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Abstract

An understanding of microbial community structure is an important issue in the field of

molecular ecology. The traditional molecular method involves amplification of small subunit

ribosomal RNA (SSU rRNA) genes by polymerase chain reaction (PCR). However, PCR-

based amplicon approaches are affected by primer bias and chimeras. With the develop-

ment of high-throughput sequencing technology, unbiased SSU rRNA gene sequences can

be mined from shotgun sequencing-based metagenomic or metatranscriptomic datasets to

obtain a reflection of the microbial community structure in specific types of environment and

to evaluate SSU primers. However, the use of short reads obtained through next-generation

sequencing for primer evaluation has not been well resolved. The software MIPE (MIcro-

biota metagenome Primer Explorer) was developed to adapt numerous short reads from

metagenomes and metatranscriptomes. Using metagenomic or metatranscriptomic data-

sets as input, MIPE extracts and aligns rRNA to reveal detailed information on microbial

composition and evaluate SSU rRNA primers. A mock dataset, a real Metagenomics Rapid

Annotation using Subsystem Technology (MG-RAST) test dataset, two PrimerProspector

test datasets and a real metatranscriptomic dataset were used to validate MIPE. The soft-

ware calls Mothur (v1.33.3) and the SILVA database (v119) for the alignment and classifica-

tion of rRNA genes from a metagenome or metatranscriptome. MIPE can effectively extract

shotgun rRNA reads from a metagenome or metatranscriptome and is capable of classifying

these sequences and exhibiting sensitivity to different SSU rRNA PCR primers. Therefore,

MIPE can be used to guide primer design for specific environmental samples.

Introduction

The elucidation of microbial community structure and diversity is an important issue in the

field of molecular ecology. The traditional method is based on PCR, and requires the use of

primers that specifically targets SSU genes to characterize a community [1]. The SSU rRNA
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genes, namely the 16S rRNA gene in Bacteria and Archaea and the 18S rRNA gene in Eukarya,

have been widely used in microbial phylogeny since Carl Woese introduced the three-domain

system [2,3]. This method has greatly expanded our understanding of microbial diversity and

has led to the establishment of some public databases such as National Center for Biotechnol-

ogy Information (NCBI) GenBank, SILVA, Ribosomal Database Project (RDP) and Green-

genes [4–8]. Some studies and tools, such as TestProbe [8] and probeBase [9], have evaluated

and improved these universal PCR primers based on these datasets. However, the accuracy of

PCR approaches is reduced due to primer bias and chimeras, and these PCR-based databases

and primer evaluation tools overestimate primer coverage [10].

The advent of high-throughput sequencing has given rise to a number of shotgun sequenc-

ing-based metagenomes and metatranscriptomes [11], and many related datasets have been

accumulated. Consequently, some specific websites have started storing metagenomic data,

such as the databases CAMERA, iMicrobe, and European Bioinformatics Institute (EBI) Meta-

genomics [12–14]. Because metagenomic and metatranscriptomic sequences are generated

without PCR-based amplification, the rRNA sequences in these datasets are used for the

microbial population analysis [15,16]. However, PCR amplicon sequencing is not out of date.

Different from shotgun sequencing, PCR amplicon sequencing is economical, fast and able to

be well aligned to analyze in standard workflows [17]. Several software packages have been

developed, such as Mothur [18], Usearch [19] and QIIME [20]. Moreover, in ecology, a large

number of environmental samples need to be analyzed in parallel to determine the contribu-

tion of environmental parameters to microbial populations, so PCR approaches are still widely

used. We previously used different metagenome datasets to evaluate universal primers for the

bacterial 16S rRNA gene and found that primer evaluation based on the RDP database over-

rated the coverage achieved with the primers [10].

