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Abstract

Mutations that accumulate in the genome of cells or viruses can be used to infer their evolutionary history. In the case of
rapidly evolving organisms, genomes can reveal their detailed spatiotemporal spread. Such phylodynamic analyses are par-
ticularly useful to understand the epidemiology of rapidly evolving viral pathogens. As the number of genome sequences
available for different pathogens has increased dramatically over the last years, phylodynamic analysis with traditional
methods becomes challenging as these methods scale poorly with growing datasets. Here, we present TreeTime, a Python-
based framework for phylodynamic analysis using an approximate Maximum Likelihood approach. TreeTime can estimate
ancestral states, infer evolution models, reroot trees to maximize temporal signals, estimate molecular clock phylogenies
and population size histories. The runtime of TreeTime scales linearly with dataset size.
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1. Introduction

Phylogenetics uses differences between homologous sequences
to infer the history of the sample and learn about the evolution-
ary processes that gave rise to the observed diversity.
In absence of recombination, this history is a tree along which
sequences descend from ancestors with modification. In gen-
eral, the reconstruction of phylogenetic trees is a computation-
ally difficult problem but efficient heuristics often produce
reliable reconstructions in polynomial time (Felsenstein, 2004;
Price, Dehal, and Arkin, 2010; Stamatakis, 2014). Such heuristics
become indispensable for large datasets of hundreds or thou-
sands of sequences.

Beyond phylogenetic tree building, many research questions
require parameter inference and hypothesis testing (Pond and
Muse, 2005; Drummond et al. 2012). Again, exact inference from
large datasets is computationally expensive since it requires
high-dimensional optimization of complex likelihood functions

or extensive sampling of the posterior distribution. Efficient
heuristics are needed to cope with the growing datasets avail-
able today.

One particularly common inference problem is estimating
the time of historical events from sequence data. This problem
goes back to Zuckerkandl and Pauling (1965), who hypothesized
that changes in protein sequences accumulate at a constant
rate and that the number of differences between homologous
sequences can be used as a ‘molecular clock’ to date the diver-
gence between sequences. Molecular clock methods have since
been used to date the divergence of ancient proteins billions of
years ago as well as the spread of RNA viruses on time scales
less than a year (Langley and Fitch, 1974; Rambaut, 2000; Yoder
and Yang, 2000; Sanderson, 2003). Beyond dating of individual
divergence events or a common ancestor algorithms have been
developed to infer trees where branch lengths correspond
directly to elapsed time and each node is placed such that
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its position reflects its known or inferred date. Such trees
are known as time trees, molecular clock phylogenies, or time
stamped phylogenies. These methods have been generalized to
allow for variation in substitution rates between different
branches of the tree and between sites along a sequence. For a
recent review of such methods, see (Kumar and Hedges, 2016).

In addition to questions regarding natural history, time trees
are useful to study epidemiology and pathogen evolution
(Gardy, Loman, and Rambaut, 2015). Time trees of ‘measurably
evolving’ pathogens can be used to date cross-species trans-
missions, introductions into geographic regions, and the time
course of pathogen population sizes. In outbreak scenarios
such as the recent Ebola virus (EBOV) or Zika virus outbreaks,
rapid near real-time analysis of large numbers of viral genomes
has the potential to assist epidemiological analysis and
containment efforts –provided sample collection, sequencing,
and analysis are sufficiently rapid (Gardy, Loman, and
Rambaut, 2015).

BEAST is one of most sophisticated tools for time tree
estimation (Drummond et al. 2012). BEAST samples many possi-
ble histories to evaluate posterior distributions of divergence
times, evolutionary rates, and many other parameters. BEAST
implements a large number of different phylogenetic and phy-
logeographic models. The sampling of trees, however, results in
run-times of days to weeks for moderately large datasets of a
few hundred sequences. On the other end of the spectrum are
much simpler distance based tools that infer time scaled phy-
logenies orders of magnitudes faster (Britton et al. 2007; Tamura
et al. 2012; To et al. 2016; Volz and Frost, 2017).

We developed a new tool called TreeTime that combines
efficient heuristics with probabilistic sequence evolution mod-
els. TreeTime infers maximum likelihood time trees of a few
thousand tips within a few minutes. TreeTime was designed for
applications in molecular epidemiology and analysis of rapidly
evolving heterochronous viral sequences (Volz, Koelle, and
Bedford, 2013). It is already in use as an integral component of
the real-time time outbreak tracking tools nextstrain and
nextflu (Neher and Bedford, 2015). The main applications of
TreeTime are ancestral state inference, evolutionary model
inference, and time tree estimation. We discuss the core algo-
rithms briefly below.

