the
desired result, outlined informally in Sect. 5.1, is obtained, i.e., the mapping Φ is
simultaneously (Πi ,Πi+1)-hyperbolic, i = 1, . . . , m − 1, (Π1,Π1)-hyperbolic and
(Πm,Π1)-hyperbolic.

Obtaining the eigenvectors in the stable and unstable directions through linearisa-
tion of the time-15 map Φ15 about each point of the pseudo-periodic trajectory is a
convenient way to obtain appropriate orientations for the parallelograms. We evalu-
ated the linearisation matrix DΦ15 of the seasonally perturbed SIR system (3) along
the solution (I (t), R(t)), 0 ≤ t ≤ 15, with initial condition Yi , i = 1, . . . 15, i.e., the
i th iteration of the pseudo-periodic point Φ i (Y ∗

15). We then obtained the fundamental
matrix solution

Ż = DΦ15((I (t), R(t))Z , Z(0) = I.

The eigenvectors of Z(15) in each case were used as first approximations of the ori-
entations of the parallelograms.

Figures 8 and 9 show the topologically hyperbolic sequence Π1, . . . ,Π15 that was
constructed using the procedure above. The distorted quadrilaterals are the images
of these parallelograms under the translation operator Φ. The image of each paral-
lelogram, Φ(Πi ), intersects the next parallelogram, Πi+1, in the sequence for i =
1, . . . , 14, in the desired manner. Furthermore, the image of the first parallelogram,
Φ(Π1) also intersects Π1 in a cross-shape (see Fig. 8a) and the image of Π15 crosses
Π1 (Fig. 9h). The dashed boundaries of the parallelograms that are oriented in the
unstable direction “expand” in that direction and the bold boundaries of the parallelo-
grams that are oriented in the stable direction “contract” under the mapping Φ, in the
sense of (V, W )-hyperbolicity.

We summarise the data used to produce the parallelograms in Table 2. The eigen-
vectors defined the orientations of the parallelograms Πi except for parallelograms
Π8,Π9 and Π14. We obtained the vectors x (u)

8 , x (u)
9 in Table 2 by rotating the respective

eigenvectors by ten degrees anti-clockwise and we obtained the vector x (s)
14 by rotat-

ing the corresponding eigenvector by twenty degrees anti-clockwise. These adjust-
ments were needed to obtain a chain of fifteen parallelograms similar to Fig. 6. Using
the eigenvectors associated with the points Y8, Y9 and Y14 results in the parallelo-
grams and the image of the previous parallelogram in the sequence forming a (V, W )-
hyperbolic crossing in each case. Suitable unstable and stable directions are identified
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Fig. 8 a The set Φ(h1(V1)) and parallelogram Π1; b–h the sets Φ(hi (Vi )) and parallelograms Πi+1 for
i = 1, . . . , 7. The boundaries of the parallelograms and their images under the mapping Φ that are oriented
in the stable direction are indicated by the bold lines and the sides that are parallel to the unstable direction
are indicated by the dashed lines
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Fig. 9 a–g The sets Φ(hi (Vi )) and parallelograms Πi+1 for i = 8, . . . , 14. h The set Φ(h15(V15)) and
parallelogram Π1. The boundaries of the parallelograms and their images under the mapping Φ that are
oriented in the stable direction are indicated by the bold lines and the sides that are parallel to the unstable
direction are indicated by the dashed lines
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Table 2 Numerical values for the points Yi = (Ii , Ri ) of the pseudo-periodic orbit, sizes of parallelograms

a(u)
i and a(s)

i and vectors x(u)
i and x(s)

i , which define the orientations of parallelograms Πi

i Ii Ri a(u)
i a(s)

i x(u)
i x(s)

i

1 37.113 9,307.1 3.75 6 (−0.193582, 0.981084) (0.381538, −0.924353)

2 36.6294 9,309.91 8 8 (−0.263871, 0.964558) (0.384224, −0.92324)

3 39.0891 9,300.52 12 5 (−0.25983, 0.965654) (0.375556, −0.9268)

4 33.9295 9,319.77 4 15 (−0.0495462, −0.998772) (−0.394077, 0.919077)

5 45.0663 9,277.67 25 12 (−0.257906, 0.96617) (0.355469, −0.934688)

6 24.5481 9,354.05 5 10 (0.287037, −0.957919) (−0.435555, 0.900162)

7 73.2449 9,150.18 4 20 (−0.000440847, 1.) (0.254311, −0.967123)