Moreover, both primer coverage and PCR efficiency are important for the analysis of spe-

cific environmental samples. Increasing primer degeneracy would decrease the efficiency of

PCR amplification and specific environments may require the use of specific primers. For

example, when amplifying the bacterial 16S rRNA gene from gut samples, researchers mixed

another primer with the widely used 16S rRNA primer 27F because the primer 27F cannot

cover Bifidobacteria, which is dominant in gut samples [21]. However, 27F is broadly used in

analysis of various environmental samples because the content of Bifidobacteria is relatively

low in most water and soil samples. Therefore, the development of a software program for

primer evaluation based on metagenome or metatranscriptome data from specific environ-

mental samples is necessary.

Although some programs (SSUsearch, EMIRGE, MG-RAST API) [16,22,23] and websites

(IMG, MG-RAST) [15,24] have been developed for the metagenomic microbial population

analysis, no pipelines are currently available for primer evaluation. TestProbe [8] and probe-

Base [9] offer primer evaluation in their websites but rely on the PCR-based SILVA and RDP

databases. Some programs, such as PrimerProspector [25] and DegePrime [26], evaluate and

develop primers for taxonomic classification, but these programs cannot be used for metagen-

ome sequence datasets and do not include rRNA extraction and global alignment processes,

which are necessary for rejecting incorrect primer binding sites in shotgun reads. The tool De-

MetaST [27] is available for metagenome datasets but was designed to provide in silico ampli-

cons generated by user-defined degenerate primers found within a user-defined nucleotide

database. Therefore, this software only provides information for the covered but not the

uncovered parts and cannot be used for the evaluation of primer coverage or for primer modi-

fication. Furthermore, this software is not suitable for rRNA primers because it utilizes

BLASTx (Basic Local Alignment Search Tool searching protein databases using a translated

nucleotide query) for the classification.

MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool
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To fill in the gap created by software programs for primer evaluation and the microbial

population analysis based on shotgun metagenomes, we optimized our automated pipeline,

which was established previously [10,28] and integrated it into the software MIPE (MIcrobiota

metagenome Primer Explorer). MIPE extracts and classifies rRNA from a metagenome or

metatranscriptome to provide information regarding community structure and allow the eval-

uation of different SSU PCR primers for different taxonomic groups. MIPE calls Mothur

(v1.33.3) and the SILVA database for the identification of rRNA and the alignment of these

sequences, which allows the identification of primer binding sites. The users only need to

input the appropriate metagenome dataset and primer lists. The program automatically gener-

ates the output, including information regarding primer evaluation, rRNA sequence and tax-

onomy. This software also supports a modified process suitable for the same analysis based on

a metatranscriptome, in this process, considerable rRNA reads would be extracted for the anal-

ysis of the primers. In the study described in this manuscript, MIPE was used to extract SSU

sequences from a mock dataset and an MG-RAST metagenome dataset, and was used to evalu-

ate the primer pair F515-R806 utilizing the standard SILVA database, the CAMERA metage-

nomic dataset and a metatranscriptomic dataset. The results were compared with those

obtained using MG-RAST [15] and PrimerProspector [25].

Materials and methods

Design principles

MIPE contains three perl scripts and depends on Mothur (v1.33.3) and BLAST (v2.2.26 or

higher). MIPE can run under the Linux operating system only and can be downloaded at

https://github.com/zoubinok/MIPE.git. MIPE uses private or public shotgun metagenomic or

metatranscriptomic rRNA sequences submitted by the user to analyze community structure

and SSU primer coverage. It calls Mothur (v1.33.3) and the SILVA database to align and clas-

sify rRNA, and a reference sequence is introduced to lock and mark primer binding sites. The

reference sequence is separately aligned against the user-defined sequences and primers. Based

on the reference sequence location, primer binding sites are extracted with three to five addi-

tional bases at both ends to avoid base slips resulting from multiple sequence alignment. The

primers are then re-aligned against the primer binding sites obtained from the user-defined

sequences to improve the alignment quality, and the sequences that are poorly aligned in this

region are deleted. The workflow for MIPE is shown in Fig 1. MIPE can also be used to evaluate

large subunit ribosomal RNA (LSU rRNA) primers only if the users replace the SSU reference

sequence, the SILVA SSU database and the SSU primers with the LSU reference sequence, the

SILVA LSU database (https://www.arb-silva.de/fileadmin/silva_databases/release_119/Exports/

SILVA_119_LSURef_tax_silva_full_align_trunc.fasta.gz) and LSU primers, respectively.