2. Algorithms and implementation

TreeTime’s overarching strategy is to find an approximate
maximum-likelihood configuration by iterative optimization of
simpler subproblems similar in spirit to ‘sequential quadratic
programming’ or ‘expectation maximization’. Iteration is used
on multiple levels, for example by iterating optimization of
branch lengths, ancestral sequences, parameters of the relaxed
clock, or coalescent models. Such an iterative procedure typi-
cally converges quickly when the branch lengths of the tree are
short such that ancestral sequence inference has little
ambiguity.

Ancestral sequences or node positions can be determined to
optimize the joint or marginal likelihood. A joint maximum-
likelihood assignment corresponds to the global configuration
with highest likelihood. In a marginal maximum-likelihood
assignment, individual parameters are assigned to the most
likely value after summing or integrating over all other
unknown states. On a tree, both of these optimal assignments
can be calculated in linear time (Pupko et al. 2000; Felsenstein,
2004) and TreeTime implements both marginal and joint ances-
tral reconstructions for ancestral sequences and node dates.

2.1 Iterative branch length optimization

In general, optimizing the branch lengths of a tree is a compli-
cated computational problem with 2N�3 free parameters and a
likelihood function that requires OðNÞ steps to evaluate.
However, when branch lengths are short and only a minority of
sites change on a given branch, a joint optimization of branch
lengths and ancestral sequences can be achieved by iteratively
inferring branch length and ancestral sequences since correc-
tions due to recurrent substitutions are neglibile. Given a tree
topology and the branch length, the maximum-likelihood
ancestral sequences can be inferred in linear time (Felsenstein,
2004; Pupko et al. 2000). Likewise maximum-likelihood branch
length given the parent and offspring sequences are easy to
optimize. We use this iterative optimization scheme to rapidly
optimize branch length and ancestral sequences. For more
divergent sequences, however, subleading states of internal
nodes make a substantial contribution and the iterative optimi-
zation will underestimate the branch lengths. In this case,
TreeTime can use branch lengths provided in the input tree.

2.2 Maximum-likelihood inference of divergence times

For a fixed tree topology, TreeTime infers ancestral sequences
maximizing the joint sequence likelihood (see above). The
branch lengths corresponding to the maximum-likelihood
molecular clock phylogeny can be computed in linear time
using dynamic programming or message passing techniques
(Mézard and Montanari, 2009). This approach is similar to the
approach by Rambaut (2000), but the dynamic programming
technique avoids computationally expensive numerical optimi-
zation of the branch lengths.

In analogy to maximum-likelihood inference of ancestral
sequences the algorithm proceeds via a post-order tree traversal
propagating the maximum-likelihood assignments of subtrees
towards the root, and a pre-order traversal selecting the optimal
subtree given the placement of the parent node. Specifically, we
calculate in post-order for each node n

HnðtjCnÞ ¼ EnðtÞ
Y
c2Cn

CcðtÞ ; (1)

the likelihood that the node sits at position t given the informa-
tion and constraints propagated from its children Cn. EnðtÞ
accounts for external contraints imposed on the date of the
node (e.g. fossil dating), while the product runs over all children
c of node n and multiplies the integrated messages of all sub-
tending nodes. The time t is measured as time before present.
Temporal information is propagated along the branches of the
tree via

CnðtpÞ ¼max
s

bnðsÞHnðtp � sjCnÞ ; (2)

where bnðsÞ is the probability distribution of the branch length s

between the focal node n and its parent. This distribution is
conditional on the sequences assigned to node n and its parent.
Intuitively, CnðtpÞ specifies the distribution of the date tp of the
parent of node n, given the constraints from the tips descending
from node n and the substitutions that accumulated on the
branch to the parent node. The different objects are illustrated
in Fig. 1.