8 5.48759 9,429.4 2.5 0.3 (0.234088, −0.972215) (−0.987824, 0.155575)∗
9 25.3733 8,601.2 2 10 (0.521902, −0.853006) (0.0888201, 0.996048)∗
10 0.0510245 9,431.51 0.9 0.8 (−0.000324325, −1.) (−0.00610066, −0.999981)

11 0.66918 8,535.46 1 2.5 (−0.000228771, −1.) (−0.0203626, −0.999793)

12 0.0524238 9,339.88 0.06 0.7 (0.0466627, 0.998911) (0.00586125, 0.999983)

13 90.2127 9,153.63 1 6 (−0.051018, 0.998698) (0.273534, −0.961862)

14 31.1815 9,321.67 5.5 5 (−0.342414, 0.939549)∗∗ (0.396575, −0.918002)

15 38.515 9,304.28 5 4 (0.291732, −0.9565) (−0.378975, 0.925407)

∗ The vectors x(s)
8 and x(s)

9 were obtained by rotating the eigenvector by ten degrees anti-clockwise
∗∗ The vector x(u)

14 was obtained by rotating the eigenvector by twenty degrees anti-clockwise

provided that the adjusted parallelograms cross in the correct way (i.e., remain (V, W )-
hyperbolic).

Finally, Fig. 10a–c illustrates that there are at least nine connected components of⋃15
i=1 Πi .

8.2 Transformation of parallelograms into the (Rdu , R
ds ) coordinate system

Here, we describe how to transform the parallelograms and their images into the
(Rdu , R

ds ) coordinate system, where du = ds = 1. The gi, j mappings perform the
appropriate transformation and they are defined below.

Denote the product sets in R
2 by

Vi = {(κ1a(u)
i , κ2a(s)

i ) : |κ1|, |κ2| ≤ 1},

where i = 1, . . . , 15. These are mapped into the I R plane by the functions hi : R
2 �→

R
2, i = 1, . . . , 15, as follows:

hi : R
2 → R

2, (y1, y2) �→ Yi + y1x (u)
i + y2x (s)

i .
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Fig. 10 The connected
components of the set

⋃15
i=1 Πi

are shown in a. A close-up view
of the sets Π1 (blue), Π2 (red),
Π3 (black) and Π15 (green) is
shown in b. These sets form a
subset of the largest connected
component shown in a. The sets
Π4, Π5 and Π14 make up the
remainder of the largest
connected component;
a close-up view of the largest
connected component is shown
in c (color figure online)
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Clearly Πi = hi (Vi ) and each hi is a homeomorphism. In matrix form, we may
represent the image of the function hi as

(
Ii

Ri

)
+

(
x (u)

i1 x (s)
i1

x (u)
i2 x (s)

i2

)(
y1
y2

)
.
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Hence the matrix of eigenvectors is invertible. Therefore, we may introduce the map-
pings

gi, j = h−1
j Φhi , i, j = 1 and j = i + 1 mod 15, i = 1, . . . , 15. (10)

Figures 11 and 12 show the product sets Vi and the image of each parallelogram,
Πi = hi (Vi ), under the mapping, h−1

i+1 ◦ Φ, for i = 1, . . . , 14. The images of the par-
allelograms are transformed into distorted rectangles. In addition, Fig. 11a shows the
mapping h−1

1 (Φ(h1(V1)) and the product set V1, i.e., h−1
1 Φh1 is (V1, V1)-hyperbolic.

Furthermore, the sets V15 and V1 are (V15, V1)-hyperbolic (see Fig. 12h). Figure 13
shows the mappings h−1

2 Φh1, h−1
3 Φh1, h−1

3 Φh2 are (V2, V1), (V3, V1) and (V3, V2)-
hyperbolic, in addition to h−1

j Φhi being (V1, V1)-hyperbolic and (Vi , Vj )-hyperbolic
for all j = i + 1 mod 15 and i = 1, . . . , 15.

Finally, we can use the gi, j mappings (10), which are a composition of homeomor-
phisms, to construct a matrix A. The entries ai, j of the matrix are one if the image
of the product set Vi crosses the product set Vj , i.e., the mappings gi, j are (Vi , Vj )-
hyperbolic. Otherwise, the entries are zero. The additional mappings g2,1, g3,1 and
g3,2 may also form entries of A, although they are not strictly needed. In this case, we
have the following matrix:

a1,1 = a2,1 = a3,1 = a3,2 = a15,1 = 1,

ai,i+1 = 1, for all 1 ≤ i ≤ 14, (11)

ai, j = 0, for all (i, j) otherwise.

