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YTHDF2 favors protumoral macrophage
polarization and implies poor survival outcomes
in triple negative breast cancer

Hao Jin,1,2,8 Yue Chen,1,2,8 Dongbo Zhang,1,2,8 Junfan Lin,1,2,8 Songyin Huang,2 Xiaohua Wu,1,2 Wen Deng,1,2

Jiandong Huang,3,4,5,* and Yandan Yao1,2,6,7,9,*
SUMMARY

Patients with triple-negative breast cancer (TNBC) frequently experience resistance to chemotherapy,
leading to recurrence. The approach of optimizing anti-tumoral immunological effect is promising in over-
coming such resistance, given the heterogeneity and lack of biomarkers in TNBC. In this study, we focused
onYTHDF2, anN6-methyladenosine (m6A)RNA-readerprotein, inmacrophages, oneof themost abundant
intra-tumoral immune cells. Using single-cell sequencing and ex vivo experiments, we discovered that
YTHDF2 significantly promotes pro-tumoral phenotype polarization of macrophages and is closely associ-
ated with down-regulated antigen-presentation signaling to other immune cells in TNBC. The in vitro
deprivation of YTHDF2 favors anti-tumoral effect. Expressions ofmultiple transcription factors, especially
SPI1, were consistently observed in YTHDF2-high macrophages, providing potential therapeutic targets
for new strategies. In conclusion, YTHDF2 in macrophages appears to promote pro-tumoral effects while
suppressing immune activity, indicating the treatment targeting YTHDF2 or its transcription factors could
be a promising strategy for chemoresistant TNBC.

INTRODUCTION

Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen (ER), progesterone (PR), and human epidermal growth

factor (HER-2) receptor expressions, resulting in aggressive behavior and poor prognosis among all subtypes, with limited responses to endo-

crine and targeted therapies.1 Consequently, chemotherapy has become the standard clinical practice.2–5 However, frequent distant metas-

tasis occurs in patients who fail to achieve a complete response (CR) to the treatment,6–9 necessitating the development of new strategies to

overcome resistance and improve CR rates in TNBC. Emerging evidence suggests that chemotherapeutic agents not only exert direct cyto-

toxic effects but also concurrently activate anti-tumor immune mechanisms, which determine treatment efficacy.10,11

The concept of the tumor immune microenvironment (TIME) comprehends the most recent advances achieved in studying the signaling

interactions among tumor, stromal and immune cells. Given the lack of biomarkers and extensive heterogeneity in TNBC, the strategy that

optimizes anti-tumoral immunity in TIME becomes prospective to overcome such resistance in TNBC.12–15 Macrophages, as phagocytic cells

in the innate immune system, are amongst themost abundant intra-tumoral immune cells. They play a crucial role in the recognition, process-

ing, and degradation of pathogens and tumor cells.13,16–18 Macrophage polarization refers to the differentiation of two distinct phenotypes

based on their functions: the classically activated anti-tumoral phenotype and the alternatively activated pro-tumoral phenotype.19 Anti-tu-

moral macrophages are associated with Lipopolysaccharide (LPS) -induced inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis

factor (TNF-a), and interleukin 1b (IL-1b), which have potent anti-cancer properties. In contrast, pro-tumoral macrophages (also known as

tumor-associatedmacrophages, or TAMs) significantly contribute to the unfavorable growth andmetastasis of TNBCby releasing angiogenic

factors and interleukin-10 (IL-10).20
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Figure 1. m6A RNA-related protein gene programs associated with anti-tumoral/pro-tumoral macrophages within tumors

(A) Dot plot representing the relative average expression of a subset of m6A-related protein genes (X axis) across anti-tumoral and pro-tumoral clusters (Y axis).

The m6A eraser/writer/reader protein genes in each cluster were identified by log fold change compared with the rest. As indicated on the legend, dot size

denotes the percentage of cells in a cluster expressing each gene. Dot color represents the relative average expression levels. Red box indicates the relative

average expression of YTHDF2.

(B) Normalized expression of YTHDF2 gene comparing anti-tumoral and pro-tumoral macrophages aggregated by clusters in a pseudo-bulk approach (n = 7

patients, p values calculated by Moses Extreme Reactions test, *p < 0.05).

(C) Dot plot representing the relative average expression of a subset of anti-tumoral/pro-tumoral marker genes (X axis) across YTHDF2-high and YTHDF2-low

clusters (Y axis). The anti-tumoral/pro-tumoral marker genes in each cluster were identified by log fold change compared with the rest. As indicated on the

legend, dot size denotes the percentage of cells in a cluster expressing each gene. Dot color represents the relative average expression levels.

(D) Normalized expressions of anti-tumoral marker genes comparing YTHDF2-high and YTHDF2-low macrophages aggregated by clusters in a pseudo-bulk

approach (p values calculated by Moses Extreme Reactions test, *p < 0.05).
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N6-methyladenosine (m6A) is themost abundant epigeneticmodification of RNA, and its dysregulation leads to aberrant transcription and

translation programs that promote tumorigenesis and cancer progression, closely correlating with macrophage polarization.21 The principal

components involved inmodifyingm6A are them6A readers, writers, and erasers. The YTHdomain family ofm6A readers was first identifiedby

Stoilov P et al. in 2002.22 Since its first discovery in 2012,23 YTHDF2, as the m6A reader21 and regulator of mRNA stability24 and innate immu-

nity,25 has been found to correlate with resistance to 5-fluorouracil in colorectal cancer26 and resistance to cisplatin in ovarian cancer.27
2 iScience 27, 109902, June 21, 2024
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Figure 2. Expression of receptor-ligand pairs that can mediate interaction between YTHDF2-high/YTHDF2-lowmacrophage clusters and NK cell/CD8+

T cell/CD4+ T cell clusters

(A) Circle plot with a correlation analysis on the association of YTHDF2-high/YTHDF2-low macrophages of all the conditions with all other immune populations,

thickness of the lines indicating strength of the interactions.

(B‒D) Interactions between YTHDF2-high/YTHDF2-low macrophage and NK cell clusters in CR (B)/PR (C)/SD (D) cohort.

(E‒G) Interactions between YTHDF2-high/YTHDF2-low macrophage and CD8+ T cell clusters in CR (E)/PR (F)/SD (G) cohort.