During the post-order traversal, the branch lengths sðtpÞ
maximizing Equation (2) for a given tp are tabulated and saved

2 | Virus Evolution, 2018, Vol. 4, No. 1

Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  (
Deleted Text: 
Deleted Text: , 
Deleted Text:  (
Deleted Text: 
Deleted Text:  &quot;7&equals;Ref Gardy, J., N. J. Loman, and A. Rambaut, 2015, Genome Biology 16, 155., 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  (
Deleted Text: 
Deleted Text:  (
Deleted Text: 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  
Deleted Text:  (
Deleted Text: 
Deleted Text: ;&nbsp;
Deleted Text: 
Deleted Text: ;&nbsp;
Deleted Text: 
Deleted Text: ;&nbsp;
Deleted Text: 
Deleted Text:  (
Deleted Text: 
Deleted Text:  (
Deleted Text: 
Deleted Text: , 
Deleted Text: , 
Deleted Text: '
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  (
Deleted Text: Felsenstein,2004;
Deleted Text: , 
Deleted Text: <IMG_FOUND/>
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  (
Deleted Text: 
Deleted Text: ;&nbsp;
Deleted Text: 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  (
Deleted Text:  (
Deleted Text: 
Deleted Text: &thinsp;
Deleted Text: 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text:  (
Deleted Text: &nbsp;
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 


for the back-trace. Once the post-order traversal arrives at the
root, the root is assigned the time tn ¼ argmaxtEðtÞ

Q
cCcðtÞ.

The post-order traversal is followed by a pre-order back-
trace during which the branch length of each internal node is
assigned to the optimal sðtpÞ conditional on the parental posi-
tion tp. To accelerate the optimization, TreeTime tabulates the
branch length likelihood function bnðsÞ and the subtree origin
likelihoods HnðtjCnÞ.

The above algorithm assigns each node to the time that
maximizes the joint likelihood of all branch lengths in analogy
to the ancestral state reconstruction algorithm by Pupko et al.
(2000). The marginally optimal time of each internal node, that
is, the time after integration over all other unconstrained nodes,
can be determined in a similar manner by replacing the max in
Equation (2) by a convolution integral over s

C0nðtpÞ ¼
ð1

0
bnðsÞH0nðtp � sjCnÞ ds ; (3)

where H0nðtjCnÞ is the analog of HnðtjCnÞ in Equation (1) multiply-
ing the C0c of all children and any external date prior.

Once the post-order transversal arrives at the root, the mar-
ginal distribution of time t of the root node r is given by

PrðtÞ ¼
ErðtÞ

Zr

Y
c2Cr

C0cðtÞ (4)

where Zr is a normalization factor. The corresponding marginal
distributions of other nodes are then calculated during a pre-
order traversal via

PnðtÞ ¼
1
Zn

HnðtjCnÞ
ð1

0
bðsÞ

Ppðtþ sÞ
C0nðtþ sÞ ds : (5)

The factor HnðtjCnÞ accounts for the date information coming
from the leaves of node n, while the integral contributes the
date information from clades other than node n and its chil-
dren. Note that the contribution of node n to Pp is removed by
dividing Ppðtþ sÞ by C0nðtþ sÞ.

The result of the marginal reconstruction is a probability dis-
tribution of the node date given the tree, the ancestral sequence
assignment, and the evolutionary model while the unknown
times of other nodes are traced out. From this distribution,

confidence intervals of node dates can be computed in a
straight-forward manner.

TreeTime allows one to compute joint or marginal maximum-
likelihood dates, but the algorithm described above can be used
for any continuous character on the tree. In Equation (2), bnðsÞ can
be replaced by any transmission function that depends either on
the branch or properties of the child and parent node. We will use
an analogous algorithm below to estimate parameters of relaxed
molecular clock models.

2.3 Efficient search for the optimal root

The fraction of variance in root-to-tip (RTT) distance explained
by a linear regression on sampling date is given by

r2 ¼
P

iðti � htiÞðdi � hdiÞ
� �2

P
kðtk � htiÞ2

P
lðdl � hdiÞ2

(6)

where the sums run over all tips of the tree and ti and di are the
sampling date and the distance from the root to node i, respec-
tively. The distances di are measured as the sum of lengths of
all branches from the root to the tip, that is, the expected num-
ber of substitutions since the root divided by the length of the
sequence. The angular brackets denote the sample average. The
regression and r2 depend on the choice of root since the di

depend on the root. In absence of an outgroup, the root is often
chosen to maximize r2 or minimize the squared residuals of a
linear fit to the RTT distance. Programs such as TempEst
(Rambaut et al. 2016) and LSD (To et al. 2016) allow to search for
the root that maximizes this correlation and TreeTime has
implemented similar functionality.