Data preprocessing

MIPE consists of two parts, namely dataset preprocessing and the main program. Dataset

preprocessing is needed for metagenome datasets because only approximately 0.2% of the

sequences in metagenome datasets are related to SSU rRNA genes [29,30]. To obtain SSU

rRNA gene-like sequences in metagenome datasets, 71 representative sequences (45 bacterial,

17 archaeal and 9 eukaryotic sequences) were obtained by clustering the SILVA SSU database

(v102) with Usearch (v5.2.32) [19] at a sequence identity level of 75%. These representative

sequences are then used as queries in a BLASTn search against the user-defined sequences

(default parameters: db alignments per query was 65535). A draft of the user-defined SSU

dataset is then built to evaluate different primer sets. Because some hidden Markov model

(HMM)-based tools can be used to replace this step, this step was not included in the main

MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool
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Fig 1. Work flow of MIPE. The part shown with a yellow background is the preprocessing stage of MIPE. The orange background

details Stage I of the main program of MIPE, specifically sequence screening and taxonomy of a metagenome and a

MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool
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program [16,31,32]. For the analysis of metatranscriptome and amplified rRNA gene

sequences, MIPE skips this step and runs the main program directly because rRNA gene

sequences constitute a large part of these datasets. However, some rRNA sequences in some

metatranscriptomic samples are removed for mRNA enrichment; in these cases, using the

metagenome workflow would be a wise choice and these rRNA sequences cannot be used to

reflect the community. In addition, for other special cases, such as cases with large insertions

in SSU sequences, which would decrease alignment accuracy, it would prove beneficial to per-

form specific preprocessing with other methods before using MIPE [33]. But MIPE uses short

reads from shotgun sequencing, so most large insertions would be excluded because of poor

alignments in MIPE and then primers can be well evaluated, as well.

MIPE main program

Stage I. This stage aims to classify sequences and extract primer binding sites. The

detailed parameters are listed in the program.

The first step is the sequence screening and taxonomy of a metagenome. Based on the

sequencing approach, genes may be reverse-complementary sequenced, which may have nega-

tive effects on the taxonomy and reduce the accuracy of the primer evaluation. To avoid this

problem, each sequence and its reverse-complement sequence are aligned against the SILVA

SSU database by calling “align.seqs” in Mothur (v1.33.3) [18]. The correct sequence trend is

based on the comparison of two search scores that characterize the similarity of the candidate

sequence with the reference database. If both values are lower than the cutoff search score

which can be modified by the users, although a value of 30 is recommended, the sequence is

not considered part of the SSU rRNA gene. Then, MIPE calls Mothur to classify (“classify.

seqs”) the selected SSU rRNA gene sequences. If the sequence is classified into Bacteria,

Archaea, or Eukarya and the bootstrap value is not less than the threshold cutoff (Mothur

declares a minimum cutoff of 60, and 50 is also used for sequences shorter than 250 bp

[28,34]), the sequence passes through to the next analysis.

Alternatively, the first step can be the sequence screening and taxonomy of a metatranscrip-

tome. For metatranscriptome datasets, LSU rRNA is also considered because of its high con-

tent in the metatranscriptome [28]. Therefore, LSU is extracted in the same manner as SSU,

and four search scores are acquired to determine the sequence attributions. The extracted LSU

is also used for taxonomy and community analysis with the SILVA LSU database (v119) [8].

The subsequent metatranscriptomic SSU rRNA analysis is the same as that used for metage-

nomic datasets.

