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Abstract  131 

Amphibians represent a diverse group of tetrapods, marked by deep divergence 132 

times between their three systematic orders and families. Studying amphibian 133 

biology through the genomics lens increases our understanding of the features of 134 

this animal class and that of other terrestrial vertebrates. The need for amphibian 135 

genomics resources is more urgent than ever due to the increasing threats to this 136 

group. Amphibians are one of the most imperiled taxonomic groups, with 137 

approximately 41% of species threatened with extinction due to habitat loss, 138 

changes in land use patterns, disease, climate change, and their synergistic effects. 139 

Amphibian genomics resources have provided a better understanding of ontogenetic 140 

diversity, tissue regeneration, diverse life history and reproductive modes, anti-141 

predator strategies, and resilience and adaptive responses. They also serve as 142 

critical models for understanding widespread genomic characteristics, including 143 

evolutionary genome expansions and contractions given they have the largest range 144 

in genome sizes of any animal taxon and multiple mechanisms of genetic sex 145 

determination. Despite these features, genome sequencing of amphibians has 146 

significantly lagged behind that of other vertebrates, primarily due to the challenges 147 
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of assembling their large, repeat-rich genomes and the relative lack of societal 148 

support. The advent of long-read sequencing technologies, along with computational 149 

techniques that enhance scaffolding capabilities and streamline computational 150 

workload is now enabling the ability to overcome some of these challenges. To 151 

promote and accelerate the production and use of amphibian genomics research 152 

through international coordination and collaboration, we launched the Amphibian 153 

Genomics Consortium (AGC) in early 2023. This burgeoning community already has 154 

more than 282 members from 41 countries (6 in Africa, 131 in the Americas, 27 in 155 

Asia, 29 in Australasia, and 89 in Europe). The AGC aims to leverage the diverse 156 

capabilities of its members to advance genomic resources for amphibians and bridge 157 

the implementation gap between biologists, bioinformaticians, and conservation 158 

practitioners. Here we evaluate the state of the field of amphibian genomics, 159 

highlight previous studies, present challenges to overcome, and outline how the AGC 160 

can enable amphibian genomics research to “leap” to the next level. 161 

Keywords  162 

Amphibians, Biodiversity conservation, Comparative genomics, Genomics, 163 

Lissamphibia, Metagenomics, Phylogenomics, Population genomics, Taxonomy, 164 

Transcriptomics. 165 

State of the field of amphibian genomics 166 

In 2010, the genome of the Western clawed frog (Xenopus tropicalis) was 167 

sequenced, marking the first genome assembly for Class Amphibia [1]. This species 168 

serves as a crucial laboratory model organism for cell biology, molecular genetics, 169 

and developmental biology [2]. The first amphibian genome assembly came years 170 

after the completion of the first genomes for other vertebrate groups: fishes in 2002 171 
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(Fugu rubripes; [3]), mammals in 2003 (Homo sapiens; [4]), birds in 2004 (Gallus 172 

gallus; [5]), and reptiles in 2007 (Anolis carolinensis; Anolis Genome Project 173 

https://www.broadinstitute.org/anolis/anolis-genome-project). Since then, the 174 

generation and annotation of amphibian reference genomes has dramatically lagged 175 

behind those of other vertebrates [6], even though amphibians represent nearly 22% 176 

of all tetrapods [7]. Nearly 15 years later, amphibians are still the tetrapod class with 177 

the lowest number of sequenced genomes (111 genomes of 8648 described 178 

amphibian species being the tetrapod class with the second lowest proportion after 179 

Reptiles [database records accessed on 1 March 2024], Fig. 1A and Supplementary 180 

File 1). This is likely attributable to the size of amphibian genomes, which are 181 

generally larger than the genomes of other terrestrial vertebrates (Fig. 1B and Fig. 182 

S1; see Supplementary Material for methodological information). Indeed, among all 183 

vertebrates, only the genomes of lungfish are larger (up to 130 Gb) than the largest 184 

amphibian genomes (up to ~120 Gb in Necturus lewisi) [8-10].  185 

 186 

To lower cost and enhance feasibility, early amphibian genome sequencing projects 187 

tended to select species with comparatively small genomes (Fig. 1B). This has 188 

resulted in the disproportionately fewer sequenced salamander genomes [11]. To 189 

date, the largest amphibian genome assemblies belong to three salamander 190 

species: Ambystoma mexicanum (27.3 Gb assembly; [12]), Pleurodeles waltl (20.3 191 

Gb; [13]), and Calotriton arnoldi (22.8 Gb; [14]). However, these only represent the 192 

lower end of the genome size range for this group, with the genomes of Necturus 193 

salamanders exceeding 100 Gb (Fig. 2) [10]. 194 

 195 
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In addition to their large sizes, amphibian genomes have also been challenging to 196 

assemble due to their extensive repeat content (up to 82% [15]). Amphibian 197 

transposable elements have expanded and become highly abundant in younger 198 

clades, posing challenges for the construction of contiguous genome assemblies 199 

[16]. These characteristics of amphibian genomes make sequencing and assembly 200 

both costly and technically challenging (e.g., repetitive regions can often lead to 201 

fragmented assemblies when using short-read sequencing). However, the advent of 202 

new sequencing approaches such as long-read sequencing (e.g., PacBio HiFi and 203 

Oxford Nanopore Duplex), Hi-C scaffolding, along with reduced sequencing costs 204 

have resolved many of these assembly challenges (e.g., Nanorana parkeri; [17]). 205 