(H‒J) Interactions between YTHDF2-high/YTHDF2-low macrophage and CD4+ T cell clusters in CR (H)/PR (I)/SD (J) cohort. B-J: Dot color represents

communication probabilities and dot size reflects computed p values (one-sided permutation test) for interactions that vary between YTHDF2-high and

YTHDF2-low samples; empty space indicates no difference between two clusters, red boxes indicate decreased immune-activating interactions existing in

YTHDF2-high macrophage.

(K‒M) Violin plot showed the normalized scRNA-seq expression distribution of immune-activating ligand-receptor pairs, compared across NK cells (K)/CD8+

T cells (L)/CD4+ T cells (M) and YTHDF2-high/YTHDF2-low macrophages.
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Previous studies regarding m6A modification have reported the role of Ythdf2 gene knocking out in inducing anti-tumoral polarization in

macrophage, thereby promoting CD8+ T cell-mediated anti-tumoral immunity in MC38 and B16f10 tumor models.28 Nevertheless, some

other articles report an opposing effect that YTHDF2 inhibits the progression of cancer,29,30 leaving its exact function in TNBC ambiguous.

In this study, we aim to elucidate the role of m6A reader YTHDF2 in the pro-tumoral phenotype polarization in the intra-tumoral macro-

phages of TNBC, how it alters the signaling of macrophages to other immune cells and possibly transforms TIME, with the goal of identifying

new therapeutic targets.

RESULTS

Identification of anti-/pro-tumoral macrophages in TNBC tumor specimens

Tumor-infiltratingmacrophages (M4) of all the conditions partitioned to two sub-clusters, respectively representing anti-tumoral M4 and pro-

tumoral M4. Previous studies revealed that in the macrophages against tumor cells, anaerobic glucosemetabolism was quite principal, while

oxidative glucose consumption was dominant in pro-tumoral macrophages.31,32 In addition, the levels of the components in mitochondrial

TCA cycles, such as fumarate, succinate and itaconate also competently guide the activation of macrohages.33 Macrophage phagocytosis is

triggered by a comprehensive signaling network including the involvements of GTPases, lipids, protein kinases, phosphatases and actin reg-

ulatory proteins.34,35 They drive the formation, internalization and disposition of macropinsosome.36 We hereby aimed to target the relevant

genes that represented dysregulated metabolism and phagocytosis in macrophages to define the pro-tumoral signature, whereas those

related to immune enhancement were used to define the anti-tumoral signature.

A total of 28,547 CD45+ cells, 17,854 CD45+ cells, and 32,564 CD45+ cells in tumor specimens respectively from TNBC patients achieving

complete response (CR), partial response (PR), or stable disease (SD) after chemotherapy were subjected to clustering analysis (Figure S1).We

subclustered the CD45+ immune cells and a total of 1,152 cells, 873 cells, and 1,240 cells inmacrophage/monocyte population were identified

respectively in the CR, PR and SD cohort. Macrophages were distinguished from monocytes to the utmost effort.

The cluster anti-tumoral M4 and cluster pro-tumoral M4were distinguished by the alternative expressions of APOE/CD163/LGMN/CTSD

versus IL1A/IL1B/TNF/NFKB1 respectively (Figures S2A and S2B).We next identifieddifferentially expressed (DE) genes betweenpro-tumoral

and anti-tumoral tumor-infiltrating macrophages. Pro-tumoral marker genes were shown to be upregulated in pro-tumoral M4, including

APOE, CTSD, LGMN, and CD163, whereas upregulated genes in anti-tumoral macrophages included genes previously identified in human

anti-tumoral macrophages, including IL1B,NFKB1, IL1A, and TNF (Figure S2C).37,38 We further investigated the subpopulation-specific tran-

scriptional signatures across the two clusters. Consistent with the results of the DE genes analysis, cluster anti-tumoral M4 highly expressed

marker genes such as IL1A, IL1B,NFKB1,NOS1, REL, and TNF, while cluster pro-tumoral M4 displayed higher level ofMRC1, LGMN, CTSD,

and CD163 (Figure S2D). In a similar manner, Gene Set Enrichment Analyses (GSEA) including Gene Ontoloty (GO), Reactome, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) confirmed significant activities of immune-activating signaling pathways in anti-tumoral mac-

rophages rather than in pro-tumoral macrophages, such as positive cytokine regulation, cellular response to stimulus, multiple Toll-like re-

ceptor cascades and other signaling pathways (Figures S2E, S2G, and S2I). In contrast, pro-tumoral macrophages showed a tendency of hav-

ing alternative metabolic and endocytic pathways like lipoprotein, cholesterol and glycan utilization, as well as receptor-mediated

endocytosis and transferrin recycling, etc. (Figures S2F, S2H, and S2J).

The two robust subclusters, cluster anti-tumoral M4 and cluster pro-tumoralM4, represented different distributions of pre-treatmentmac-

rophages andpost-treatmentmacrophages (Figure S3A). Pseudotime analysis identified onemajor trajectory, composedof cells fromAPOE+

cluster pro-tumoralmacrophages and IL1A+ cluster anti-tumoralmacrophages (Figure S3B). Comparison ofmatchedpre- and post-treatment

specimens demonstrated a post-treatment increase trend in the percentage of anti-tumoral macrophages, especially in CR cohort

(Figures S3C‒S3E).

m6A reader YTHDF2 is highly expressed in pro-tumoral macrophages

Thenotableexpressionof YTHDF2, compared tootherproteins inm6A readers,was consistently observed inpro-tumoralmacrophages across

all cohorts (Figures 1A, 1B, and S3F). On the other hand, high expression levels of anti-tumoral macrophage markers were prominent in the

YTHDF2-low group, and quite the opposite situation occurred in terms of pro-tumoral macrophage markers in the YTHDF2-high group

(Figures 1C and 1D). This demonstrated the positive correlation between YTHDF2 expression and pro-tumoral macrophages.
4 iScience 27, 109902, June 21, 2024



A

19 15

11

2

3 6

1

CR PR

SD

STAT1
CR

NR1H3
ELK4
ELF1
JUN
SPI1
FOS
USF2
MAFB
XBP1
HDAC2
EGR1

PR SD

Scaled A
U

C
 value

0

0.2

0.4

0.6

0.8

1

0.00

0

0.05 0.10 0.15

5

10

15

Fr
eq

ue
nc

y

AUC

JUN

F

0.00

0

0.02 0.04 0.06
AUC

XBP1

Fr
eq

ue
nc

y

0.08 0.10

20

40

60

80

G

Fr
eq

ue
nc

y

AUC

SPI1

0.00

0

0.05 0.10 0.15 0.20

5

10

15

20

25

H

0.00
0

0.05 0.10 0.15
AUC

Fr
eq

ue
nc

y

20

40

60

80

100

USF2
I

B

Oncogene Induced Senescence
Downregulation of SMAD2/3:SMAD4 transcriptional activity