Appending a reference sequence, locating and extracting primer binding sites then follow

in order. A reference sequence is then introduced to identify primer binding sites with MIPE.

The default reference sequences are the standard full-length 16S rRNA gene sequence of

Escherichia coli (GenBank accession number: J01695) and the corresponding sequence of

Methanomethylovorans hollandica (GenBank accession number: NC_019977) and the 18S

rRNA gene sequence of Saccharomyces cerevisiae (GenBank accession number: NR_132213.1).

The user-defined SSU sequences and the reference sequence are combined and aligned against

the aligned the SILVA SSU database (v119) using the multiple-sequence aligner “align.seqs” in

Mothur (v1.33.3) so that every base is given a unique position on the reference sequence.

Users would make a list of degenerate primers as input and make sure both their degenerate

metatranscriptome, and the blue background describes steps used for metatranscriptomic sequence screening and taxonomy. The

lake blue background details the steps associated with appending a reference sequence, locating and extracting primer binding sites,

which form part of Stage I in the MIPE main program. The green background shows Stage II in the MIPE main program.

https://doi.org/10.1371/journal.pone.0174609.g001
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and non-degenerate formats have right primer binding sites on the reference sequence. Degen-

erate primers are split into non-degenerate primers with MIPE, and these non-degenerate

primers are aligned against the reference sequence using the same tool. The reference

sequence, which is used as a marker, helps extract the primer binding sites in the user-defined

SSU sequences.

The SILVA SSU database (v119) that is used with MIPE was downloaded from the Mothur

modified Recreated SEED database (http://www.mothur.org/w/images/5/56/Silva.seed_v119.

tgz). This database does not have the primer binding regions 8F and 1492R because most bac-

terial sequences were amplified using this primer pair. To address this shortage, all of the

sequences were aligned against an extended SILVA database that was prepared in house. To

build the extended SILVA database, the primer 8F was attached to the 5’ region of every

sequence in the SILVA SSU database (v119) and the reverse complement of the primer 1492R

was attached to the 3’ region of every sequence. A perl script (SILVA_ENLONG.pl) was pro-

vided as a part of MIPE in github.

Stage II. This stage aims to analyze and output the results from primer matching. The

Mothur command “align.seqs” is called for the alignment of every extracted primer binding

site from the user-defined SSU sequences against the non-degenerate primers to rectify any

base slips caused by multiple sequence alignment. Four types of mismatches in the primer

binding sites, namely substitution, insertion, deletion and missing fragment, are marked with

different signals based on the results of this alignment.

For each non-degenerate primer, MIPE outputs two files, a match type file (“.Match_type”)

and a statistics file (“.Stat”). The “.Match_type” file includes details from each sequence evalua-

tion. Five match types, namely match, substitution, insertion, deletion and missing fragment,

are expressed by the MIPE match type formats ‘ = ‘, ‘A(TCG)’, ‘a(tcg)’, ‘d’ and ‘.’, respectively,

to facilitate the statistical analysis which involves each match type for the sequence, the binding

sites of the primers, the mismatch base numbers in total, the mismatch base numbers in last 4

bases, the matched degree and the taxonomy information. A single internal primer-template

mismatch can greatly decrease PCR efficiency, particularly if the mismatch occurs at the last

three to four positions; thus, the degree of matching is defined as “no mismatching” or “only

one mismatch that is not found in the last four positions near the 3’ end” [35,36]. The match

types of each non-degenerate primer separated from each degenerate primer are integrated

into “.Match_type” to evaluate degenerate primers using the best match type, which is based

on the score provided in the “.Match_type_tmp” files. The format of “.Match_type” is shown

in Fig 2A.

