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Abstract: Phenomena related to asymmetric amplification are considered to be key to understanding
the emergence of homochirality in life. In asymmetric catalysis, theoretical and experimental models
have been studied to understand such chiral amplification, in particular based on non-linear effects.
Three decades after the theoretical demonstration that a chiral catalyst, when not enantiopure,
could be more enantioselective than its enantiopure counterpart, we show here a new experimental
example of nonlinear hyperpositive effect. We report here our investigations in the enantioselective
zinc-catalyzed alkylation of benzaldehyde with N-pyrrolidinyl norephedrine as partially resolved
chiral ligand, which shows a significant hyperpositive non-linear effect. A study of the underlying
mechanism was conducted, which allows us to confirm a mechanism that implies a monomeric and a
dimeric complex both catalyzing the reaction at a steady state and giving different enantioselectivities.

Keywords: asymmetric catalysis; nonlinear effect; chiral amplification

1. Introduction

Asymmetric synthesis and catalysis are of paramount importance for obtaining enan-
tiopure molecules, especially in the development of chiral drugs that are almost exclusively
applied in the form of single enantiomers [1]. In asymmetric catalysis, a chiral auxiliary
(most often a chiral ligand attached to a metal) is used ideally in its enantiomerically pure
form to maximize the enantiomeric excess of the desired product (eeP). When the chiral
auxiliary is not enantiopure, in most cases a linearity is observed between the optical purity
of the product (eeP) and the reagent (eeL), as shown in Figure 1a. However, deviations
from linearity between eeP and eeL can occur and are referred to as non-linear effects
(NLEs) [2,3]. In the case of a positive non-linear effect (often called (+)-NLE), the eeP can be
much higher than the eeL, resulting in asymmetric amplification (Figure 1b). The opposite
is also possible, called negative non-linear effect ((−)-NLE) (Figure 1c).

Recently, we observed that a chiral catalyst, when not enantiopure, can be more
enantioselective than its enantiopure counterpart (Figure 1d) [4]. Such an unusual, “hyper-
positive” NLE was first suggested by Kagan in the mid-90s [2,5,6]. This was observed in
the zinc-catalyzed alkylation of aldehyde in the presence of N-benzyl ephedrine, and we
rationalized the hyperpositive NLE by introducing a monomer-dimer competition model,
where both monomers and dimers are catalytically active [4,7–9]. Such a model also allows
us to describe enantiodivergent NLEs, that is, when a catalyst can generate one enantiomer
or its opposite by simply varying the ligand ee (see Figure 1e), which was observed with
N-methyl ephedrine as ligand [10].

Since chiral ligands based on ephedrine or norephedrine have been and still are widely
used in asymmetric catalysis, it appeared important to study other derivatives of this family
in the context of non-linear effect. Among all the derivatives, N-pyrrolidinyl norephedrine
(NPNE) attracted our attention [11,12] because it has not been probed yet for NLEs in a
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systematic way, although it is one of the most enantioselective ligands in ephedrine-based
catalytic organozinc additions.
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Figure 1. Product ee vs. ligand ee graphs of catalytic asymmetric reactions showing examples for
(a) no NLE, (b) a positive NLE ((+)-NLE), (c) a negative NLE ((−)-NLE), (d) a hyperpositive NLE and
(e) an enantiodivergent NLE.

Herein, we wish to report our investigations in the enantioselective zinc-catalyzed
alkylation of benzaldehyde with NPNE as a partially resolved chiral ligand. A hyperposi-
tive non-linear effect was observed with diethylzinc or dimethylzinc as the reagent, which
was found to be more pronounced at low temperatures. The results were rationalized by
studying the effect of temperature and concentration and on the basis of our previous stud-
ies with N-benzyl ephedrine. Overall, this system concords with the previously proposed
monomer-dimer competition model, where a monomeric species is in equilibrium with
a dimeric species, both being active and competing to generate the product, albeit with
different enantioselectivity.

2. Results
2.1. Non-Linear Studies

The zinc-catalyzed alkylation of benzaldehyde was investigated with partially resolved
chiral N-pyrrolidinyl norephedrine ligand (NPNE; Figure 2). Figure 3 displays the results
with diethylzinc (a) or dimethylzinc (b) as the reagent. The catalyst loading was fixed at
20 mol%, and toluene was used as solvent. The reactions were carried out at 20 ◦C, 0 ◦C
and −20 ◦C.
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Figure 2. Catalytic enantioselective addition of dialkylzincs to benzaldehyde, catalyzed by
N-pyrrolidinyl norephedrine.
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Figure 3. Optical purity of the product as a function of the enantiomeric excess of NPNE ligand
(20 mol%) at different temperatures. (a) with ZnEt2 as reagent; (b) with ZnMe2 as reagent. The
reaction conditions and experimental procedure are described in the Supplementary Methods. Each
point is the mean of three different experiments. The vertical error bars depict standard deviations.
The dashed line represents the product e.e. of the enantiopure compound; the full line is a free-hand
drawing, which serves as a guideline.