We note that the matrix (11) is k-transitive for k = 26 and is not k-transitive for any
k < 26. The matrix (11) may be represented geometrically by a directed graph, see
Fig. 14. The nodes of the graph are the indices for the rows and columns of the matrix
and there is an edge from node i to node j if and only if the (i, j)th entry is one. In
this case, each node of the graph corresponds to a product set Vi ; node i is connected
to node j if the image of the product set Vi crosses the product set Vj . Therefore,
the mappings (10) are sufficient to guarantee the k-transitivity of the corresponding
binary matrix because it corresponds to a strongly connected graph. If we define the
matrix that represents the crossings by the mappings (10) only, then that matrix is
28-transitive. Therefore, the inclusion of the additional crossings, while not strictly
required, reduces the integer k to 26.

9 Summary

We have shown that there is a sequence of fifteen parallelograms {hi (Vi )}15
i=1, each

appearing to satisfy the definition of (V, W )-hyperbolicity, within the numerically
observed attractor (Fig. 15a). Observe that iterates of the map Φ are contained within
the parallelograms (e.g., Fig. 15b, c). According to Theorem 2, there exist periodic
orbits with all minimal periods greater than 15. This is intuitive from the heuristic
argument presented in Sect. 5.1; unstable orbits of arbitrary period can be constructed
if the image of Π1 crosses itself. Of course, since we have stretching of the mapping
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Fig. 11 a The set h−1
1 (Φ(h1(V1)) and product set V1; b–h The sets h−1

i+1(Φ(hi (Vi )) and product sets
Vi+1 for i = 1, . . . , 7. The boundaries of the product sets that are parallel to the stable axis are indicated
by the bold boundaries and the boundaries that are parallel to the unstable axis are indicated by the dashed
boundaries
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Fig. 12 a–g The sets h−1
i+1(Φ(hi (Vi )) and product sets Vi+1 for i = 8, . . . , 14; h The set h−1

1 (Φ(h15(V15))

and product set V1. The boundaries of the product sets that are parallel to the stable axis are indicated by
the bold boundaries and the boundaries that are parallel to the unstable axis are indicated by the dashed
boundaries
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Fig. 13 The additional crossings of V1 and h−1
1 (Φ(h2(V2)), of V1 and h−1

1 (Φ(h3(V3)) and V2 and

h−1
2 (Φ(h3(V3)) are included as entries of the matrix A

Fig. 14 The strongly connected
graph that represents the
k-transitive matrix A

in one direction, then most of the orbits will eventually escape from
⋃

hi (Vi ), i.e., if
a point of a trajectory is mapped out into the overhang of the image Φ(hi (Vi )), then
with further iterations, it will escape into a distant region of the IR-plane.

The crossings of the images of the parallelograms hi (Vi ) may be represented by
a 15 × 15 binary matrix; the matrix (11) determines a symbolic dynamical system
σA called a topological Markov chain. According to Theorem 1, there exist a family
of compact sets X = {X1, . . . , X15}, with each Xi ⊂ hi (Vi ), such that the transla-
tion operator Φ is (X , σA)-compatible. The set X ⊂ ⋃15

i=1 hi (Vi ) has at least nine
connected components; they form the family U = {U1, . . . , U9} in the definition of
(U , k)-chaos. Furthermore, the matrix (11) is 26-transitive, i.e., iterates of Φ26 visit
each member of U according to the properties described in Definition 6. Therefore,
according to Proposition 2, then there exists a compact Φ-invariant set S ⊂ ⋃9

i=1 Ui

in which Φ26 exhibits chaotic properties. Moreover, it appears that the restriction of
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Fig. 15 The parallelograms are contained in the numerically observed attractor in a. Zooming in on the
“vertical line” close to the I (n) = 0 axis shown in a, we can observe Π10 and Φ(h9(V9)) more clearly in
b and Π12 and Φ(h11(V11)) in c

the mapping Φ26 to the set S is topologically semiconjugate to the left shift on nine
symbols σ9.

The dynamics of the mapping Φ26 on the set S are similar to those exhibited by
the Smale horseshoe map (see Guckenheimer and Holmes (1983) for an extensive
discussion of the Smale horseshoe). Most orbits will escape from S but some will
remain forever in it. The points in the orbits that remain in S will visit the nine sets
Ui ∈ U in any order; the order of visitation is determined by sequences in ωR(9).
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Figure 10 shows the family of sets U ; we now have an understanding of the geometry
of the chaos that system (3) exhibits for realistic biological parameter values. It is
useful to know that the vertical line near I (n) = 0 in Fig. 15a may be visited by
chaotic trajectories (Fig. 15b, c). While the relevance of Φ26 being chaotic may not
be of immediate ecological interest, it is important to note that the seabird species
we considered in this paper are long-lived and return to the same colony year after
year to breed. Moreover, the species we have considered tend to be philopatric and
consequently, colonies remain occupied for generations and are rarely abandoned.
Therefore, chaotic behaviour on a long time scale may be relevant in such a scenario.