The “.Stat” file provides a summary of the primer evaluation. All of the results were gener-

ated by the analysis program using the “Match_type” files. The “.Stat” file contains six tables:

the match and mismatch sequence count, the distribution of completeness, the most frequent

mismatch type, the most common match type, the count of each mismatch in every position,

and the coverage over taxonomy levels. To reflect the mismatch of any missing information,

we introduced the variable “completeness” for each primer binding site. If the primer binding

site of a fragment was too marginal to cover all of the bases of a primer or was poorly aligned,

this site would not be counted when evaluating the coverage of a certain primer. The format of

the “.Stat” file is shown in Fig 2B.

Testing the dataset and demonstration

Comparison of sequence taxonomies. A 13-organism genomic mock dataset was simu-

lated using MetaSim (version 0.9.1; [37]) with a sequence length of 400 bp for each organism,

6X coverage and an exact error model to confirm the accuracy of the taxonomy obtained by

MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool
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Fig 2. Format of MIPE output. (A) Match type file, “.Match_type”. The file contains each match type for the sequence, the sequence

binding sites for the primers, the mismatch base numbers in total, the mismatch base numbers in last 4 bases, the matched degree, the

MIPE: A metagenome-based community structure explorer and SSU primer evaluation tool
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Stage I in the MIPE main program. The 13 organisms consisted of two Archaea, nine Bacteria

and two Eukarya based on the MetaSimHC database [38] and their GI numbers were

159184118, 159185562, 75906225, 11497621, 42521650, 121612099, 15893298, 116510843,

30248031, 32141095, 24473558, 330443681 and 453231596. MIPE extracted SSU sequences

from the mock dataset (search score cutoff: 10; bootstrap cutoff: 80), and a goodness-of-fit

analysis based on Pearson’s Chi-squared test at the genus level was executed with R (version

3.1.2; http://www.R-project.org/).

A metagenome sequence dataset from an activated sludge sample (MG-RAST ID:

4467420.3) [39] was also downloaded from the MG-RAST website (http://metagenomics.anl.

gov/) [15] to evaluate the effects of different methods and databases. This sample was analyzed

with the MG-RAST built-in SSU databases, through the MG-RAST pipeline (Metagenomes:

4467420.3; Annotation Sources: SSU; Max. e-Value Cutoff: 1e-5; Min. % Identity Cutoff: 60%;

Min. Alignment Length Cutoff: 15). The downloaded raw data (FASTA format) were analyzed

with MIPE (search score cutoff: 30; bootstrap cutoff: 50). Linear correlations were calculated at

the phylum and class levels of Archaea and Bacteria. Taxa whose abundances are greater than

100 reads in either the SILVA SSU (v119) or MG-RAST built-in SSU databases were listed sep-

arately and the others were summed into one item. Due to differences in taxonomy informa-

tion for Eukaryota between the SILVA SSU (v119) and MG-RAST built-in SSU databases, the

test for Eukarya was not executed.

Primer evaluation. To compare the primer evaluation results obtained by MIPE and Pri-

merProspector [25], the “SILVA test set” and “Metagenome test set” were used. The “SILVA

test set” was used with the example pipeline of PrimerProspector, derived from the SILVA SSU

database (v104) and filtered at 97% sequence identity with Uclust [19]. The “Metagenome test

set” was selected from the CAMERA website (release v.1.3.2.30; http://camera.calit2.net/) based

on our previous work in 2012 [10,14]. The primer set F515-R806 [25,40,41] (F515: 5’-GTGCC
AGC(A/C)GCCGCGGTAA-3’;R806: 5’-GGACTACC(A/C/G)GGGTATCTAAT-3’), which

is designed to be universal for nearly all bacterial and archaeal taxa, is widely used in high-

throughput sequencing to amplify V4 region of 16S SSU rRNA. We used this primer set for the

evaluation. It was also evaluated with the “SILVA test dataset” via PrimerProspector. The MIPE

parameters were a search score cutoff of 30, a bootstrap cutoff of 80, the inclusion of Bacteria

and other default parameters. The scripts “analyze_primers.py” and “taxa_coverage.py” with

default parameters in PrimerProspector were used and the PrimerProspector results were trans-

formed into the MIPE match type format for the comparison. Because the primers F515-R806

are bacterial primers, only bacterial SSU sequences classified by MIPE were compared. In

PrimerProspector, a primer binding site with an overall weighted score of at most 1.00 was

regarded as a matched site. The phylum-level coverage data presented in the MIPE output

“Table 6: Coverage over taxonomy levels” from a “.Stat” file were used for comparison.