This search for the optimal root can be achieved in linear
time in the number of sequences N by first calculating

hn ¼
X
i2Ln

dn;i ; cn ¼
X
i2Ln

tidn;i and dn ¼
X
i2Ln

d2
n;i (7)

for each internal node n. Here, the sum runs over all tips i 2 Ln

of node n while ti and dn;i are the sampling date and the distance
of tip i from node n, respectively. The quantities hn, cn, and dn

can be calculated recursively from hc, cc, and dc of the child
nodes in one post-order traversal. Once those quantities are cal-
culated, the corresponding quantities Hn, Cn, and Dn that sum
contributions from all tips—not just the subtending ones—can
be calculated in one pre-order traversal.

With these quantities at hand, r2 can be calculated for any
choice of root on the tree as detailed in the Appendix. Hence
two tree traversals are sufficient to determine the optimal root.
The root position that minimizes the mean squared residual
can be calculated analogously.

In general, the optimal position of the root will not be an
internal node, but a position between two nodes on a branch of
the tree. Such optimal position on internal branches of the tree
can be determined from the quantities calculated above by solv-
ing a quadratic equation without any numerical optimization.
The required algebra is described in the Appendix.

2.4 Resolving polytomies

Phylogenetic trees of many very similar sequences are often
poorly resolved and contain multifurcating nodes also known
as polytomies. Tree building software often randomly resolves
these polytomies into a series of bifurcations. However,
the order of bifurcations will often be inconsistent with the

Figure 1. Illustration of TreeTime’s time tree inference algorithm. Terminal nodes

in the tree are either associated with exact dates or date ranges (node c2 in this

example). These temporal constraints are convolved with the distribution bci
ðsÞ of

the branch length s leading to node ci to yield Cci
ðtÞ. At the internal node n, the

messages from children c1 and c2 are multiplied and contribute to HnðtjCnÞ. The lat-

ter is further passed down to the parent by convolving with bnðsÞ.
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temporal structure of the tree resulting in poor approximations.
To overcome this problem, TreeTime can prune all branches of
length zero and resolve the resulting polytomies in a manner
consistent with the sampling dates. For each pair of nodes,
TreeTime calculates by how much the likelihood would
increase when grouping this pair of nodes into a clade of size
two. The polytomy is then resolved iteratively by always group-
ing pairs corresponding to the highest gain.

2.5 Coalescent models

The likelihood of observing a particular genealogical tree depends
on the size of the population, its geographic structure, and fitness
variation in the population (Kingman, 1982; Nordborg, 1997;
Neher, 2013). Hence parameters of models describing the ensem-
ble of genealogies can be estimated from the data.

In the simplest case of a panmictic population without fit-
ness variation, the ensemble of genealogies is described by a
Kingman (1982) coalescent, possibly with a population size that
changes over time. Within the Kingman coalescent, merger
events occur at random with a rate kðtÞ that depends on the
population size N(t) and the current number of lineages k(t).

kðtÞ ¼ kðtÞðkðtÞ � 1Þ
2NðtÞ (8)

Here, the population size N(t) defines a time scale measured in
units of generation time and we will more generally refer to this
time scale by TcðtÞ and measure it in units of the inverse clock rate.

The contribution of a branch between time points t0 (child)
and t1 (parent) in the tree to the likelihood is then given by

pðt0; t1Þ ¼ e
�
Ð t1

t0
jðtÞdt

; (9)

where jðtÞ ¼ ðkðtÞ � 1Þ=2TcðtÞ is the rate at which a given lineage
merges with any of the other. A merger at time t contributes a
factor kðtÞ to the coalescent likelihood.

TreeTime can estimate population sizes or coalescent time
scales by maximizing the likelihood contribution of the coales-
cent likelihood for a fixed tree. The latter can be evaluated in
one tree traversal by summing contributions from branches and
merger events. In addition to a constant Tc, TreeTime can model
Tc as a piecewise linear function and optimize the parameters
of that function. Such piecewise functions are known as
‘skyline’ (Strimmer and Pybus, 2001).

As part of the iterative optimization by TreeTime, the next
round of optimization of branch lengths and dates of ancestral
nodes will account for the coalescent likelihood. The newly
inferred dates will in turn be used to update the parameters of
the coalescent model as described earlier.

2.6 Inference of time reversible substitution models

Large phylogenies typically contain 100s of substitutions and
thus provide enough information to infer substitution models
from the data. General time reversible (GTR) substitution mod-
els (Felsenstein, 2004) are parameterized by equilibrium state
frequencies pi and a symmetric substitution matrix Wij. The
substitution rate from state j! i is then Qij ¼ piWij.