10 Discussion

10.1 Avian influenza in seabird colony as a case study for chaos in an SIR model

Demographic processes that vary seasonally, such as recruitment of susceptibles, social
behaviour of hosts and host breeding patterns, may have a considerable impact on the
transmission dynamics of a pathogen in a host population. Our analysis of the season-
ally perturbed SIR model (3) for the parameters in Table 1 confirms that seasonality
alone may significantly drive the dynamics of an endemic microparasitic infection
in a seabird population. Seasonal perturbation of the recruitment rate of infectious
individuals p, which varies as a result of the seasonal congregation of seabirds at their
breeding sites, can result in recurrent epidemics. The bifurcation diagrams suggest
that changes in the pattern of outbreaks are driven by the degree of seasonal variation
of p. We observe subharmonic resonance, i.e., cycles with periods that are an inte-
ger multiple of the seasonal perturbation (Fig. 1). It is noteworthy that subharmonic
resonance may occur in the seasonally perturbed SIR model (3) for parameters that
reflect the ecology of avian influenza in a seabird colony. Indeed, seasonal forcing
of small magnitude can lead to chaos, thereby allowing epidemics of unpredictable
magnitude and duration to occur. Our approach has elucidated the geometry of the
chaotic behaviour in the phase space of system (3). Furthermore, it is important to note
that recurrent and highly seasonal outbreaks of disease have occurred in some isolated
seabird populations, e.g., regular outbreaks of puffinosis have occurred among manx
shearwater fledglings on islands off the coast of Wales since 1908 (Dane et al. 1953;
Nuttall and Harrap 1982). The results of our study indicate a potential mechanism for
the persistence of such a pathogen.

Understanding how a pathogen persists is vital to public and veterinary health as
well as to wildlife ecology (Earn et al. 1998; Swinton et al. 2002). It has been hypothe-
sised that viruses may somehow remain endemic in a population over multiple gener-
ations (Pavlovsky 1966). Furthermore, the pathogenic taxa that are present on seabird
colonies do not necessarily lead to mass, or at least obvious, mortalities (Mallory
et al. 2010; Muzaffar and Jones 2004). An infection may not necessarily be “patent”
(Clayton and Moore 1997), i.e., an individual may not exhibit obvious symptoms of
infection such as disease or shedding of pathogenic particles. An epidemic is defined
as “a sudden or rapid increase in the prevalence of a parasite or a disease” (Anderson
and May 1982). An occult, or symptomless, infection may be present, or even epi-
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demic, among a seabird population but it would not be detected. The results of our
study may also apply to this scenario.

Our model has neglected some important potential transmission pathways such as
environmental transmission and cross-species transmission. A multitude of parasitic
and pathogenic taxa can be found on seabird colonies (see Muzaffar and Jones 2004;
Barbosa and Palacios 2009 and the references therein). Some of these may persist over
multiple breeding seasons (Nuttall 1984) and avian influenza viruses can persist in the
environment for many months (Rohani et al. 2009). Interactions between multiple
hosts and parasites can influence cross-species transmission of infectious diseases,
from domestic hosts to wildlife and vice versa (Daszak et al. 2000). Inter-species
transmission may also be interesting to investigate as colonies often consist of more
than one species nesting in close proximity to each other (Hamer et al. 2001). For
example, eleven species of seabird live on Great Saltee Island off the coast of Ireland
(Nuttall et al. 1984). The presence of multiple hosts may increase or decrease the risk
of outbreaks and may enhance, or prevent, the persistence of pathogens if they become
established, under different conditions (Dobson 2004). In some wildlife diseases, one
species may act as an efficient reservoir of infection that continuously sustains the
incidence of disease in another species (Daszak et al. 2000; Keesing et al. 2006). In
addition, vectors that live on seabird colonies, such as ticks, harbour microparasites
and may also act as reservoirs of disease (Muzaffar and Jones 2004; Nuttall 1984).
Finally, an isolated marine bird population in a temperate climate has important char-
acteristics, e.g., low recruitment rate, that may lead to extinction, or “fadeout”, of an
introduced pathogen (Swinton et al. 2002). A stochastic model would be required to
study the probability of fadeout of disease in seabird colonies and to establish the
“critical community size”, i.e., the population above which an infection will persist
among members of a population (Earn et al. 1998; Swinton et al. 2002).