 206 

Thus, the number of amphibian genome assemblies has increased rapidly in recent 207 

years, reaching 111 currently listed as reference genomes at scaffold level or higher 208 

in the National Center for Biotechnology Information (NCBI) genome database (52 209 

for Anura, 55 for Urodela, and four for Gymnophiona; NCBI genome database 210 

records accessed on 1 March 2024). Despite this rapid increase, the quality of 211 

available amphibian genomes varies significantly, only 38 are chromosome-level 212 

assemblies, and among these, only 16 are annotated. This indicates that the majority 213 

of available assemblies are incomplete or partial. For example, several recently 214 

published salamanders genomes of the genus Desmognathus have assembly sizes 215 

of ~1 Gb while their genome size estimates based on flow cytometry or image 216 

densitometry average 14 Gb [18, 19]. Furthermore, the gene content values for 217 

many of these incomplete genomes can be as low as 0.7% [15]. Besides the 218 

variation in quality, there are substantial taxonomic gaps in genome representation 219 

across Amphibia. Notably, 48 of the 77 amphibian families (62%) lack a 220 
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representative genome assembly in the NCBI genome database (Fig. 2B), indicating 221 

significant gaps in our understanding (see “The AGC’s genome sequencing targets” 222 

section and Table 1 for more information about these 48 families). 223 

 224 

Due to the difficulty of assembling genomes, most previous genomic research in 225 

amphibians has relied on alternative high-throughput sequencing methodologies, 226 

including RNA sequencing (RNA-seq), reduced representation or target-capture 227 

approaches, or metagenomic methods (Fig. 3 and Supplementary File 2). For 228 

example, RNA sequencing (RNA-Seq) techniques have been used to explore gene 229 

expression across more than 300 different amphibian species. Furthermore, a 230 

substantial number of de novo transcriptomes are available through the NCBI 231 

Transcriptome Shotgun Assemblies (TSA) database (79 total: 59 for Anura, 15 for 232 

Urodela, and 5 for Gymnophiona). Various reduced-representation (e.g., ddRADseq) 233 

and targeted-capture sequencing approaches have also been implemented in recent 234 

years to obtain genome-wide sequence information from more than 1,400 amphibian 235 

species. All this information—from whole genomes to gene transcript features—has 236 

advanced the understanding of amphibian biology and directly contributed to 237 

conservation efforts as described below. 238 

Advancing research and conservation through amphibian genomics 239 

Amphibians have many unique characteristics that make them subjects of interest to 240 

a wide variety of scientific disciplines, spanning from developmental biology and 241 

medical research to ecology and evolution. The rapid development of genomic tools 242 

is galvanizing the study of amphibian biology and uncovering important facets of 243 

their biology and conservation [20-22]. We highlight some examples here. 244 

 245 
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Embryogenesis, developmental and regenerative biology 246 

Amphibians have played a fundamental role in uncovering development principles 247 

[for a detailed review see 23]. Research on anurans has enabled the understanding 248 

of critical mechanisms underlying such as the breaking of egg asymmetry [24], axis 249 

establishment, and nerve transmission [25]. Notably, the availability of genome 250 

assemblies for Xenopus laevis and X. tropicalis has significantly advanced 251 

embryological and developmental biology. This advancement has enabled gene loss-252 

of-function research through the combination of transgenesis with RNA interference, 253 

gene editing, and enhanced morpholino design. This has facilitated the in-depth 254 

analysis of regulatory and non-coding genomic influences in developmental 255 

processes [26, 27]. Consequently, these studies have generated thousands of 256 

genomic and transcriptomic resources for these two species [28, 29].  257 

 258 

Yet, there is much more to uncover about amphibian development, especially given 259 

the numerous developmental modalities found across amphibian species, which 260 

likely demonstrates the highest diversity among vertebrates [30]. This includes direct 261 

development (egg to froglet; the first genome of a direct-developing amphibian, 262 

Eleutherodactylus coqui, was published in 2024 [31]), and phenotypic plasticity [32, 263 

33].  264 

 265 

Sexual development and determination are also diverse in amphibians [34], 266 

encompassing female and male heterogamety, unique microscopically recognizable 267 

sex chromosomes, and species with undifferentiated sex chromosomes. Sex-268 

determining genes across these systems are starting to be explored through high-269 

throughput sequencing [6, 35-38]. For instance, a Y-specific non-coding RNA 270 
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involved in male sex determination in Bufotes viridis was identified through the 271 

application of multiple omics techniques [38]. Strikingly, some salamanders in the 272 

genus Ambystoma exist as a single all-female, polyploid lineage that can incorporate 273 

new chromosome sets from up to five other sexual species [39]. Transcriptomes 274 

from these salamanders have shown that gene expression from their divergent 275 

genomes is balanced for some genes but biased for others [40]. Sexual development 276 

in amphibians can result in sexually dimorphic features such as nuptial spines, which 277 

have been explored using comparative genomics approaches in the frog 278 

Leptobrachium leishanense [41]. The increasing availability of amphibian genomes 279 

will enable a deeper understanding of the molecular mechanisms underlying such 280 

ontogenetic diversity. 281 

 282 

Metamorphosis sets many amphibian species apart from amniotes. Transcriptomics 283 

has revealed a remarkable turnover in gene expression between larval and adult 284 

stages of both frogs [42-45] and salamanders [46, 47]. This represents genomic 285 

uncoupling of these life history phases with major macroevolutionary implications 286 

[44, 48]. Amphibian omics approaches are rapidly increasing our understanding of 287 

the developmental process of metamorphosis, including the role of methylation in 288 

gene regulation [49]. Amphibians have also been found to respond to environmental 289 

perturbations by altering their behavior or phenotypes in various ways. These include 290 

changing developmental rate [32], hybridization with positive fitness effects [50], 291 

producing novel trophic morphologies [51], and kin detection to avoid cannibalizing 292 

relatives [52-54].  293 

 294 
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Due to their exceptional tissue repair and regenerative capacities [55, 56], 295 

amphibians are leading models for understanding the mechanisms of regeneration. 296 

This is particularly true for salamanders, which display the most extensive adult 297 

regenerative repertoire among vertebrates, including the ability to regenerate parts of 298 

their eyes, brain, heart, jaws, lungs, spinal cord, tail, and entire limbs [56]. Due to 299 

new genome assemblies for urodele species, Ambystoma mexicanum and the 300 

Pleurodeles waltl, regeneration can now be studied with transgenesis, advanced 301 

imaging, and genome editing. Intensive transcriptomic sequencing for these two 302 

salamander species has facilitated gene expression studies, including investigations 303 

into regeneration processes and characterization of other genomic features [57]. 304 

Additionally, a novel mechanism of telomere length maintenance and elongation has 305 

recently been described in P. waltl [58], potentially linking regenerative capability with 306 

longevity. Other amphibian species have also contributed to genomic research on 307 

regeneration. For example, databases compiled from gene expression resources of 308 