Budding and maturation of HIV virion
Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants

Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer
Constitutive Signaling by NOTCH1 PEST Domain Mutants

Signaling by NOTCH1 in Cancer
Signaling by NOTCH1 PEST Domain Mutants in Cancer

Downregulation of TGF−beta receptor signaling
NOTCH3 Intracellular Domain Regulates Transcription

Signaling by TGF−beta Receptor Complex
Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer

Loss of Function of FBXW7 in Cancer and NOTCH1 Signaling
FBXW7 Mutants and NOTCH1 in Cancer

Signaling by NOTCH3
NOTCH1 Intracellular Domain Regulates Transcription

Signaling by NTRKs
Signaling by NTRK1 (TRKA)

Nuclear Events (kinase and transcription factor activation)
NGF−stimulated transcription

0 2 4 6 8
Count

0.0020

0.0015

0.0010

0.0005

p.adjust

Signaling by NOTCH1 PEST Domain Mutants in Cancer
Translation of Structural Proteins

Signaling by Non−Receptor Tyrosine Kinases
Signaling by PTK6

Signaling by NOTCH
NOTCH1 Intracellular Domain Regulates Transcription

Regulation of Insulin−like Growth Factor (IGF) transportand uptake by Insulin−like Growth Factor Binding Proteins(IGFBPs)

Oxidative Stress Induced Senescence
FLT3 Signaling

Post−translational protein phosphorylation
Maturation of spike protein

Plasma lipoprotein clearance
Signaling by Nuclear Receptors

Diseases associated with the TLR signaling cascade
Diseases of Immune System

Notch−HLH transcription pathway
Metabolism of porphyrins

N−glycan antennae elongation in the medial/trans−Golgi
NR1H2 and NR1H3−mediated signaling

NR1H3 & NR1H2 regulate gene expression linked to cholesteroltransport and efflux

0 1 2 3 4 5
Count

0.02

0.01

p.adjust

C

RHOU GTPase cycle
RUNX1 interacts with co−factors whose precise effect onRUNX1 targets is not known

Transcriptional regulation by the AP−2 (TFAP2) family oftranscription factors
Interactions of Vpr with host cellular proteins

Metabolic disorders of biological oxidation enzymes
Vpr−mediated nuclear import of PICs

Constitutive Signaling by AKT1 E17K in Cancer
Formation of Senescence−Associated Heterochromatin Foci(SAHF)

Synthesis of Prostaglandins (PG) and Thromboxanes (TX)
Early Phase of HIV Life Cycle

Eicosanoids
Negative regulation of activity of TFAP2 (AP−2) familytranscription factors

Synthesis of pyrophosphates in the cytosol
AKT phosphorylates targets in the nucleus

Integration of provirus
Inactivation of CDC42 and RAC1

2−LTR circle formation
APOBEC3G mediated resistance to HIV−1 infection

Autointegration results in viral DNA circles
Integration of viral DNA into host genomic DNA

0.00 0.25 0.50 0.75 1.00
Count

0.04

0.03

0.02

0.01

p.adjust

D E

TNF receptor superfamily (TNFSF) members mediatingnon−canonical NF−kB pathway
MECP2 regulates neuronal receptors and channels

Epigenetic regulation of gene expression
Death Receptor Signalling

Synthesis of PE
Caspase−mediated cleavage of cytoskeletal proteins

SARS−CoV−2 modulates autophagy
STAT3 nuclear events downstream of ALK signaling

RNA Polymerase I Transcription
RNA Polymerase I Promoter Clearance

Negative epigenetic regulation of rRNA expression
NoRC negatively regulates rRNA expression

p75 NTR receptor−mediated signalling
Mitochondrial translation

p75NTR negatively regulates cell cycle via SC1
Methionine salvage pathway

Mitochondrial translation termination
RNA Polymerase I Transcription Initiation

Defective ALG3 causes CDG−1d
Inhibition of PKR

0.0 0.5 1.0 1.5 2.0
Count

0.03

0.02

0.01

p.adjust

ll
OPEN ACCESS

iScience 27, 109902, June 21, 2024 5

iScience
Article



Figure 3. Identification of SPI1 TFs Regulating YTHDF2-High Macrophages in CR, PR, and SD cohorts, respectively

(A) (left) Venn diagram showing the shared TFs for YTHDF2-high macrophages of the 3 indicated cohorts of comparisons and (right) heatmap showing scaled

AUC value of the TFs shared by 2 or more indicated cohorts.

(B‒E) GSEA (hypeR) based on REACTOME for genes in macrophages regulated by the specific TF EGR1 (B), TFNR1H3 (C), TFMAFB (D), and TF HDAC2 (E). Red

indicates immune-suppressive and tumor-promoting signaling pathway.

(F‒I) AUC histograms of some specific TF JUN (F), TF XBP1 (G), TF SPI1 (H), and TF USF2 (I) for YTHDF2-high macrophages (red line indicates threshold).
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YTHDF2 positively correlates with pro-tumoral and immuno-suppressive signal transduction between macrophages and

other immune cells

By performing a correlation analysis on the association of YTHDF2-high/YTHDF2-low macrophages of all the conditions with immune pop-

ulations, we found the significantly correlated populations are NK cells, CD4+ T cells and CD8+ T cells (Figure 2A). We first examined how

YTHDF2 levels influenced the interactions between macrophages and natural killer (NK) cells in all three cohorts. NK cells consisted of cyto-

toxic (NKcyto) and restingNK cells (NKrest), distinguished by their alternative functions.39,40 Similarly, CD8+ T cells consisted of effector T cells

(Tem, highly expressing effector and cytotoxic markers) and exhaustion-like T cells (Tex, highly expressing immune-checkpoint markers).37

The results showed that lower expression of macrophage YTHDF2 was associated with stronger immune-activating interactions with NK cells

and CD8+ T cells. Multiple antigen-presentation signals were involved in these interactions, such as signals derived frommajor histocompat-

ibility complex (MHC) class I molecules, including human leukocyte antigen (HLA)-E, HLA-A, HLA-B, and HLA-C, which serve as ligands for