The seasonally perturbed SIR model (3) described here exhibits rich dynamics for
realistic parameter values that reflect the ecology of the H5N1 avian influenza virus, a
pathogen that may have the potential to become endemic in wild bird populations. The
introduction of pathogens to isolated seabird populations does not appear to induce
such complicated dynamics of the infected population, or if they do, they are not
detected. Therefore, it is clear that more theoretical and experimental work needs to
be done to clarify the conditions that lead to recurrent epidemics in isolated seabird
populations. On the other hand, it is noteworthy that chaotic behaviour can occur close
to the I = 0 axis, the disease-free boundary of the phase space of system (3). If chaotic
trajectories can occur in that region, demographic stochasticity may lead to extinction
of the infected population.

10.2 Mathematical discussion of our results

Although chaotic dynamics have been observed in many seasonally forced epidemio-
logical models (Aron and Schwartz 1984; Greenman et al. 2004; Grenfell et al. 1995;
Ireland et al. 2004; Olsen and Schaffer 1990; Shulgin et al. 1998) and have been mea-
sured through direct numerical computations of Lyapunov exponents (Billings and
Schwartz 2002; Greenman et al. 2004; Schwartz et al. 2005), the existence of chaos in
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these models has not been shown with an acceptable degree of mathematical rigour.
For example, positive Lyapunov exponents indicate sensitivity to initial conditions but
do not show that periodic trajectories of any given period exist or if irregular mixing
effects occur. We have gone further than the aforementioned studies because we have
identified a sequence of parallelograms within the numerically observed attractor in
which there is an invariant set with dynamics that are semiconjugate to those of the
left shift on nine symbols. Moreover, we constructed the sequence of topologically
hyperbolic mappings using numerical values that reflect the ecology of avian influenza
in a seabird colony. The sequence of parallelograms elucidate the geometry of chaos
in the phase space of system (3) for these parameters. Finally, the invariant set we con-
structed is embedded within the quasiattractor. To our knowledge, an identification of
such a set in the phase space of a seasonally forced epidemiological model has not
previously been achieved. Rand and Wilson (1991) constructed a “chaotic repellor”
for a seasonally forced SEIR model parameterised for chickenpox. Chaotic repellors
are associated with long chaotic transients (Tel et al. 2008). However, the set they
constructed was not embedded within a chaotic attractor.

To rigorously check that the conditions of Definition 1 hold for each mapping gi, j ,
we could obtain a priori estimates of the numerical integration error of trajectories
inside a convex set that contains the numerically observed attractor. Rasskazov (2003)
and Pokrovskii et al. (2005) followed this approach in their studies of chaos in the
Lang-Kobayashi equations. However, they obtained local and global error estimates
for the fourth order Runge–Kutta numerical integration method. We used the Math-
ematica 7.0 differential equation solver to evaluate the translation operator numer-
ically. This solver has the ability to switch between different numerical integration
methods, depending on the stiffness of the system. Therefore, while local error esti-
mates of the Mathematica numerical integration scheme are relatively easy to obtain
(Wolfram Research 2011), global estimates are very difficult to find (M. Quinlan
personal communication).

It should be noted that Melnikov’s method (Guckenheimer and Holmes 1983), for
proving the existence of chaotic trajectories, has been applied to seasonally forced SIR
models (Diallo and Koné 2007; Glendinning and Perry 1997). However, the systems
analysed in those papers have used a nonlinear incidence function similar to that dis-
cussed by Liu et al. (1987), which has the effect of making the seasonally forced SIR
system a perturbation of a Hamiltonian system. Melnikov-type methods will not work
for system (3) because it is unlikely to be a perturbation of a Hamiltonian system.

10.3 Conclusions

Applying the mathematical technique of topological hyperbolicity gives a more careful
exposition of chaos in a seasonally perturbed SIR model than a mere bifurcation dia-
gram or the calculation of positive Lyapunov exponents. The advantage of the method
is that it allows one to visualise the geometry of the chaos that a system exhibits in
the phase space. The technique involves the construction of the translation operator,
which in this case was the time-one map corresponding to the seasonally perturbed
SIR model. The topological hyperbolicity method has been applied to other highly
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nonlinear systems through Poincaré maps (Pokrovskii et al. 2007; Rasskazov 2003)
and through mappings with strong nonlinearities (McNamara and Pokrovskii 2006).
Therefore, while our study was motivated by a particular case of avian influenza in
a seabird colony, we wish to emphasise that the methods employed in this paper are
highly flexible and can be readily applied to a broad range of comparable “pathogen
in population” deterministic models.
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