Notophthalmus viridescens have enabled comparative studies [59].  309 

 310 

Ecology and evolution 311 

Modern amphibians are the sister lineage of all amniotes, making them a valuable 312 

resource for studying species relationships and trait evolution. This is exemplified by 313 

studies that explore the rapid diversification of frogs [60], the evolution of vision [61], 314 

hybridogenesis [62-64], and the evolution of limblessness [65]. Amphibian 315 

phylogenomics has addressed many longstanding questions in amphibian evolution 316 

[66-69]. Comparative genomic analyses including amphibian groups have also 317 

revealed important gaps in our understanding of tetrapod molecular evolution such 318 

as chromosomal rearrangements and group-specific gene families that remain 319 
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unclassified to date [65, 70, 71 ]. In this section, we explore how genomics is being 320 

applied to understand the diverse ecological and evolutionary features unique to 321 

amphibians.  322 

 323 

Like mammals, birds, and reptiles [72-74], some amphibians have evolved the ability 324 

to live in high-elevation environments such as the Andes (up to 5400 m) [75, 76] and 325 

the Tibetan Plateau (4478 m) [17]. However, unlike other groups, amphibians lack 326 

fur, feathers, or scales to protect them from physiological stressors such as UV 327 

exposure. This vulnerability makes them an intriguing model for studying the effects 328 

of UV radiation, which is relevant not only to humans [17] but also to species 329 

impacted by climate change. Amphibians have evolved multiple mechanisms of 330 

resisting UV including increasing antioxidant efficiency and gene regulatory changes 331 

in defense pathways [17, 77]. There is also evidence from Tibetan anurans that 332 

genes that impact other high-elevation traits (e.g., hypoxia resistance, immunity, cold 333 

tolerance) have evolved convergently across distantly related families (e.g., 334 

Dicroglossidae, Bufonidae, Megophryidae) [78], and that intraspecific divergence in 335 

many of these genes correlates with elevation [79, 80]. Additional genomic 336 

signatures of elevation adaptations, including genes regulating resistance to cold, 337 

hypoxia, immunity, and reproduction, have been described in ranid species of 338 

western North America inhabiting elevations from the sea level to nearly 3000 m [81]. 339 

While we are beginning to understand the genetic mechanisms of high-elevation 340 

adaptation in some Asian and North American frogs, this has yet to be investigated in 341 

other high-elevation amphibians, including Andean anurans (e.g., Telmatobius culeus 342 

[82]) and high-elevation salamanders, such as Pseudoeurycea gadovii [83]).  343 

 344 
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The ability to produce toxins has evolved across all three amphibian orders, where it 345 

primarily serves as an anti-predation mechanism. The source of amphibian toxins 346 

varies: some species are capable of synthesizing poisonous compounds (e.g., 347 

bufonids, myobatrachids), whereas others sequester toxic substances from their diet 348 

(e.g., dendrobatids, mantellids) [84-87] or microbial symbionts (e.g., newts) [88]. 349 

Since dendrobatid frogs sequester their toxins from prey (e.g., mites and ants), they 350 

lack genes encoding these toxins [89, 90]. However, they require genes to facilitate 351 

the transport of these toxins to the skin. Recent genomic and proteomic research 352 

has identified candidate genes coding for proteins that may serve dual roles in toxin 353 

transport and resistance [91-93]. Comparative genomic research has identified 354 

specific substitutions that allow toxic amphibian species to effectively mitigate the 355 

effects of the sequestered toxins on their own tissues [94-96]. Skin transcriptomes 356 

have also proven to be a rich source for data mining and the identification of 357 

candidate toxins and antimicrobial peptides in various amphibians, including 358 

caecilians [97-101].  359 

 360 

Interactions between toxic amphibians and their predators have resulted in a 361 

fascinating variety of co-evolutionary arms races. These include well-characterized 362 

systems of toxicity resistance mechanisms in amphibian predators [102-106] and 363 

aposematism and mimicry in toxic species [107, 108]. Research on aposematism 364 

and mimicry has utilized whole genome, exome capture, and transcriptome 365 

sequencing to elucidate the genes underlying the vast diversity of color patterns 366 

across populations and species in dendrobatids [109-114]. These approaches have 367 

yielded a goldmine of information that can be used to understand the genes, gene 368 

networks, and biochemical pathways that underlie variation in coloration in other 369 
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amphibian groups including highly diverged aposematic taxa such as Australian 370 

myobatrachid frogs (e.g., Pseudophryne corroboree), Malagasy poison frogs 371 

(Mantellidae), caecilians (e.g., Schistometopum thomense), and salamanders (e.g., 372 

Salamandra salamandra). Indeed, these methods have already enabled the 373 

identification of genes and loci involved in coloration in the salamander S. 374 

salamandra bernardezi [115]. 375 

 376 

Despite the numerous advances made with amphibian omics in elucidating 377 

evolutionary and ecological mechanisms, fully unraveling their genetic basis requires 378 

generating a vast number of genomes due to the comparative nature of these fields. 379 

Some of the exciting research avenues in amphibians include parental care [116, 380 

117], gliding ability [118], lunglessness [119, 120], unusual defense mechanisms, 381 

such as the ability of some newts to pierce their ribs through toxin glands in their skin 382 

[121, 122], milk production or skin feeding in caecilians [123, 124], and spatial 383 

navigation [125]. 384 

 385 

Conservation 386 

Amphibians are the most endangered class of vertebrates with current estimates 387 

suggesting that more than 40% of species are threatened with extinction [126]. The 388 

threats amphibians are facing continue to increase [126], creating a clear need to 389 

develop innovative and effective methods to conserve them. Paradoxically, current 390 

rates of amphibian species description are exponential, and numerous candidate 391 

species are being flagged worldwide. This suggests that we are still far from 392 

overcoming the amphibian Linnean shortfall, especially in tropical regions [127, 128]. 393 