TreeTime infers parameters of GTR models via an iterative
procedure similar to Expectation–Maximization algorithms.
TreeTime first reconstructs ancestral sequences using a stand-
ard substitution model specified by the user (Jukes-Cantor by
default). From this reconstruction, TreeTime calculates the time

Ti spent in different states i across the tree, and the number of
substitutions nij between any pair of states (i, j). Then, p and W
are determined by iterating the two equations

Wij ¼
nij þ nji þ 2pc

piTj þ pjTi þ 2pc
(10)

pi ¼

X
j
nij þ pc þmiX

j
WijTj þ

X
j
ðmj þ pcÞ

; (11)

where pc is a small pseudo-count driving the estimate towards a
flat Jukes-Cantor model in absence of data, and the mi are the
number times state i is observed in the sequence of the root.
Wij are evaluated at fixed p, followed by calculating p with the
current Wij. After each iteration, p is normalized to one, the
diagonal of Wij is set to �p�1

i

P
j 6¼iWijpj, and Wij is rescaled such

that the total expected substitution rate �
P

piWiipi equals one.
The rescaling of p and Wij can be absorbed into an overall rate l.
This algorithm typically converges in a few iterations.

2.7 Relaxed clocks

Substitution rates can vary across the tree and models that
assume constant clock rates may give inaccurate inferences.
Models that allow for clock rate variation have been proposed
(Hasegawa, Kishino, and Yano, 1989; Yoder and Yang, 2000;
Drummond et al. 2006). These models typically regularize clock
rate variation through a prior and penalize rapid changes of the
rate by coupling the rate along branches—known as autocorre-
lated or local molecular clock (Thorne, Kishino, and Painter,
1998; Aris-Brosou, Yang, and Huelsenbeck, 2002).

TreeTime implements an autocorrelated molecular with a
normal prior on variation in clock rates. The choice of the nor-
mal prior allows for an exact and linear time solution for the
maximum-likelihood substitution rates via the same forward/
backward trace algorithm used for the inference of dates of
internal nodes. Other priors could be implemented, but would
require numerical optimization or approximations.

2.8. Implementation

TreeTime is implemented in Python (version 2.7) and uses the
packages numpy and scipy for optimization, linear algebra, and
interpolation Jones et al. (2001–2017) and van der Walt, Colbert,
and Varoquaux (2011). Computationally costly operations are cast
into array operations executed by numpy whenever possible.

TreeTime is organized as a hierarchy of classes. TreeAnc per-
forms maximum-likelihood inference of ancestral sequences,
ClockTree infers a time scaled phylogeny given a tree topology,
and TreeTime adds an additional layer of functionality includ-
ing rerooting, polytomy resolution, coalescent models, and
relaxed clocks. The substitution model is implemented in the
class GTR.

This structure allows TreeTime to be used in a modular fash-
ion in Python based phylogenetic analysis pipelines. In addition,
scripts can be called from the command line to perform stand-
ard tasks such as ancestral sequence inference, rerooting of
trees, and time tree estimation.

2.9 Availability

TreeTime is published under an MIT license and available at
github.com/neherlab/treetime. Data and scripts necessary used
to validate TreeTime are available at github.com/neherlab/
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treetime_validation. TreeTime can be used via a web interface
at treetime.ch.

3. Validation and performance

To assess the accuracy of date reconstructions of TreeTime and
to compare its performance to existing tools such as Bayesian
Evolutionary Analysis Sampling Trees (BEAST) and Least-square
dating (LSD) (Drummond et al. 2012; To et al. 2016), we gener-
ated toy data using the FFPopSim forward simulation library
(Zanini and Neher, 2012). We simulated populations of size N ¼
100 and used a range evolutionary rates l ¼ ½10�5; . . . ; 2 � 10�3�
resulting in expected genetic diversity from 0.001 to 0.2.
Sequences were sampled every 10, 20, or 50 generations. The
length of the simulated sequences was L ¼ 1000.

Fig. 2 shows the error in the estimates of the clock rate for
TreeTime, LSD, and BEAST as a function of genetic diversity.
TreeTime and LSD estimated the clock rate accurately at low
diversity but tended to underestimate the rates at when diver-
sity exceeds a few percent. This is expected in the case of
TreeTime since maximum-likelihood sequence assignment can
result in underestimated branch lengths. BEAST produced accu-
rate estimates across the entire range of diversities. By sam-
pling trees, BEAST does not suffer from the atypical maximum-
likelihood assignments.