In case (a), at room temperature, the product was isolated in 81.4% ee when the
enantiopure ligand was used (green curve). A strong positive non-linear effect occurred
with essentially no change of the product enantiopurity up to eeL of 25%. The lowering of
the reaction temperature induced a slight increase in the optical purity of the product and
the appearance of a hyperpositive effect that is more significant at −20 ◦C than 0 ◦C (∆ee
of 4.2% and 3.2%, respectively). In contrast, we observed an inversed tendency in case (b):
lowering the temperature decreased also the enantioselectivity with enantiopure ligand,
with a significant drop between 0 and −20 ◦C [from 66.3% to 54.4%], and increased the
hyperpositive NLE up to a ∆ee of 10.6% at −20 ◦C.
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During the catalytic investigations, we detected that, when the partially resolved
ligand was used, the formation of a precipitate upon addition of the dialkylzinc reagent.
This was in contrast to the use of the enantiopure ligand, which gave a clear solution.
Figure 4 displays three selected catalytic samples at 20%, 50% and 100% eeL (from left to
right) that clearly illustrates the differences. Additional experiments were carried out to
identify the nature of the precipitate. Analyses of the hydrolyzed precipitate obtained from
20% ee NPNE ligand sample revealed the free ligand in its racemic form, as deduced from
the measurement of the optical rotatory power.
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Figure 4. Reaction medium (ligand, substrate, diethylzinc, toluene) as function of the optical purity
of the NPNE ligand. From left to right: 20% eeL, 50% eeL and 100% eeL.

2.2. Impact of Catalyst Loading

The enantioselective reaction was evaluated by varying the catalyst loading of the
enantiopure NPNE ligand with diethylzinc (Figure 5a) or dimethylzinc (Figure 5b) as
reagent. In both cases, the results showed that a decrease in catalyst loading resulted in an
increase in the enantiomeric excess of the product.
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Figure 5. Optical purity of the product as a function of the catalyst loading of NPNE ligand (enantiop-
ure 1S-2R form) at different temperatures. (a) with ZnEt2 as reagent; (b) with ZnMe2 as reagent. The
reaction conditions and experimental procedure are described in the Supplementary Methods. Each
point is the mean of three different experiments. The vertical error bars depict standard deviations.
The dotted trendlines are second-order polynomial fits, which serve as guidelines.

All curves show the same trend, the major difference between the two reagents lies in
the temperature effect as already observed in the previous NLE studies.
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2.3. Impact of Temperature

The impact of the reaction temperature on the product enantioselectivity was investi-
gated. Figure 6 displays the results ranging from −20 ◦C to 40 ◦C with diethylzinc (yellow
triangle) or with dimethylzinc (blue square) as the reagent. With diethylzinc, the product
ee went down from 84.4% at −20 ◦C to 77.8% at 40 ◦C. In contrast, the product ee increased
from 54.4% at −20 ◦C to 72.4% at 40 ◦C with dimethylzinc.
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Figure 6. Optical purity of the product as a function of the temperature. Orange triangles correspond
to the reaction with ZnEt2 as reagent; blue squares correspond to the reaction with ZnMe2 as reagent.
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Each point is the mean of three different experiments. The horizontal error bars depict temperature
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3. Discussion

The norephedrine skeleton has been used extensively for the development of efficient
chiral auxiliaries in asymmetric synthesis and asymmetric catalysis, mostly with zinc as the
active metal [13]. Enantioselectivities greater than 90% ee were often reported in the alkyla-
tion (or alkynylation) of carbonyl or imine compounds [14–16]. Additionally, Efavirenz, an
industrially produced drug for the treatment of Human Immunodeficiency Virus (HIV),
includes an enantioselective transformation mediated by N-pyrrolidinyl norephedrine
(NPNE) [17]. We therefore decided to focus NLE studies with NPNE ligand to better
understand the nature of the catalytically active species.

Investigations of the product ee (eeP) as function of ligand ee (eeL) with NPNE re-
vealed a hyperpositive NLE in the zinc-catalyzed alkylation reaction (Figure 3). Such
behavior is similar to what was observed previously with the N-benzyl ephedrine lig-
and [4]. Interestingly, using ZnMe2 as reagent the product enantioselectivities are higher
than with the NBE ligand. The hyperpositive NLE effects (i.e., the difference between the
highest eeP obtained and the eeP with enantiopure ligand) with NPNE ligand are relatively
small at room temperature and more pronounced at lower temperature (0 and −20 ◦C).

Similar to what was observed with the NBE system, a zinc aggregate precipitated
when the ligand was not enantiopure, as shown in Figure 4 [18]. A measurement of the
rotatory power of the ligand contained in the aggregate revealed that the ligand was
in its racemic form. Therefore, the precipitate is an overall racemic mixture of NPNE
complexes, as previously observed with NBE as ligand, most likely as a heterochiral dimer
or co-precipitated RRS·RSS trimer adduct (trimeric adducts were observed in solution with
the parent ligand N-methyl ephedrine) [8]. Such precipitation of racemic ligand causes
a strong positive non-linear effect to emerge, as it enantioenriches the zinc species left in
solution (i.e., Kagan’s reservoir effect) [3]. Trapping the ligand in a racemic form implies that,
when decreasing the enantiomeric excess of the ligand, we generate more racemic inactive
aggregates and thus less catalytically active species. Figure 5 displays the evolution of
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product ee as a function of the catalyst loading of the enantiopure NPNE. In all cases, a
decrease of the catalyst loading led to an increase of the product ee.