Hence, numbers of threatened species are likely underestimated, as undescribed 394 
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species cannot be assessed and are more likely to become extinct [129]. Further, the 395 

conservation status of many amphibians remains unknown, especially for tropical 396 

species [130] and for a number of soil-dwelling caecilians known only from a few 397 

specimens [131]. Generating genomic data is one method to address this challenge, 398 

as it can be used to estimate both evolutionary potential and extinction risk [132]. 399 

Genomes are also vital for understanding species boundaries and the geographic 400 

distribution of genetic diversity within species, and for identifying populations under 401 

higher risk due to anthropogenic pressures or climate change [20, 21, 133, 134]. 402 

These features make genomic resources invaluable for developing species 403 

conservation action plans [135].  404 

 405 

Amphibian conservation efforts should leverage population genetic theory and the 406 

burgeoning field of conservation genomics. This approach enables the quantification 407 

of both neutral and adaptive diversity across genomes, thereby facilitating the 408 

promotion of adaptive potential or genetic rescue through translocation programs 409 

[136-139]. Typically, these studies begin with the genomic characterization of 410 

populations across various environmental conditions, assessing population genetic 411 

health and disease risk [140, 141]. Omics resources are becoming increasingly 412 

important in species detection (e.g., via eDNA [142-144]). They can also support 413 

monitoring and surveillance efforts by identifying populations most at risk of declines 414 

due to potential genetic threats such as maladaptive alleles, genetic load, inbreeding 415 

and outbreeding depression, hybridization, and/or genetic incompatibility [136, 145]. 416 

Increased monitoring and maintenance of genomic diversity are key targets of many 417 

national and international recommendations such as the US Endangered Species 418 
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Act [146], the Kunming-Montreal Global Biodiversity Monitoring Framework [147], 419 

and the Amphibian Conservation Action Plan [135].  420 

 421 

A more specific application of amphibian genomics for conservation requires 422 

understanding the genetic basis of traits that impact fitness, such as disease 423 

resistance or climate change tolerance. This information can be used to promote 424 

adaptation using approaches like Targeted Genetic Intervention (TGI), which aims to 425 

increase the frequency of adaptive alleles with approaches such as selective 426 

breeding, genome editing, or targeted gene flow [148]. Considerable effort has been 427 

invested in understanding the genetic basis of resistance to the devastating 428 

amphibian disease chytridiomycosis, which has resulted in the identification of 429 

multiple candidate genes [149-151] that could be targeted to increase 430 

chytridiomycosis resistance with TGI. Additionally, the efficacy of TGI at increasing 431 

chytridiomycosis resistance has already been demonstrated in North American 432 

mountain yellow-legged frogs (Rana muscosa and R. sierrae) where translocation of 433 

resistant individuals increased recipient population persistence [152]. Despite the 434 

obvious appeal of using genetic intervention approaches for conservation, these 435 

methods should be evaluated in contained facilities whenever possible and 436 

accompanied by long-term monitoring to ensure their efficacy and rule out any 437 

unintended impacts [148, 153-155]. Although such conservation interventions require 438 

extensive resources, this may be the only effective method for restoring some 439 

species to the wild, especially in those threatened by intractable threats such as 440 

chytridiomycosis [156]. 441 
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Challenges for amphibian genomic research and ways forward 442 

A major challenge for amphibian omics research, which will be anchored by high-443 

quality reference genomes, is gaining access to starting material (e.g., tissue, blood). 444 

Common logistic challenges include: 1) obtaining research funding, 2) collaborating 445 

equitably with local or Indigenous communities on the development and execution of 446 

biodiversity genomics research, 3) obtaining collection and research permits from the 447 

state, 4) obtaining samples from difficult-to-access regions, and 5) obtaining high-448 

quality samples and maintaining quality during transport. 449 

 450 

With increasingly easy access to genomic data, researchers and industry need to be 451 

even more aware of the principles of fair and equitable access to genetic resources, 452 

as stipulated by Convention on Biological Diversity (CBD) and expanded upon by the 453 

Nagoya Protocol https://www.cbd.int/abs/default.shtml). Indigenous peoples and 454 

local communities (IPLC) are often custodians of genetic resources (physical 455 

material) sought by researchers, requiring that all parties enter into collaborative and 456 

equitable agreements on access and benefit-sharing (ABS) before embarking on a 457 

genomics project [157-161]. As a negative example from amphibians, Phyllomedusa 458 

bicolor skin secretions traditionally used by Amazonian indigenous peoples were 459 

patented by actors in the US, Japan, Russia and elsewhere, promoting the ‘legal’ but 460 

unfair appropriation of genetic resources and potentially the traditional knowledge 461 

itself from the Matses and other Indigenous tribes [162]. To promote better practices, 462 

researchers should budget the time and money required to engage in prior 463 

consultation as part of planning field work, and consult their National Focal Points on 464 

ABS. How the concept of ABS will or could be applied to the downstream use of the 465 

digital sequence information (DSI) generated has yet to be resolved (although there 466 
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are currently developments underway, https://www.cbd.int/dsi-gr) but must also be 467 

considered going forward [see for example 163]. Moreover, voucher specimens and 468 

duplicate tissue samples should be deposited in local museums or preferred partners 469 

of the local communities [164, 165].  470 

 471 

Amphibian fieldwork often involves overcoming numerous hurdles such as 472 

navigating socio-political conflicts and accessing remote field sites. These 473 

challenges may be exacerbated in developing economies or for researchers with 474 

limited access to high volume funding streams. In addition, inadequate infrastructure 475 

for accessing field sites, and the need to time of fieldwork to coincide with the often 476 

highly seasonal and cryptic activities of amphibians [166] can further complicate the 477 

task. Attention should also be directed towards overcoming inequities that may pose 478 

additional obstacles to fieldwork for underrepresented groups [161].  479 

   480 

Once amphibians are collected, selecting the tissue sample to obtain sufficient high-481 

molecular-weight DNA (HMW, reaching 100 Kb or ultra HMW, reaching 1 Mb) can be 482 

challenging due to the small body sizes of most amphibians (e.g., < 30 g). For 483 

generating reference genomes, blood is one of the most recommended sample 484 

types for amphibian genomics [167]. However, the blood volume of most amphibians 485 

is too small for non-lethal collection [168]. This presents a significant challenge 486 

because obtaining the required quantity of HMW DNA often necessitates lethal 487 

sampling, which may not always be legally permitted or ethically advisable, especially 488 

for threatened species or those in captive collections [169]. Non-lethal sampling 489 

approaches, such as buccal swabs or toe or tail clips, are increasingly viable for 490 

various genomic applications, including low-coverage whole genome sequencing or 491 
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targeted sequencing approaches [170, 171]. Another alternative is to use tadpoles 492 

instead of adults as was done to generate the genome of Taudactylus pleione [172]. 493 