CD8A and CD8B receptors (Figures 2B–2G, 2K, and 2L).41,42

Next, we performed analogous comparisons betweenCD4+ T cells and YTHDF2-high/YTHDF2-lowmacrophages. The results showed that

multiple immune-activating signals were enriched in YTHDF2-low macrophages, including signals derived from MHC class II molecules,

including HLA-DMA, HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, and HLA-

DRB5, which serve as ligands for CD4 receptor (Figures 2H–2J, and 2M).43,44
Identification of SPI1 transcription factors regulating YTHDF2-high macrophages

A total of 199 transcription factors (TFs), 203 TFs, and 182 TFs in charge of macrophage infiltration were identified in CR, PR, and SD cohorts,

respectively. After scaling the area under curve (AUC) values and obtained binary AUCmatrix of these TFs, we identified 25 TFs, 24 TFs, and 21

TFs of CR/PR/SD cohort in YTHDF2-high group macrophages (Figures 3A and S4–S6). A total of 12 TFs were shared by two or more cohorts,

including STAT1, NR1H3, ELK4, ELF1, JUN, SPI1, FOS, USF2, MAFB, XBP1, HDAC2, and EGR1, wherein the TF SPI1 was shared by all three

cohorts and regulated a largest number of genes (279 genes in CR cohort, 203 genes in PR cohort, and 96 genes in SD cohort) (Figures 3A and

S4–S6). As a conclusion, it is likely that SPI1 has unique significance in the generation of YTHDF2-high macrophages.

The transcriptional spectra regulated by the twelve TFswere highly overlapped.We used REACTOME to analyze their scopes of regulation

in terms of cellular metabolism, immunity and macrophages. It could be seen that EGR1 participated in tissue injury, immune response,

fibrosis and macrophage migration inhibition via FBXW7 and NOTCH1 (Figure 3B).45,46 NR1H3 was key to lipid homeostasis, anti-inflamma-

tory and pro-tumoral response inmacrophages via NOTCH1 as well (Figure 3C).46,47MAFBworked throughAKT phosphorylation to influence

monocyte proliferation and its differentiation to macrophages (Figure 3D).48,49 HDAC2 broadly involved in multiple transcriptional modula-

tions such as PKR inhibition, NF-kB signaling and mitochondrial translation termination (Figure 3E).50–53 SPI1 committed macrophage matu-

ration and reprogramming by ROBO signaling pathway (Figure S7A).54–56 XBP1 favored the synthesis and secretion of cholesterol to cause

immunosuppression, as well as regulating pro-tumoral macrophages signaled by WNT in cancer (Figure S7B).57–59 The rest of the TFs also

presented similar patterns (Figures S7C‒S7H). Despitemost of the identified TFs had been reported to involve in macrophage differentiation

or polarization, their specific roles in YTHDF2 gene transcription had yet been well explored.

The AUC activity score analyses verified significant involvements of the factors in the YTHDF2-highmacrophages (the threshold lines high-

light cells in which TFs have the highest activity scores) (Figures 3F–3I). Overall, the above results showed that these TFsmay play a critical role

in the transcription of YTHDF2 in intra-tumoral macrophages of TNBC.
Ythdf2 expression associates with pro-tumoral phenotype polarization in the mice bone marrow-derived macrophages

To verify the effect of YTHDF2 on macrophage polarization, we designed three siRNA sequences to suppress Ythdf2 expression in the mice

bonemarrow-derivedmacrophages (BMDM) (Table S1). As shown in Figure S8, siRNA treatment significantly hindered Ythdf2 gene transcrip-

tion. Especially, siRNAYthdf2-2 had the highest knocking-out rate and was used for the following experiment. We then assessed the expres-

sions of anti-tumoral/pro-tumoral phenotype marker genes in BMDMs after the excision of Ythdf2 based on this ex vivo macrophage polar-

ization model. Ythdf2-silenced macrophages were subjected to LPS or IL-4 treatment for 12 h to induce macrophage polarization. Flow

cytometry was applied to confirm the establishment of pro-tumoral/anti-tumoral macrophage (Figure S9). Quantitative PCR (qPCR)

(Table S2) analyses were used to validate the transcriptions of anti-tumoral/pro-tumoral phenotype marker genes by measuring the levels

of mRNAs. Notably, the cellular expressions of anti-tumoral markers such as Il1b, Il6, and Tnfa in Ythdf2-silenced macrophages surpassed

those in the control group (Figure 4A); quite the opposite circumstances were seen regarding the pro-tumoral markers, including Arg1,

Il10, and Ppapg (Figure 4B). The results of flow cytometry showed that the percentages of Cd80+ or Cd86+ cells were higher in siRNAYthdf2

group than in control group (Figures 4C and 4D), whereas the percentage of Cd206+ cells were higher in control group than in siRNAYthdf2
6 iScience 27, 109902, June 21, 2024
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Figure 4. Ythdf2 expression positively correlates with the expressions of pro-tumoral markers in BMDMs

(A) BMDMs were treated with 1 mg/mL LPS for 12 h to generate anti-tumoral macrophages. Expressions of Il6, Il1b, and Tnf a in anti-tumoral BMDMs with or

without siRNAYthdf2 treatment (two-sided t-test, ****p < 0.0001).
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Figure 4. Continued

(B) BMDMs were treated with 20 ng/mL murine IL-4 for 12 h to generate pro-tumoral macrophages. Expression of Il10, Ppapg and Arg1 in pro-tumoral BMDMs

with or without siRNAYthdf2 treatment (two-sided t-test, **p < 0.01).

(C‒E) Representative plots and percentages of Cd80+ (C) or Cd86+ (D) or Cd206+ (E) BMDMs from control and siRNAYthdf2 group after LPS (C, D) or IL-4

(E) treatment (n = 3, two-tailed t-test, *p < 0.05, **p < 0.01).
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group (Figure 4E). From another perspective, the fact that the knocking out of Ythdf2 promotes expression of anti-tumoral phenotypemarker

genes suggested a close connection between this protein and the differentiation of pro-tumoral macrophages.