The metatranscriptomic dataset SRX155355 (Short Read Archive (SRA) accession number:

SRX155355), which is based on our previous work in 2014 [28] was executed using the meta-

transcriptome section of MIPE. All sequence reads containing “N” were discarded and

sequences longer than 400 bp were used. The sequences were checked for chimeric artifacts

using the “chimera.uchime” in Mothur (v1.33.3), and the passed sequences were processed

with MIPE metatranscriptome (search score cutoff: 20; bootstrap cutoff: 80).

completeness, the taxonomy information and the score. (B) Statistics file, “.Stat”. The file presents a summary of the primer evaluation,

and all tables result from the analysis of the “Match_type” files. The file contains six tables: the match and mismatch sequence count, the

distribution of completeness, the most frequent mismatch type, the most common match type, the count of each mismatch in every

position, and the coverage over taxonomy levels. Rare biospheres can be found in “Table 6” of the statistics file and sequences whose

completeness were less than one were not counted in this table. For more details, please see S3 Table.

https://doi.org/10.1371/journal.pone.0174609.g002
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Results and discussion

Extraction and taxonomic identification of SSU sequences

Running time of MIPE (CPU time) was tested using the 13-organism genomic mock dataset con-

taining 1000000 sequences. MIPE was run on Ubuntu 14.04.1 (2×2.40GHz Quad-core Xeon,

64GB of RAM) but in the single-threaded mode. The dataset preprocessing (MIPE_pre_program.

pl) took 3 minutes and extracted 2389 sequences. MIPE main program (MIPE_main_program.

pl) took 5 minutes to deal with these 2389 sequences.

The SSU sequences in the 13-organism genomic mock dataset were extracted and classified

by MIPE. A goodness-of-fit analysis based on Pearson’s Chi-squared test (chisq.test in R and

the R code was in S1 Table) at the genus level showed no significant difference between the

original percentage and the MIPE-determined percentage (p value> 0.05; S1 Table) indicating

that MIPE can extract SSU sequences from an unbiased mock dataset.

The activated sludge sample from MG-RAST dataset 4467420.3 (16663946 reads) was eval-

uated. Krnoa charts [42] of SSU sequences show the MIPE results, revealing the relative abun-

dance distribution of microbes at different taxonomic levels (S1 and S2 Files). Based on the

two results, the main clusters of Bacteria and Archaea are similar. A low content was detected

with MIPE for the Eukarya cluster because the taxonomic database SILVA SSU (v119) used

for the MIPE analysis does not cover fish, such as Danio, the dominant Eukaryote in this data-

set. MG-RAST is broadly used for microbial analysis of shotgun metagenome, which identified

rRNA sequences through an initial BLAT search [15]. But MG-RAST built-in SSU database is

not available for us and it cannot be replaced. Furthermore, MG-RAST only reports the rela-

tive abundance and we cannot get the taxon of every sequence. Thus, we used linear correla-

tion-based comparison instead. Fig 3 clearly shows the significant linear correlation of

Archaea and Bacteria read numbers at the phylum (R2 = 0.897, P = 2.99 e-06) and class level

(R2 = 0.861, P = 2.27 e-07) between the results obtained using the two methods. In conclusion,

MIPE can efficiently extract SSU rRNA gene sequences from metagenome datasets and accu-

rately identify the taxonomy of each sequence.