In a similar manner, TreeTime and LSD estimated the
time of the most recent common ancestor to within 10%
accuracy at low diversity (relative to the coalescence time)
with larger deviations at diversity above 10%, see Fig. 3.
BEAST returned accurate estimates across the entire range of
diversities.

We also ran TreeTime on simulated data provided by
To et al. (2016) and compared it to the results reported by
To et al. (2016) for LSD, BEAST, and a number of other methods.
Figure 4 compares the accuracy of TMRCA and clock rate
estimates, showing that TreeTime achieves similar or better
accuracy than other methods.

Figure 2. Estimation of the evolutionary rate from simulated data. TreeTime and

LSD (following tree reconstruction with FastTree) underestimated the rate when

branch lengths are long but return accurate estimates for low diversity samples.

The graph shows median values, error bars indicate the inter-quartile distances.

Figure 3. Estimation of the TMRCA from simulated data. TreeTime, LSD, and

BEAST estimated the time of the MRCA within 10% accuracy at low diversity, but

TreeTime and LSD tended to overestimate the date of the root when branch

lengths are long. The graph shows median values, error bars indicate the inter-

quartile distances.

Figure 4. Method comparison on LSD test data. TreeTime (TT) showed compara-

ble or better accuracy as BEAST (strict clock: BSMC; relaxed clock: BRMC), LSD

(linear dating: LD; quadratic programming dating: QPD), or RTT regression when

run on simulated data provided by (To et al., 2016). Both panels use the tree set

750_11_10, the top and bottom panel show runs on alignments generated with a

strict and relaxed molecular clock, respectively.
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3.1 Coalescent model inference

Population bottlenecks, selective sweeps, or population struc-
ture affect the rate of coalescence in a time-dependent manner.
BEAST can infer a history of effective population size (inverse
coalescence rate) from a tree—often known as skyline.
TreeTime can perform a similar inference by maximizing the
coalescence likelihood with respect to the pivots of a piecewise
linear approximation of the coalescence rate history Tc(t) (aka
effective population size). To test the power and accuracy of
this inference, we simulated sinusoidal population size histor-
ies of different amplitude and period, uniformly sampled
sequences through time, and used these data to estimate the
coalescent rate history. True and estimated population size his-
tories agree well with each other as shown in Fig. 5.

3.2 Influenza phylogenies

The dense sampling of influenza A virus sequences over many
decades makes this virus an ideal test case to evaluate the sensi-
tivity of time tree estimation to sampling depth. We estimated
the clock rate and the time of the most recent common ancestor
of influenza A/H3N2 HA sequences sampled from 2011 to 2013 for
sets of sequences varying from 30 to 3,000, see Fig. 6. TreeTime
estimates are stable across this range, while estimates by LSD
tend to drift with lower rates and older MRCAs for larger samples.
Estimates by BEAST are generally consistent with TreeTime.

Next, we tested how accurately TreeTime infered dates of tips
when only a fraction of tips have dates assigned. Every tip in
TreeTime can either be assigned a precise date, an interval within
which the date is assumed to be uniformly distributed, or no con-
straint at all. TreeTime will then determine the probability distri-
bution of the date of the node based on the distribution of the
ancestor and the substitutions that occurred since the ancestor.

Figure 7 shows the distribution of error in leaf date reconstruc-
tion as the fraction of missing dates increased from 5 to 95% of all
nodes. TreeTime estimated the date of influenza sequences to an
average accuracy of�0.5 years if >50% of dates are known.

Figure 5. Reconstruction of fluctuating population sizes by TreeTime. The graph

shows simulated population size trajectories (dashed lines) and the inference by

TreeTime as solid lines of the same color. Different lines vary in the bottleneck

sizes of 10% (red), 20% (green), and 50% (blue) of the average population size.

The top panel shows data for fluctuations with period 0.5 N, the bottom panel 2

N. The average population size is N ¼ 300.

A

B

Figure 6. Sensitivity the dataset size. TreeTime and BEAST returned consistent

estimates of the rate of evolution (A) and the TMRCA (B) when analyzing

alignments of Influenza A/H3N2 HA sequences of various size. LSD showed a

systematic drift.