YTHDF2 associated with tumor growth signaling and reduced anti-tumoral activity in macrophages

Lastly, we analyzed the mutual signaling between macrophages and tumor cells. Compared with YTHDF2-low macrophages, YTHDF2-high

macrophages exhibited pro-tumoral characteristics with multiple malignancy-promoting signals involved, such as RARRES2, MDK-SDC4/

SDC2, CX3CL1-CX3CR1, COL4A5, COL4A2, COL4A1, C3AR1, TNFRSF1A, LILRB1, CCL5, ITGAV, SDC4, CD36, CD47, NRP1, and NRP2

(Figures 5A–5C).60–71 In particular, some prominent pro-tumoral molecules31 including MSR1, CCL18, STAB1, CD163L1, MERTK, AXL,

GPNMB, and CHI3L1 were highly expressed by YTHDF2-high macrophages while some prominent anti-tumoral ones31 including IL1B,

CCL2, CCL3, CCL4, TNF, CXCL2, and SOCS3 were highly expressed by YTHDF2-lowmacrophages (Figure 5D). In summary, our observations

demonstrate the pro-tumoral tendency of YTHDF2-high macrophages.

We also testified the interaction between macrophages and cancer cells in vivo by using siRNAYthdf2 to silence the gene expression. The

results showed that knocking-out of Ythdf2 in BMDMs affect macrophage phagocytosis and tumor cell apoptosis, as the phagocytosis by

macrophages and apoptosis rates of EMT6 cells were higher in the siRNAYthdf2 group than that in the control group (Figures 5E and 5F).

The mean fluorescence intensity (MFI) of carboxyfluorescein succinimidyl ester (CFSE) decreases as cells proliferate. The MFI of CFSE+

EMT6 cells in the siRNAYthdf2 group was higher than that in the control group after co-incubation for respectively 12 h and 24 h, indicating

lower proliferation rates of EMT6 cells in the siRNAYthdf2 group (Figure 5G). It is hereby concluded that the silencing of YTHDF2mostly reduces

the pro-tumoral signaling while enhancing the anti-tumoral activities conducted by macrophages.

YTHDF2 predicts the PFS of patients with TNBC in TCGA dataset

By subjecting 142 TNBCpatients from the TCGAdataset to survival analyses (Figure 6A), we found that the YTHDF2 geneset negatively corre-

lated with the progression-free survival (PFS) of the whole cohort (Figure 6B). Other demographics, such as the ageR40 years old (Figure 6C),

age <65 years old (Figure 6D), tumor T1/2/3 (Figure 6E), lymph nodemetastasis (Figure 6F), no distantmetastasis (Figure 6G), and Stage I/II/III

(Figure 6H) subgroups also presented similar trends.

DISCUSSION

The understanding of the triggering mechanisms behind pro-tumoral polarization of macrophages by YTHDF2 would enable us to develop

new therapeutic strategies for TNBC patients by enhancing tumor-suppressive roles of macrophages. In this study, with the implementation

of single-cell sequencing, we demonstrated that YTHDF2 favored the expressions of pro-tumoralmacrophagemarkers and vice versa in terms

of anti-tumoral macrophage markers in both chemo-responsive and chemo-resistant patients with TNBC. In addition, ex vivo Ythdf2 knock-

ing-out experiments and qPCR outcomes indicated that the deprivation of Ythdf2 expression in the BMDMs exhibited significant preference

for anti-tumoral phenotype polarization of macrophages. We also found that YTHDF2-high macrophages produce an indirect pro-tumoral

immunity via eliciting weaker immune-activating effects on NK/CD8+ T/CD4+ T cells (signals derived from MHC class I molecules, including

HLA-E, HLA-A, HLA-B, and HLA-C, and signals derived fromMHC class II molecules, including HLA-DMA, HLA-DMB, HLA-DOA, HLA-DPA1,

HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5) and simultaneously a direct pro-tumoral immunity via

eliciting resounding tumor-promotive effects on tumor cells (signals such as RARRES2, MDK-SDC4/SDC2, CX3CL1-CX3CR1, COL4A5,

COL4A2, COL4A1, C3AR1, TNFRSF1A, LILRB1, CCL5, ITGAV, SDC4, CD36, CD47, NRP1, and NRP2). The proliferation and metastasis of

TNBC are thus likely to be substantially regulated by these interactions.

Our analyses also unraveled a transcriptional regulating network for macrophages in TNBC and discovered some key TFs inside YTHDF2-

highmacrophages. A total of 12 TFswere sharedby twoormore cohorts, including STAT1,NR1H3,ELK4,ELF1, JUN, FOS,USF2,MAFB,XBP1,

HDAC2, andEGR1.Especially, theTFSPI1was common in all three cohorts (CR/PR/SD) and regulated the largest numberof genes.Annotation

analyses revealed them contributing to the infiltration, status and functionality maintenance of pro-tumoral macrophage. These results indi-

cated that the YTHDF2-high signatures we established capture common patterns of intra-tumoral macrophage transcriptional heterogeneity

across TNBC. This work reveals a unique resource providing a comprehensive single-cell transcriptome atlas of the macrophage of TNBC,

laying a new foundation for the development of precision therapies in TNBC, such as transcription factor inhibitors or conjugated strategies.

Our results from the survival analyses of TNBC patients from TCGA dataset are consistent with the conclusions of previous studies that high

levels of YTHDF2 reflect poor prognosis in cancer.72,73 The finding that the inhibition of YTHDF2 generally evokes an anti-tumoral response also

matches with other studies.26–28 No study regarding the clinical safety and efficacy of YTHDF2 inhibitors had been conducted yet, owing to the

contradictoryoutcomes itbrings (bothbeneficial anddetrimental).29This is likelydue to thesharedbindingsitesofYTHDF2ondifferentgenes; its

roles in other immune cells, like B cells, are to be determined.28,30 Therefore, the possibility has to be taken into consideration that YTHDF2 in-

hibitorsmay display alternative overall effects in different cancer types andpatients. Further investigations are essential for verification in TNBC.
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Figure 5. YTHDF2 associated with tumor growth signaling and treatment with siRNAYthdf2 promotes the anti-tumoral activities conducted by

macrophages

(A and B) Expression of receptor-ligand pairs that can mediate interactions between YTHDF2-high/YTHDF2-low macrophage clusters and tumor cell clusters in

CR cohort (A: ligand from tumor cells and receptor on macrophages; B: ligand from macrophages and receptor on tumor cells.). Dot color represents

communication probabilities and dot size reflects computed p values (one-sided permutation test) for interactions that vary between YTHDF2-high and

YTHDF2-low samples; empty space indicates no difference between two clusters, red boxes indicate increased tumor-promotive interactions existing in

YTHDF2-high macrophage.