 494 

Most tissue sampling protocols for reference genomes or transcriptome sequencing 495 

recommend harvesting samples from fresh tissue, followed immediately by flash 496 

freezing in liquid nitrogen (LN2) and storing at -80°C until extraction 497 

(https://www.vertebrategenomelab.org/resources/guidelines). Maintaining ultracold 498 

storage and the cold chain during transport from remote collection sites can be 499 

challenging. After being adequately charged with LN2, dry vapor shippers can keep 500 

samples ultra-cold for a week or more in the field. While LN2 is the gold standard, 501 

other preservatives like 95% EtOH, 20-25% DMSO in EDTA may adequately 502 

preserve DNA for long-read sequencing, although efficacy may vary depending on 503 

the tissue type [167, 173]. Other options include lysis buffers or commercial products 504 

such as Zymo DNA/RNA shield (Zymo Research, USA). However, it remains 505 

essential to test the impact of these preservatives on sequencing outcomes 506 

beforehand, specifically for the given taxon and tissue type, since preservation 507 

methods may inhibit downstream approaches, such as Hi-C library construction [167, 508 

174]. 509 

  510 

While these challenges apply to any researcher or organization, they become 511 

particularly challenging when the sequencing work occurs outside the species’ 512 

country of origin. This difficulty arises not only because genetic material is prone to 513 

degradation but also because of regulations on moving biological samples across 514 

political borders [175, 176]. The global genomics community should strive to ensure 515 

that sequencing projects occur within the country of origin of the samples and 516 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.27.601086doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601086
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

discourage ‘parachute’ or ‘helicopter science’ [177, 178]. Oxford Nanopore 517 

Technology (ONT) may be promising solution, providing comparatively affordable 518 

access to equipment and reagents for ultra-long read sequencing that can even be 519 

done directly in the field [179]. However, working with non-model organisms requires 520 

prior optimization, and the startup costs for this infrastructure remain prohibitive for 521 

many scientists from low-income countries. Moving forward, the goal should be to 522 

apply these technologies in collaboration with local researchers. For example, 523 

programs like the In Situ Laboratories Initiative (https://insitulabs.org/hubs/) aim to 524 

provide affordable access to high-tech laboratories in remote biodiverse areas). 525 

Such collaboration should proceed from finding shared interests, developing ideas, 526 

realizing the shared benefits from research outputs, and focusing on capacity-527 

building efforts [180]. 528 

 529 

Working with museum specimens [the burgeoning field of “museomics”; 181] is 530 

another promising avenue of research allowing to access to past amphibian 531 

biodiversity. However, there are several additional challenges associated with DNA 532 

degradation, preservation methods, and contamination that need to be overcome 533 

[182-184]. This is particularly relevant for wet-preserved amphibian specimens, as 534 

retrieving DNA can be challenging due to the often unknown fixation and 535 

preservation methods that can alter nucleotide integrity. Methodological advances in 536 

laboratory protocols [e.g., 185, 186, 187] and the development of sequencing 537 

strategies, such as ‘Barcode Fishing’ [188, 189], have made significant progress in 538 

addressing these challenges, including the ability to sequence extinct species [190, 539 

191]. In the current era, even limited sequences from taxonomic type specimens are 540 

of unparalleled importance, especially for species identification using genetic data, 541 
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by those applying methods like eDNA and metagenomics [192]. Museomics has also 542 

revolutionized amphibian taxonomy by integrating DNA from name-bearing types, 543 

overcoming impediments like uncertainty in taxonomic names, species complexes, 544 

and cryptic species [188, 189, 193, 194]. 545 

 546 

As mentioned earlier, the large genome sizes of many amphibians affect 547 

sequencing, computing, and storage costs, as well as computational requirements 548 

for data analysis [6, 195]. However, the greater challenges lie in the methodological 549 

and theoretical limitations of assembling large genomes. Additionally, access to 550 

cluster computing for genome assembly remains limited for many scientists, 551 

particularly those from low-income countries. Genome size in amphibians is 552 

correlated with increased intron lengths and repeat content [196], posing challenges 553 

for assembly, especially when using with short-read sequencing technologies or 554 

during contig joining processes. Regions misassembled due to low complexity have 555 

previously resulted in a significant loss of sequence information (e.g., by as much as 556 

16%) through the collapsing of repetitive sequences [197]. Repetitive regions can 557 

also result in the formation of problematic chimeras during assembly, where two 558 

distant contigs are erroneously joined due to a shared repeat sequence [198]. These 559 

problems are exacerbated when repeats are longer than sequencing reads. Further 560 

challenges are posed by polyploidy [199], which has evolved repeatedly in 561 

amphibians [200, 201]. This can make developing haplotype-specific assemblies 562 

challenging and may require dramatically increased sequencing and computational 563 

efforts [199, 202]. Thus, the development of long-read and 3C technology (i.e., Hi-C 564 

scaffolding) is especially important for assembling amphibian genomes [198, 203]. 565 

Recent technological advances, including long-read techniques such as PacBio HiFi, 566 
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ONT, as well as scaffolding methods such as Hi-C and optical mapping, now make it 567 

feasible and affordable to generate reference genomes for most frogs, caecilians, 568 

and increasingly for salamanders [203].  569 

 570 

Gene and repeat annotation resources in amphibians are also under-developed. 571 

Although this may not pose a significant issue for well-conserved genes, where 572 

researchers can retrieve annotation information from orthologous regions using 573 

existing databases like UniProt [204], it often results in missed or poorly annotated 574 

genes, particularly for highly polymorphic genes or genes lacking representation in 575 

model taxa. Hence, the ability to study features such as gene evolution [67], repeats 576 