Figure 7. Sensitivity to missing information. The inter-quartile range of the error

of estimated tip dates decreases from 0.7 to 0.5 years as the fraction of known

dates increases from 5 to 90% (see inset).
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3.3 Analysis of the 2014–15 EBOV outbreak

In 2014, West Africa experienced the largest known outbreak of
EBOV in humans. The genomic epidemiology has been studied
intensively by multiple groups (Dudas et al. 2017). Here, we
reanalyzed a subset of 350 EBOV sequences sampled throughout
the outbreak from 2014–16. Due to the dense sampling, the
maximum-likelihood phylogeny has many unresolved nodes
and TreeTime was used to resolve polytomies using temporal
information. After automatic rooting and GTR model inference,
TreeTime produced the time tree shown in Fig. 8. The GTR
model inferred from the tree was

p ¼

A : 0:32

C : 0:21

G : 0:195

T : 0:275

W ¼

A C G T

A � 0:45 2:7 0:28

C 0:45 � 0:25 3:7

G 2:7 0:25 � 0:45

T 0:28 3:7 0:45 �

(12)

This analysis took 4 min to complete on a 2016 laptop (Dell
XPS13) with an i7 processor using a single CPU. In addition to
inferring a time tree, TreeTime estimated the time course of the
coalescent population size shown in the lower panel of Fig. 8.

The estimated population size closely mirrors the case counts
reported by the WHO throughout this period.

4. Discussion

TreeTime was developed to analyse large heterochronous viral
sequence alignments and we have used TreeTime as the core
component of the real-time phylogenetics pipelines nextstrain
and nextflu (Neher and Bedford, 2015). TreeTime tries to strike a
useful compromise between inflexible but fast heuristics and
computationally expensive Bayesian approaches that require
extensive sampling of treespace. The overarching algorithmic
strategy is iterative optimization of efficiently solvable subpro-
blems to arrive at a consistent approximation of the global opti-
mum. Although this strategy is approximate and often assumes
short branch length, it converges fast for many applications and
trees with thousands of tips can be analyzed in a few minutes. In
this paper, we presented analyses of human seasonal influenza
A/H3N2 virus sequences and sequences of the recent EBOV out-
break. In both cases, average pairwise distances between strains
are 10% and individual branches in the trees are much shorter
still. TreeTime assumption of short branches is therefore met.

Rapid, efficient analysis phylodynamic algorithms are of
increasing importance as datasets are increasing in size. For
example during the recent outbreaks of EBOV and Zika virus,
hundreds of sequences were generated and needed to be ana-
lyzed in near real time to inform containment efforts. Similarly,
the GISRS network for surveillance of seasonal influenza virus
sequences hundreds of viral genomes per month. Timely analy-
sis of these data with Bayesian methods that require extensive
tree sampling such as BEAST is difficult. Sequencing from
EBOV, Zika virus outbreaks, or seasonal influenza viruses are
typically very similar to each other (>90% identity) such that
TreeTime assumptions and approximations are justified.

When compared with other methods recently developed for
rapid estimation of time trees (Britton et al. 2007; Tamura et al.
2012; To et al. 2016), TreeTime uses probabilistic models of
evolution, allows inference of ancestral characters, and coales-
cent models. In TreeTime, every node of the tree can be given a
strict or probabilistic date constraint. This higher model com-
plexity results in longer run times, but the scaling of run times
remains linear in the size of the dataset and alignments with
thousands of sequences can be analyzed routinely. The time
tree inference and dating are typically faster than the estima-
tion of the tree topology.

TreeTime was tested predominantly on sequences from
viruses with a pairwise identity above 90%. The iterative optimi-
zation procedures are not expected to be accurate for trees were
many sites are saturated. In scenarios with extensive uncer-
tainty of ancestral states and tree topology, convergence of the
iterative steps cannot be guaranteed. While in many cases
TreeTime might still give approximate branch lengths, ances-
tral assignments and time tree estimates, these need to be
checked for plausibility. In general global optimization and
sampling of the posterior can not be avoided.

TreeTime can be used in a number of different ways.
The core TreeTime algorithms and classes can be used in larger
phylogenetic analysis pipelines as Python scripts. This is the
most flexible way to use TreeTime and all the different analysis
steps can be combined in custom ways with user specified
parameters. In addition, we provide command-line scripts for
typical recurring tasks such as ancestral state reconstruction,
rerooting to maximize temporal order, and time tree inference.
We also implemented a web-server that allows exploration and

Figure 8. EBOV phylodynamic analysis. The top panel shows a molecular clock

phylogeny of EBOV sequences obtained over from 2014 to 2016 in West Africa.

The lower panel shows the estimate of the coalescent population size along

with its confidence intervals. The estimate suggests an exponential increase

until late 2014 followed by a gradual decrease leading to almost complete eradi-

cation by 2016. Ebola case counts, as reported by the WHO (2016) agree quantita-

tively with the estimate.
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analysis of heterochronous alignments in the browser without
the need to use the command-line.