(C) Violin plot showed the normalized scRNA-seq expression distribution of tumor-promotive ligand-receptor pairs, compared across tumor cells and YTHDF2-

high/YTHDF2-low macrophages of CR cohort.

(D) Dot plot representing the relative average expression of a selected subset of pro-tumoral/anti-tumoral marker genes (Y axis) across YTHDF2-high and

YTHDF2-low clusters (X axis). The anti-tumoral/pro-tumoral marker genes in each cluster were identified by log fold change compared with the rest. As

indicated on the legend, dot size denotes the percentage of cells in a cluster expressing each gene. Dot color represents the relative average expression levels.

(E) Cell apoptosis (right) and quantitative analysis of cell apoptosis (left) after siRNAYthdf2 treatments (two-sided t test, *p < 0.05).

(F) Macrophage phagocytosis (right) and quantitative analysis of macrophage phagocytosis (left) after siRNAYthdf2 treatments (two-sided t test, *p < 0.05,

**p < 0.01, ***p < 0.001).

(G) Quantitative analysis of MFI of CFSE+EMT6 cells after co-incubation for respectively 12 h (left) and 24 h (right) (two-sided t test, *p < 0.05, **p < 0.01).
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In conclusion, our results suggest that the m6A reader YTHDF2 is a decisive factor in the induction of pro-tumoral-phenotype polarization

in themacrophages of TNBC. A SPI1-centered transcriptional network systemically facilitates themaintenance of YTHDF2-highmacrophages

in status. The single-cell sequencing analyses revealed that YTHDF2-mediated pro-tumoral macrophages conferred weaker antigen-presen-

tation signals to other immune cells (signals derived from MHC class I molecules, including HLA-E, HLA-A, HLA-B, and HLA-C, and signals

derived from MHC class II molecules, including HLA-DMA, HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-

DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5) and malignancy-promoting signals (such as RARRES2, MDK-SDC4/SDC2, CX3CL1-CX3CR1,

COL4A5, COL4A2, COL4A1, C3AR1, TNFRSF1A, LILRB1, CCL5, ITGAV, SDC4, CD36, CD47, NRP1, and NRP2) to tumor cells. Some of the

TFs, such as STAT1, NR1H3, ELK4, ELF1, JUN, FOS, USF2, MAFB, XBP1, HDAC2, and EGR1, and especially SPI1, were common and deeply

involved in the regulation of those immune-suppressing interactions. YTHDF2 also corresponded to poor progression-free survival rates in

our analyses of the TNBC samples in TCGA dataset. Future experiments would ideally consist of larger-scaled samples, in vivomodels, phys-

iopathological investigation, documentation of the m6A status of the target polarization transcripts, and participants receiving immuno-

therapy. We sincerely hope that our findings could provide new insights to spark inspirational thoughts in the clinical applications of

YTHDF2 or relative transcription factor inhibitors.

Limitations of the study

This study emphasizes the roles of YTHDF2 in affecting pro-tumoral-phenotypemacrophage polarization and predicting prognosis in TNBC.

However, there were some limitations when reviewing the whole experiments. First, the patients who achieved CR were treated with doxo-

rubicin-based regimen, whereas the patients with PR or SD were treated with paclitaxel regimen. Even though research has shown that both

doxorubicin and paclitaxel could induce immunogenic death of tumor cell74,75 and correlate with macrophage activation,76,77 the alternative

anti-cancer mechanisms of these two drugs may render any conclusion regarding treatment response unpersuasive. Future trials will be

required to unify the regimen so to achieve convincing conclusions associated with response. Second, we did not test our observations in

in vivo models, nor were the outcomes of YTHDF2 inhibitors examined. Moreover, a larger scaled sample pool, if possible, would make

our conclusionsmore persuasive. The role of YTHDF2gene in the physiopathological process ofmacrophages has not been thoroughly inves-

tigated. The probability of other mechanisms, other than post-translational m6A modifications, being determinative to the pro-tumoral po-

larization of macrophages cannot be completely excluded. A comprehensive network taking all the transcriptional components into account

is necessary to verify such a statement. The role of YTHDF2 in anti-tumoral and pro-tumoral macrophages, and differentially expressed im-

mune signaling pathways in the two classes will be more convincing if those patients enrolled in this study were treated with immunotherapy.
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Figure 6. YTHDF2 predicts the PFS of patients with TNBC in TCGA dataset

(A) Number of samples in the whole cohort and different subgroups.

(B) Kaplan-Meier curves for PFS in all samples.

(C) Kaplan-Meier curves for PFS in age R40 years old subgroup.

(D) Kaplan-Meier curves for PFS in age <65 years old subgroup.

(E) Kaplan-Meier curves for PFS in tumor T1/2/3 subgroup.

(F) Kaplan-Meier curves for PFS in lymph node metastasis subgroup.

(G) Kaplan-Meier curves for PFS in negative distant metastasis subgroup.

(H) Kaplan-Meier curves for PFS in Stage I/II/III subgroup.
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Fixation/Permeablization Kit BDbiosciences, America Cat# 554714

siRNA against Ythdf2 Golden Transfer Technology, China Cat# R19425010

non-targeting siNC Genepharma, China Cat# A06001

Deposited data

Single cell RNA-seq data This paper GSE263995

Single cell RNA-seq data GEO GSE169246

Software and algorithms

R (v4.2.3) The R Foundation https://www.r-project.org

Seurat (v4.3.0.1, R package) Hao et al.78 https://satijalab.org/seurat/index.html

Slingshot (v2.6.0, R package) Street et al.79 Bioconductor
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact.

Materials availability
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Data and code availability

Rawdata andprocessed, de-identified scRNA-seqgene expression datasets generatedduring this study is deposited andpublically available

at the Gene Expression Omnibus (GEO) with the accession number GSE263995, as listed in the key resources table. This paper also analyzes

existing, publicly available data. The accession number for this dataset is listed in the key resources table.

This paper does not report original code. Any additional information required to reanalyze the data reported in this paper is available from

the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animal subjects

C57BL/6J female mice were purchased from BesTest Biotech Co.Ltd (Zhuhai, China) and raised at the Laboratory Animal Resource Center of

Sun Yat-sen University (Guangzhou, China). They were bred and maintained under pathogen-free conditions with free access to food and

water. Mice were ready at the age of 6–7 weeks. All experiments were meticulously conducted under the instruction from the Sun Yat-Sen

University Laboratory Animal Care and Use Committee.