[15, 196], immune genes [205], and genetic sex determination [206] is still limited 577 

and requires caution to prevent overinterpretation.  578 

 579 

Although key tools for understanding functional genomics exist, tools and protocols 580 

for gene editing, transgenesis, in vitro fertilization, are rare or non-existent for most 581 

amphibians [148, 207], with the exception of some model species (e.g., Xenopus 582 

laevis, X. tropicalis, and Ambystoma mexicanum) [56, 208-211]. Immortal cell lines 583 

have been successfully generated for some amphibians [212] and protocols have 584 

been established to facilitate the initiation of spontaneously arising cell lines for a 585 

subset of anurans [213]. However, establishing cell cultures for most species 586 

requires extensive problem-solving and expertise [212].  587 

Aims, priorities, and structure of the Amphibian Genomics Consortium (AGC) 588 

The AGC was launched in March 2023 to address the aforementioned knowledge 589 

gaps through technological advances and international cooperation. The mission of 590 

the AGC is to increase collaboration and communication among amphibian 591 
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researchers internationally and across scientific disciplines, to increase amphibian 592 

genomics resources, and to apply genomic data and functional resources to help 593 

bridge the implementation gaps between genome biologists, other scientists and 594 

conservation practitioners. The leadership structure of the AGC consists of a director, 595 

two co-directors, and a 10-member board. The board was carefully chosen to ensure 596 

gender equality, diversity of scientific disciplines, career stages, and representation 597 

from various geographic regions. 598 

 599 

Currently the AGC organizes monthly virtual meetings and a monthly virtual seminar 600 

series. They maintain a website (https://mvs.unimelb.edu.au/amphibian-genomics-601 

consortium), facilitate active discussion groups, and have hosted social events at 602 

several scientific conferences. Additionally, the AGC is preparing to host a full-day 603 

symposium titled “Beyond the reference: genomics for amphibian research and 604 

conservation” at the World Congress of Herpetology in August 2024 in Kuching, 605 

Malaysia.  606 

 607 

The first actions of the AGC include raising funds for genome sequencing, 608 

developing technical resources and best practices guidelines, improving amphibian 609 

genome annotation, supporting travel for students and early career researchers, and 610 

conducting virtual and in-person computational workshops. The AGC plans to secure 611 

funding to sequence high-priority amphibian species (see The AGC’s genome 612 

sequencing targets section and Table 1). Additionally, the AGC aims to facilitate 613 

amphibian sample collection for broader taxonomic consortia. The AGC is already 614 

affiliated with the Earth BioGenome Project (EBP) and AmphibiaWeb 615 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.27.601086doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601086
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

(https://amphibiaweb.org), reinforcing its commitment to advancing amphibian 616 

genomics and conservation efforts. 617 

 618 

AGC membership 619 

At the time of the submission of this work, the AGC had 282 members from 41 620 

countries (Fig. 4). Although the membership is geographically diverse, there remains 621 

some disparity across regions. Efforts will be intensified to attract members from 622 

underrepresented countries, particularly regions known for high amphibian diversity 623 

and/or endemism such as Central and South America, and Southeast Asia. We 624 

promote equity between members by providing additional support and opportunities 625 

to those from developing countries and underrepresented groups. This includes 626 

eliminating membership fees, scheduling online meetings at alternating times to 627 

accommodate global time zones, facilitating discussion groups on the cloud-based 628 

collaboration platform Discord, and translating AGC correspondence into multiple 629 

languages. Furthermore, we are also committed to fostering knowledge and skills 630 

transfer to all emerging scientists worldwide, and we actively encourage early career 631 

researchers to join the initiative and participate in governance.  632 

 633 

Current use and perception of genomics technologies by members of the AGC 634 

The AGC leadership designed a 23-question survey to investigate consortium 635 

members’ experiences in amphibian genomics (questions can be found in 636 

Supplementary Table S1). The survey was distributed using the Qualtrics XM 637 

platform and remained active from the 4th of March to the 27th of December 2023. 638 

We collected responses from a total of 133 AGC members from 32 countries with 639 

different expertise in sequencing approaches and bioinformatics techniques, who 640 
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primarily work on the ecology and evolution of anurans. Overall, respondents 641 

emphasized the urgency of filling knowledge gaps in amphibian genomics due to the 642 

current conservation crisis, pinpointing the necessity to expand the number of high-643 

quality chromosome-level amphibian genomes. Additionally, there was strong 644 

agreement among survey respondents that the generation of new genomics 645 

resources needs to be coupled with the improvement and accessibility of annotation 646 

processes. A better development of sharing computational expertise among 647 

members and resources internationally was also underscored. More than half of the 648 

survey participants said they use sequencing technologies for their studies (70 of the 649 

133). About half of the respondents said their main work activities were “genomics 650 

lab work” or “computational analyses” (48% and 57%, respectively). 651 

 652 

To evaluate consortium members’ experience in amphibian genomics, we applied a 653 

principal components analysis to the quantitative responses. Bioinformatic 654 

competencies and perceived challenges of the AGC respondents were grouped in 655 

two dimensions, respectively (Fig. 5A and Fig. S2; see Supplementary Material for 656 

methodological information). To explain the variation of these two new variables, we 657 

used the scientific expertise of AGC members, the funding success, and two 658 

variables related to the country of main affiliation of the respondent: the number of 659 

amphibian species and gross domestic expenditure on R&D (GERD) per capita, as 660 

explanatory variables. Amphibian genomics expertise and identified challenges 661 

varied substantially among respondents. The number of amphibian species and 662 

GERD per capita of the respondent’s main affiliation country did not capture this 663 

variation (Fig. 5B and Fig. S3; see Supplementary Material for methodological 664 

information). Instead, genomics funding success and years of scientific expertise 665 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.27.601086doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601086
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

were, as expected, positively correlated and both variables and were associated with 666 

a reduction in the perceived challenges associated with amphibian genomics. 667 

 668 

The AGC’s genome sequencing targets  669 

Following the efforts of genomics consortia for other tetrapod groups [e.g., 214], and 670 

previous research efforts [21], we identified amphibian families without any 671 

representative genomes and selected one representative species per family for our 672 

sequencing priority list (Fig. 2B and Table 1). We propose 48 candidate species 673 

based on their IUCN Red List category, ecological and evolutionary distinctiveness, 674 

and the availability of other genomics records, especially transcriptomics. This list 675 

includes 38 anurans, four urodeles, and six caecilians. We aim to build upon the 676 

efforts of existing genomics consortia such as the Vertebrate Genomes Project 677 