The catalytic loading effect with the enantiopure ligand and the non-linear effects
were correlated. Considering that the reservoir effect on the racemic species is optimal in
these systems, we could correlate the data points from the catalyst loading effect with a
virtual enantiomeric excess if a scalemic ligand was used. The plots were superimposed
with the NLE curves and are displayed in Figure 7 below [4]. At −20 ◦C and 0 ◦C, good
agreement was observed but not at room temperature.
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Altogether, these results indicate a monomer-dimer mechanism as proposed in
Figure 8 [19]. Two different enantiodivergent pathways are present in the system: a
monomeric (−)-NPNE-ZnR-catalyzed mechanism and a dimeric (−)-NPNE-ZnR-catalyzed
mechanism that operate at a steady state; the minor (+)-enantiomer is trapped within a
racemic dimer and a racemic precipitate. Since the overall ee (and yield) of the product is
the combination of the two catalysts, if (i) the monomeric catalyst is more enantioselective
than the dimeric catalyst (i.e., ee1 > ee2), (ii) the two chiral catalysts are in dynamic equi-
librium and (iii) the minor enantiomer is trapped in the form of an inactive species such
as a solid heterochiral dimer, then a hyperpositive non-linear effect is possible. Indeed,
decreasing eeL leads to an increase of eeP because the equilibrium should be shifted to the
monomeric catalyst. Decreasing the catalyst loading should have the same effect.

However, this hyperpositive non-linear effect will only be possible if the reservoir effect
is highly efficient, trapping the minor enantiomer. This is the case at low temperatures (0 ◦C
and −20 ◦C). On the other hand, at room temperature, we observe essentially a “classical”
positive non-linear effect, although the study of the catalysis revealed an increase of eeP
as function of the catalyst loading (Figure 4). This suggests that, at room temperature,
a portion of the heterochiral dimer is soluble and lowers the overall eeP by allowing for
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the formation of the minor enantiomer catalyst, or by being catalytically active itself and
generating racemic product.
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Figure 8. Proposed enantiodivergent model with (−)-NPNE as major enantiomer.

In asymmetric catalysis, the enantioselectivity is determined by the relative rates of
the enantio-differentiating step (i.e., ∆∆G*), which is temperature dependent. As a result,
the enantioselectivity is greater at lower temperature. Here, we also investigated the effect
of the temperature on the overall product ee of the reaction (Figure 5). With diethylzinc as
the reagent, eeP goes from 84.2% at −20 ◦C to 77.8% at 40 ◦C, a variation that is very little
given the temperature range. With dimethylzinc, the enantiomeric excess of the product
was significantly increased (from 54.4% to 75.1%), which is an unusual inverse temperature
dependence. Altogether, this is consistent with an equilibrium between a monomeric
species and a dimeric species, which is shifted towards the more enantioselective monomer
at higher temperature.

4. Materials and Methods

Synthetic procedures as well as additional data for experimental catalytic runs can be
found in the Supplementary Information Section, including detailed experimental data
(reactant quantities, reaction conditions, raw and treated results for all catalytic runs).

5. Conclusions

In asymmetric synthesis or catalysis, the NPNE ligand is one of the most used in
the family of ephedrine-based ligands usually generating products with high enantiocon-
trol. The study of the ee of the product versus the ee with this ligand in the asymmetric
organozinc alkylation demonstrated that the chiral catalyst, when not enantiopure, is more
enantioselective than its enantiopure counterpart. Mechanistic studies show that the system
follows the same pattern as that with N-benzyl ephedrine or N-methyl ephedrine ligands:
with the NPNE ligand, we noticed the presence of an insoluble racemic aggregate that
allowed us to trap the minor enantiomer catalyst. The remaining enantio-enriched active
species consist in a two-component system, where a monomeric catalyst is in equilibrium
with a dimeric catalyst. The equilibrium between the catalytic species is dependent on the
total concentration of species in solution, which depends on the enantiomeric excess of
the ligand used in the reaction. Evidence for this model has been found by varying the
catalyst loading or the reaction temperature. A correlation between the catalytic loading
effect with the enantiopure ligand and the non-linear effects suggested that part of the
racemic aggregate could catalyze the reaction and reduce the magnitude of the observed
hyperpositive non-linear effect at higher temperature.
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ZnMe2 and solvent quantities for the temperature screening; Table S7: Reported data from NLEs stud-
ies using ZnEt2 at different temperatures; Table S8: Reported data from NLEs studies using ZnMe2
at different temperatures; Table S9: Reported data from catalyst loading screening using ZnEt2 at
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