Human subjects

Chemotherapy-naive and post-chemotherapy invasive breast cancer samples were obtained from two patients from Sun Yat-sen Memorial

Hospital. Patients were at an average age of 50.5 years (+/�6.36 years) and both female. Informed consents had been obtained from both

participants, and all related procedures were performed with the approval of the Internal Review and Ethics Boards of Sun Yat-sen Memorial

Hospital. The Approval Number was SYSKY-2023-1210-01.

METHOD DETAILS

Patients and sample collection

These analyseswere based on the single-cell RNA sequencing (scRNA-seq) performed in this study andpublicly available data (GSE169246).82

Two patients diagnosedwith TNBC (P01, cT2N1M0; P02, cT1N1M0) who received the cyclophosphamide (600mg/m2) plus doxorubicin (90mg/

m2) regimen (on Day 1 of every 21-day cycle) of chemotherapy were eligible for enrollment and they achieved CR. Collected breast tumor

specimens from pre/post-treatment biopsies were reserved in tissue storage solution and subjected to scRNA-seq in a timely manner.

The public available scRNA-seq data were referenced fromGSE169246.82 The dataset enrolled five patients with TNBC receiving the pacli-

taxel (90 mg/m2) regimen (on Days 1/8/15 of every 28-day cycle) of NAC. Two of them (GSEP020, cT2N2M0; GSEP022, cT2N2M1, 44.5G 14.85

years, both female) achieved PR, while the other three (GSEP018, cT2N2M0; GSEP023, cT2N2M0; GSEP025, cT2N1M0, 45.0 G 7.55 years, all

female) achieved SD after chemotherapy. The dataset also provided their pre/post-treatment scRNA-seq data.82

For patients from our study and GSE169246 dataset, the clinical efficacy of chemotherapy was evaluated based on the volume reduction

rate (VRR) of the original breast tumor at a time point of eight weeks status post chemotherapy: CR: VRR >90%; PR: 90% > VRR >30%; SD:

30% > VRR > �30%.

Cell culture and macrophage polarization

BMDMs were cultured in DMEM containing 10% fetal bovine serum (FBS, heat-inactivated) and penicillin-streptomycin antibiotics (both

50 mg/mL). Themediumwas incubated at 37�C and 5%CO2. The cells were then seeded into 6-well plates (13105/well) and treatedwith either

LPS (1 mg/mL) or murine IL-4 (20 ng/mL) for 12 h in order to generate anti-tumoral or pro-tumoral macrophages, respectively.

Ythdf2 small interfering RNA (siRNA) transfection

BMDMs (13105/well) were seeded into 6-well plates with 2 mL DMEM and cultured for 24 h at 37�C and 5% CO2. Cells with 70% or higher

confluencywere selected for transfection. In the experimental group, cells were transfectedwith 40 nM siRNAagainst Ythdf2, while the control

group received non-targeting siNC. This enabled the knockdown of Ythdf2 expression in the experimental group. A total of three siRNA

sequences (these sequences are shown in Table S1) targeting mouse Ythdf2 genes were prepared in this study.

Quantitative PCR (qPCR)

RNAswere isolated using the RNAQuick Purification kit and then reversely transcribed to cDNAusing a PrimeScript RT reagent kit with gDNA

Eraser following the manufacturer’s instructions. The levels of mRNA expression were analyzed using the SYBR Green PCR master mix and

detected by a LightCycler 480 thermal cycler (Roche, Basel, Switzerland). The sequences of all primers are displayed in Table S2.

Tumor cell suspension preparation and single-cell data mining

Biopsied tissues were immersed in tissue protection solution and kept on ice during transportation. In the lab, tissues were transferred to a

50mL centrifuge tube,washedwith 10mL1 xHBSS, and thenplacedon a culturedishwithoutHBSS.After removingany residual blood, tissues

were minced into small pieces and digested at 37�C for 30 min in a warm water bath. Digestive reagents consisted of 0.1% (1 mg/mL) colla-

genase, 0.1% (1 mg/mL) neural protease, 0.02% (0.2 mg/mL) DNase I, and 2.5 mL DMEM. The digestion process was terminated using
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complete DMEMmedium. Thenwe filtered the digestedmixture through a 100 mmsieve and centrifuged at 4�Cwith 350 g for 5min.We used

1 mL pre-cooled 1 x Red Blood Cell Removal Solution to carefully remove red blood cells. The suspension was filtered through a 40 mm sieve,

and the cell number was counted using a Bio-Rad TC20 cell counting machine. The suspension was then diluted with HBSS to achieve a

concentration of 700–1200 cells/mL. It subsequently underwent single-cell sequencing using 103Genomics within 30 min of preparation.

Single-cell sequencing data of PR and SD cohorts were referenced from the dataset GSE169246.82

Flow cytometry analysis

After adding the desired combination of fluorochrome-conjugated antibodies (Anti-tumoral marker flow dyes included BV421-anti-F4/80, PE-

Cy7-anti-Cd11b, FITC-anti-Cd80 and BV650-anti-Cd86; Pro-tumoral marker flow dyes included BV421-anti-F4/80, PE-Cy7-anti-Cd11b and

Alexa 647-anti-Cd206), the BMDMs to be tested were incubated on ice for 30 min in the dark. Thereafter, the BMDMs were subjected to

flow cytometry analysis. Data were analyzed with FlowJo Software.

MFI of CFSE+ EMT6 cell assay

EMT6 cells were labeled with CFSE cell proliferation dye according to the manufacturer’s instructions. Briefly, CFSE stocksolution was diluted

with PBS to a working solution of 0.2muM. Cells were resuspended in pre-warmed CFSE working solution and incubated at 37�C for 15min in

the incubator. Cells were pelleted by centrifugation, resuspended in pre-warmed (37�C) RPMlmediumand incubated at 37�C for 30min. Cells

were then pelleted and resuspended inmedium to a density of 43 105 cells/mL. BMDMs were pretreated with either siRNAYthdf2 or non-tar-

geting siRNA. Labeled EMT6 cells were added to the plate containing BMDMs at a cell ratio of 4:1. The EMT6-BMDMmixtures were cultured

in the CO2 incubator. Culture supernatant was collected after respectively 12 h and 24 h. Adherent EMT6 cells were harvested using 0.05%

Trypsin-EDTA solution and combined with the cultured supernatant. The collected EMT6 cell and BMDMmixtures was pelleted by centrifu-

gation, resuspended in PBS. Cells were analyzed immediately by flow cytometry. TheMFI of CFSE+ EMT6 cells was analyzed by flow cytometry

to reveal the proliferation rate of CFSE+ EMT6 cells.