(VGP), hence, we included in our sequencing target list species with draft genomes 678 

in the GenomeArk (https://www.genomeark.org/).  679 

Conclusion and outlook 680 

Amphibians are declining faster than they can be discovered [215]. Our hope is that 681 

the recent advancements in technology (e.g., long-read sequencing, computational 682 

tools) and integration of the research community to from the Amphibian Genomics 683 

Consortium (AGC) will ignite research to revolutionize amphibian conservation and 684 

our understanding of their fascinating biology, ecology and evolution. By supporting 685 

amphibian genomics research and uniting amphibian researchers worldwide, the 686 

AGC aims to propel amphibian genomics research into the future. 687 

 688 

Moving forward, the AGC is committed to supporting amphibian sequencing 689 

initiatives worldwide, with a particular emphasis on families lacking representation 690 
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and species from biodiverse countries (Table 1). Local sequencing initiatives will be 691 

given priority whenever feasible to promote the development of in situ research 692 

efforts and facilities. Additionally, we aim to provide funding and training opportunities 693 

to facilitate collaboration among underrepresented groups, molecular and organismal 694 

biologists, bioinformaticians, and conservation practitioners. We aspire to stimulate 695 

public and scientific interest in amphibian research and enhance conservation efforts 696 

for this intriguing and highly endangered group of vertebrates. 697 

 698 
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Table 1. Amphibian Genomics Consortium (AGC) sequencing priority list. Table of 756 

amphibian families without any sequenced genomes. For each family, AGC 757 

proposed a candidate species based on its IUCN Red List category (LC: Least 758 

Concern, NT: Near Threatened, VU: Vulnerable, EN: Endangered, CR: Critically 759 

Endangered, and NA: Not evaluated), ecological and evolutionary distinctiveness, 760 

and availability of other genomic records. This table shows the amphibian order to 761 

which each family belongs and its number of genera (#G) and described extant 762 

species (#S) as well as distribution region. *Species with available draft genome 763 

assemblies in the GenomeArk (https://www.genomeark.org/).  764 

 765 
     Family Region #G #S Candidate species IUCN Other motives 

Anura: 

Allophrynidae 

South 

America 

1 3 Allophryne relicta EN  

Anura: Alsodidae South 

America 

3 26 Alsodes gargola LC High altitude 

adaptation 

Anura: 

Arthroleptidae 

Africa 8 151 Leptopelis 

vermiculatus 

EN  

Anura: Ascaphidae North 

America 

1 2 Ascaphus 

montanus* 

LC High altitude 

adaptation 

Anura: 

Batrachylidae 

South 

America 

4 13 Batrachyla leptopus LC  

Anura: 

Brachycephalidae 

South 

America 

2 79 Brachycephalus 

pitanga 

LC Transcriptomic 

resources 

Anura: 

Brevicipitidae 

Africa 5 36 Breviceps fuscus LC Burrowing adaptation 

       

Anura: 

Caligophrynidae 

South 

America 

1 1 Caligophryne doylei NA Pantepui endemism 

Anura: 

Calyptocephalellida

e 

South 

America 

2 5 Telmatobufo bullocki EN  

Anura: 

Centrolenidae 

Central & 

South 

America 

12 166 Centrolene pipilata CR Gigantism 

Anura: 

Ceratobatrachidae 

Southeast 

Asia 

4 103 Platymantis 

spelaeus 

EN Cave-dweller 
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     Family Region #G #S Candidate species IUCN Other motives 

Anura: 

Ceratophryidae 

South 

America 

3 12 Lepidobatrachus 

laevis 

LC Transcriptomic 

resources 

Anura: 

Ceuthomantidae 

South 

America 

2 6 Ceuthomantis 

cavernibardus 

LC Cave-dweller 

Anura: Conrauidae Africa 1 8 Conraua goliath EN Giantism 

Anura: 

Craugastoridae 

Central 

America 

3 136 Craugastor fitzingeri LC Transcriptomic 

resources 

Anura: 

Cycloramphidae 

South 

America 

3 37 Cycloramphus 

granulosus 

CR  

Anura: 

Heleophrynidae 

South Africa 2 6 Heleophryne rosei CR  

Anura: 

Hemiphractidae 

Central & 

South 

America 

6 123 Gastrotheca cornuta CR  

Anura: Hemisotidae Sub-Saharan 

Africa 

1 9 Hemisus 

marmoratus 

LC Transcriptomic 

resources 

Anura: Hylodidae South 

America 

4 49 Phantasmarana 

massarti 

EN  

Anura: Hyperoliidae Sub-Saharan 

Africa & 

Madagascar 

17 236 Hyperolius 

thomensis 

EN Population genomic 

resources 

Anura: 

Leiopelmatidae 

New Zealand 1 3 Leiopelma archeyi CR  

Anura: Mantellidae Madagascar 12 272 Mantidactylus 

betsileanus 

LC Transcriptomic 

resources 

Anura: Micrixalidae India 1 24 Micrixalus mallani EN Transcriptomic 

resources 

Anura: 

Nasikabatrachidae 

India 1 2 Nasikabatrachus 

sahyadrensis 

NT EDGE target species 

Anura: 

Neblinaphrynidae 

South 

America 

1 1 Neblinaphryne 

mayeri 

NA Pantepui endemism 

Anura: 

Nyctibatrachidae 

India & Sri 

Lanka 

3 37 Nyctibatrachus 

grandis 

EN Transcriptomic 

resources 

Anura: 

Odontobatrachidae 

Tropical West 

Africa 

1 5 Odontobatrachus 

fouta 

EN  

Anura: 

Odontophrynidae 

South 

America 

3 54 Proceratophrys 

redacta 

EN  

Anura: 

Petropedetidae 

Sub-Saharan 

tropical Africa 

3 13 Petropedetes perreti CR  

Anura: 