Conflict of interest: None declared.
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Appendix

To calculate the correlation between the RTT distances and tip
dates via Equation (6), one first needs to calculate the means
and (co)variances of tip dates and RTT distances. For a tree with
N tips, this requires OðNÞ operations and calculating it for all
internal nodes would therefore require OðN2Þ operations. The
same covariances are needed to calculate the regression param-
eters and the residuals. However, its is possible to calculate the
quantities for all nodes at once, reducing the total number of
operations to OðNÞ.

The speed-up is possible through recursively calculating
sums and averages on the tree. We denote the set of tips that
descend of node n by Ln. We will need the number tips Mn ¼ j‘nj,
the sum of their sampling times sn ¼

P
i2Ln

t, the sum of their
distances dn;i from node n hn ¼

P
i2Ln

dn;i, and the analogous
higher order quantities cn ¼

P
i2Ln

tidn;i and dn ¼
P

i2Ln
d2

n;i.
First, assign Mn ¼ 1, sn ¼ tn; hn ¼ 0; cn ¼ 0 and dn ¼ 0 for all tips

of the tree. Then, in one post-order transversal over internal
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nodes, we can calculate these quantities by summing the fol-
lowing expressions over the children Cn of node n.

Mn ¼
X
c2Cn

Mc (13)

sn ¼
X
c2Cn

sc

hn ¼
X
c2Cn

Mclc þ hc

cn ¼
X
c2Cn

lcsc þ cc

dn ¼
X
c2Cn

Mnl2c þ 2lchn þ dc

(14)

The length of branches leading from node n to child c is
denoted by lc. To calculate the covariances at a particular node
n, we need to sum over all terminal nodes rather than only tips
that descend from the node. We denote the corresponding
quantities by capital letters. The sums of the sampling dates
and their squares are of course straightforward to evalulate, the
remaining quantities that depend on the choice of the focal
node n can be calculated in one pre-order transversal. Let p
denote the parent node of node n

Hn ¼ Hp � ðN� 2MnÞln
Cn ¼ Cp þ lnðT � 2snÞ

Dn ¼ Dp þ 2lnHp � 4lnðhn þ ðN�MnÞlnÞ þNl2n

(15)

Note that the order in which these calculations are performed
matters. The first line, calculating Hn adjusts the parent value
Hp for the fact that the branch leading to node n is transversed
by N�Mn path instead of Mn if the root is shifted from p to n.
Similarly, Cn is calculated from Cp by adjusting with the differ-
ence of sum of times of subtending and complementary nodes.
The corresponding expression for the sum of squared RTT dis-
tances is slightly more complicated but still follows from ele-
mentary algebra.

With these quantities at hand, the regression, residuals, and
r2 can be straightforwardly calculated from the means and
covariances given by

hdn;ii ¼
Hn

N

hdn;itii � hdn;iihtii ¼
Cn

N
�HnT

N2

hd2
n;ii � hdn;ii2 ¼

Dn

N
�Hn

N2

(16)

In general, the optimal root is not going to coincide with a
preexisting node but will be placed somewhere along a branch.
When placing the root at a position � 2 ½0; 1� along the branch,
the corresponding Hnð�Þ; Cnð�Þ; Dnð�Þ are obtained by substitu-
tion �lc for lc in Equation (15). The fraction of variance explained
by a RTT regression with a root placed at position � on a branch
then has the generic form

r2 ¼ ðaþ b�Þ2

rþ s�þ t�2
(17)

where the coefficients a; b; r; s and r can be obtained by substi-
tuting the expressions for Hnð�Þ; Cnð�Þ, and Dnð�Þ. The term
aþ b�, for example, evaluates to

aþ b� ¼ hdn;itii � hdn;iihtii

¼ Cnð�Þ
N
�Hnð�ÞT

N2 :
(18)

Substituting Hnð�Þ and Cnð�Þ and collecting terms by powers of
�, the coefficients a and b can be read off. The condition for a
maximum dr2

d� ¼ 0 results in an quadratic equation for �. Hence,
the optimal position of the root can be calculated with a number
of operations that increases linearly in the size of the tree.

The slope of the RTT regression or clock rate in then simply
a ¼ hditii�hdiihtii

ht2
i
i�htii2

, where di are evaluated with respect to the optimal
root.
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