Apoptosis assay

EMT6 cells were labeled with CFSE. Then, EMT6 cells (4 3 105) were added to the plate containing BMDMs at a cell ratio of 4:1. After incu-

bation for 12 h, apoptosis of EMT6 cells were assessed using the Annexin V-APC/7-AAD Apoptosis Detection Kit.

Phagocytosis assay

EMT6 cells were labeled with CFSE. Then, the labeled EMT6 cells (43 105) were added to the plate containing BMDMs at a cell ratio of 4:1.

After incubation for 24 h, the BMDMswere labeledwith BV605�F4/80+. Subsequently, the phagocytosis ofmacrophages was assessed based

on the percentages of dual-positive macrophages (CFSE+/BV605+) in the total macrophage population (BV605+) analyzed by flow cytometry.

Clustering analysis of tumor-infiltrating immune cells and data visualization

We fed the obtained UMI count matrix into Seurat (v4.3.0.1, R package)78 for further processing. We applied ’NormalizeData’ function with

default parameters to normalize the gene expression level in each single cell for all the three datasets. Next, we identified 2,000 highly variable

genes using the ’FindVariableFeatures’ functionwith ’vst’ method. We used the ’ScaleData’ function to scale and center gene expression

matrices. The first 15 principal components were selected to construct the shared nearest neighbor (SNN) graph with ’FindNeighbors’ func-

tion, and then clusters were determined using the Louvain algorithm. Cluster resolution was set as 0.5 based on the principle that each cell

cluster should express a unique group of genes. After clustering was completed, the ones with high variable mitochondrial contamination

genes (MT-[X] genes) and ribosomal contamination genes (RPL/RPS[X] genes) were discarded. We applied the uniformmanifold approxima-

tion and projection (UMAP) based on the SNN graph acquired above to visualize the single cell profile.

Annotation of cell clusters and differential expression analysis

We adopted the ’FindAllMarkers’ function of Seurat package with min.pct = 0.3 to identify differentially expressed genes in each cluster. If a

representativemarker gene of a particular immune cell type ranked on top of the list for a query cluster, we would accordingly assign themost

likely identity for this cluster.

Prediction of macrophages and monocytes

Given the similarities of transcriptomic profiles shared by macrophages and monocytes, the distinction of the two cell types based on the

solitary cell clustering will be challenging.We hereby utilized the expressions of macrophagemarker genes (C1QB,CXCL8, and SPP1) to bet-

ter identify macrophages.

The discrimination of anti-tumoral and pro-tumoral macrophages

We imported the obtained scRNA-seq data of macrophages into computational procedures. Using the ’FindVariableFeatures’ algorithm in

Seurat Package, over 2,000 highly variable genes were identified. Close attentions were paid on the anti-tumoral phenotype marker genes
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including IL1B,NFKB1, TNF, and pro-tumoral marker genes includingCD163,MRC1, APOE as the determinants to discriminate the two sub-

types of macrophages.
Single cell pseudotime analysis

We applied Slingshot (v2.6.0, R package)79 to identify the imputed pseudotime trajectory in tumor anti-tumoral and pro-tumoral macro-

phages. The UMAP matrix obtained from the above clustering analysis was fed into ’slingshot’ function.
Cell interaction analysis

We employed the annotated Seurat package to construct cell interaction networks. CellChat (v1.6.1, R package)80 was applied for inferring

and visualizing the intracellular communication based on the expressions of known ligand-receptor pairs. The expressionmatrix and cell types

were extracted. The interactions between different cell types were characterized by a ligand-receptor database. Subsets were created to

identify over-expressed genes and ligand-receptor pairs. The common probabilities of intercellular interactions were subsequently calcu-

lated. The evaluations of the communications between macrophages and all other immune cell categories in YTHDF2-low and YTHDF2-

high groups were firstly performed, followed by the scrutiny of significantly correlated cell types.
Transcription regulation network analysis

The expression matrix was used to calculate the correlative strength between TFs and genes. We adopted SCENIC (v1.3.1 R package)81 to

identify critical TFs for YTHDF2-low and YTHDF2-high macrophages. Information on motifs was obtained from gene databases. The levels of

gene expression determined their ranks, with the top 5% selected for AUC calculation. We scaled the AUC value by the expression levels of

YTHDF2. Activated TFs were identified based on the AUC value; higher ranks of genes indicate stronger activities of their corresponding TFs.
Survival analysis

The YTHDF2-related geneset was downloaded from the GENECARD dataset. Clinical and genomic data of patients with TNBC were refer-

enced from TCGA dataset. Based on the average expression value of each gene in the geneset, we classified the patients into two groups

(YTHDF2-high and YTHDF2-low groups) and examined their prognoses. The prognosis of each group of patients was examined by Kaplan-

Meier survival estimators, and the survival outcomes of the two groups were compared by log rank tests. The survival outcomes with signif-

icant difference were examined and we selected the value which yields the lowest log rank p value to be the best cutoff value of the two

groups.
QUANTIFICATION AND STATISTICAL ANALYSIS

Data shown represents the number of human CD45+ immune cells or macrophages derived from the number of indicated independent do-

nors, or independent BMDMpreparations for mouse in vitro studies. Pooled data was analyzed by SPSS 26.0 and Figures generated in Graph

Pad Prism. Two-sided t test was carried out on in vitro experiments to indicate significant differences between treatment groups or conditions

as indicated in Figures. For comparisons of the YTHDF2 or pro-tumoral/anti-tumoral marker gene expression levels between 2 groups,Moses

Extreme Reactions test was performed. * indicates comparisons p< 0.05 between two groups. ** indicates comparisons p< 0.01 between two

groups. *** indicates comparisons p < 0.001 between two groups.
ADDITIONAL RESOURCES

This work is a part of a clinical trial (clinical registry number ChiCTR2100041675, associated links https://www.chictr.org.cn/showproj.html?

proj=66604).
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