Phrynobatrachidae 

Africa 1 99 Phrynobatrachus 

guineensis 

LC Tree-hole breeder 

Anura: Ranixalidae India 2 19 Indirana chiravasi LC Transcriptomic 
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     Family Region #G #S Candidate species IUCN Other motives 

resources 

Anura: 

Rhacophoridae 

Eastern Asia 22 444 Buergeria otai LC Transcriptomic 

resources 

Anura: 

Rhinodermatidae 

South 

America 

1 3 Rhinoderma darwinii EN Targeted sequencing 

resources 

Anura: 

Rhinophrynidae 

Central 

America 

1 1 Rhinophrynus 

dorsalis* 

LC Targeted sequencing 

resources 

Anura: Sooglossidae Seychelles 

Islands 

2 4 Sooglossus 

sechellensis 

EN EDGE target species 

Anura: 

Strabomantidae 

South 

America 

19 792 Oreobates cruralis LC Transcriptomic 

resources 

Anura: 

Telmatobiidae 

South 

America 

1 63 Telmatobius simonsi CR  

Gymnophiona: 

Caeciliidae 

Central & 

South 

America 

2 49 Caecilia tentaculata LC Transcriptomic 

resources 

Gymnophiona: 

Chikilidae 

India 1 4 Chikila gaiduwani LC  

Gymnophiona: 

Grandisoniidae 

Africa, 

Seychelles & 

India 

7 24 Hypogeophis 

montanus 

NA  

Gymnophiona: 

Herpelidae 

Sub-Saharan 

Africa 

2 11 Boulengerula 

niedeni 

EN EDGE target species 

Gymnophiona: 

Scolecomorphidae 

Africa 2 6 Crotaphatrema 

lamottei 

CR  

Gymnophiona: 

Typhlonectidae 

South 

America 

5 14 Typhlonectes 

compressicauda 

LC Transcriptomic 

resources 

Urodela: 

Cryptobranchidae 

Asia & North 

America 

2 6 Cryptobranchus 

alleganiensis 

VU Transcriptomic 

resources 

Urodela: 

Dicamptodontidae 

North 

America 

1 4 Dicamptodon 

tenebrosus 

LC Giantism 

Urodela: 

Hynobiidae 

Eastern Asia 9 98 Hynobius 

vandenburghi 

VU Transcriptomic 

resources 

Urodela: 

Rhyacotritonidae 

North 

America 

1 4 Rhyacotriton 

olympicus 

NT  

 766 
 767 
  768 
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Figures 769 

 770 

Figure 1. Estimated genome size across tetrapod classes in relation to 771 

sequenced genomes. (A) Mosaic plot representing the percentage of species with 772 

sequenced genomes as a proportion of the number of described species for each 773 

tetrapod class (Yes: % species with sequenced genome; No: % species without 774 

sequenced genome). (B) Combined box and density plot with raw data as points 775 

comparing genome size of species with sequenced genome (gray; genome sizes 776 

from NCBI genome assemblies) versus a subset of species without a sequenced 777 

genome (red; genome sizes from the Animal Genome Size Database) for each 778 

tetrapod class. The y-axis is log-transformed to facilitate visualization. Information 779 

about sequenced genomes and genome sizes was obtained from the NCBI Genome 780 

Browser, the Animal Genome Size database, and amphibian records from [11, 19]. 781 
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Figure 2. Estimated genome size across amphibian orders in relation to 782 

sequenced genomes. (A) Combined box and density plot with raw data as points 783 

showing genome size of species with sequenced genome (gray color; genome sizes 784 

from NCBI genome assemblies) versus a subset of species without available 785 

genome assembly (red color; genome sizes from the Animal Genome Size 786 

Database) for each amphibian order. The y-axis is logarithmic transformed to 787 

facilitate visualization. Information about sequenced genomes and genome sizes 788 

was obtained from the NCBI Genome Browser, the Animal Genome Size database 789 

[19], and amphibian records from [11]. (B) Amphibian phylogenetic tree was adapted 790 

from [66], which includes species with genome size estimates from Genomes on a 791 

Tree (GoaT) [18]. Branches are color coded to represent families without any 792 

genomic record (in red) and families with at least a representative genome 793 

sequenced (in gray). Bar plots around the phylogeny indicate relative genome sizes. 794 

 795 

 796 

 797 

 798 

 799 
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 800 

Figure 3. Main sequencing techniques applied to amphibian genomics studies. 801 

Yearly cumulative number of amphibian BioProjects split and color-coded by 802 

sequencing technique (DNA accessibility Sequencing includes ATAC-Seq and 803 

Mnase-Seq; Immunoprecipitation Sequencing includes: ChIP-Seq and RIP-Seq; 804 

Amplicon sequencing was included with Targeted-Capture Sequencing; Noncoding 805 

RNA Sequencing includes: miRNA-Seq and ncRNA-Seq). BioProject information 806 

was obtained from the NCBI Sequence Read Archive (SRA, accessed 1 March 807 

2024).    808 

  809 
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 810 

Figure 4. Amphibian Genomics Consortium (AGC) membership by country. 811 

Inset map showing the size of each country scaled by number of members in the 812 

AGC. 813 

 814 

  815 
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 816 

Figure 5. Sequencing competencies and identified challenges of the members 817 

of the Amphibian Genomics Consortium (AGC). (A) Representation of the 818 

contribution of the AGC survey quantitative questions to the first dimensions after 819 

computing a principal component analysis (PCA). Bioinformatic competencies and 820 

perceived challenges were grouped into dimensions one and two, respectively. (B) 821 

Scatter plot showing PCA scores for each AGC survey respondent. Respondent 822 

answers are coded by the qualitative question about funding success for amphibian 823 

genomics projects using shape; number of amphibian species of the respondent 824 

main affiliation country by size, and gross domestic expenditure on R&D (GERD) per 825 

capita of the respondent main affiliation country by gray-scale color coded. 826 

Information about the number of amphibian species per country was obtained from 827 

AmphibiaWeb. GERD per capita was calculated using information from the UNESCO 828 

and World Bank websites from the information about the most recent year for each 829 

country. 830 

 831 

 832 

 833 
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