The metatranscriptomic dataset SRX155355 contains 21,035 sequences prior to processing

by MIPE. MIPE extracted 10,885 SSU sequences and 7452 LSU sequences. Thus, rRNA

sequences accounted for 87.2% of the total sequences. Considering that the whole amount of

rRNA genes in a metagenomic dataset is approximately 0.2%, metatranscriptomic datasets

provide considerable sequences.

MIPE is flexible because it is a local pipeline to which different SSU or other gene databases

can be applied for the analysis of data from different environments because different environ-

ments consist of different communities and it is better to select primers for specific environments.

Validation of the primer evaluation process

The primer set F515-R806 were evaluated using the “SILVA test set” and “Metagenome test

set” with MIPE and PrimerProspector [25]. Because PrimerProspector was not designed for

metagenomes and cannot perform global alignments or classify metagenome sequences using

its primer evaluation modules (analyze_primers.py and taxa_coverage.py), we had to input the

SSU rRNA gene sequence and taxonomy files for the comparison.

The coverage of most phyla by the primers F515 and R806, as evaluated by MIPE, basically

agreed with the results obtained by PrimerProspector, presenting a 0%-to-10% difference (Fig 4)

in the “SILVA test set. The different coverages obtained by these two programs were due to differ-

ent penalty rules. But, in fact, they had the same match type. In other words, there were no differ-

ences between two results except penalty rules and penalty rules can get changed in scripts. The
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Fig 3. Linear correlation-based comparison of MG-RAST and MIPE. Archaeal and bacterial read

numbers used for linear correlation at the (A) phylum and (B) class levels. Taxa whose abundances are

greater than 100 reads in either SILVA SSU (v119) or MG-RAST built-in SSU databases are listed separately,

and the others are summed into one item.

https://doi.org/10.1371/journal.pone.0174609.g003
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Fig 4. Coverage of the “SILVA test set” with the primers F515 (A) and R806 (B) obtained using MIPE and PrimerProspector. The SILVA test set

sequences were derived from the SILVA SSU database (v104) and filtered at 97% sequence identity with Uclust. The y-axes represent the percent of

coverage.

https://doi.org/10.1371/journal.pone.0174609.g004
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details are shown in sheets “F515_annotation_of_difference” and “R806_annotation_of_differ-

ence” of S2 Table. Other sheets of S2 Table original match type files and statistics files.

In the analysis of the “Metagenome test set”, PrimerProspector found one primer binding

site in every sequence for primer F515 or R806, which means that PrimerProspector identified

incorrect primer binding sites, because it only performed local alignments and did not anchor

the primer binding sites, even if it was an incorrect site. MIPE avoids this problem through

the use of a global alignment and the anchoring of primer binding sites. Because the results

obtained by PrimerProspector included incorrect information for uncovered sections and can-

not be used for primer evaluations and metagenome modifications, just like De-MetaST [27],

we can only compare the match types from these two scripts case by case (Sheet: F515_annota-

tion_of_difference and F806_annotation_of_difference in S3 Table).

The metatranscriptomic dataset SRX155355 contained 3915 bacterial sequences which had

primer binding sites for F515 and 2081 bacterial sequences had primer binding sites for R806.

Thus, primer binding sites for F515 and R806 accounted for 18.6% and 9.9% of the total

sequences, respectively (see S4 Table). Metatranscriptomic datasets provided considerable

sequences for testing primers.

Conclusions

A priori knowledge is important when selecting and developing primers for the microbial pop-

ulation analysis. MIPE is a pipeline that combines automated SSU primer evaluation with

rRNA gene extraction and classification for the analysis of shotgun metagenomic and meta-

transcriptomic datasets, which are becoming increasingly available. Furthermore, "missed"

microorganisms from previous studies can also be discovered with newly designed primers

based on mismatched types. In the future, MIPE will be able to address other marker genes to

offer users a more powerful analysis tool for discovering the features of functional microbial

communities, and an SSU rRNA gene database based on metagenomic or metatranscriptomic

sequences can be established based on results obtained using the MIPE pipeline.
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