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Abstract

Background: To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection,
a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be
identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP)
discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies
of paralogous sequences and therefore resulted in a high rate of false positive SNP identification.
Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming
methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP
discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to
generate data from a reduced representation library constructed with genomic DNA pooled from 96
unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture
(NCCCWA) broodstock population.

Results: The reduced representation library consisted of 440 bp fragments resulting from complete
digestion with the restriction enzyme Haelll; sequencing produced 2,000,000 reads providing an average
6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends).
Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627
independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three
analyses were genotyped on individual fish to determine the validation rate of putative SNPs among
analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome,
examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map.
Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully
incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the validated
markers were associated with rainbow trout transcripts.

Conclusion: The use of reduced representation libraries and pyrosequencing technology proved to be
an effective strategy for the discovery of a high number of putative SNPs in rainbow trout; however,
modifications to the technique to decrease the false discovery rate resulting from the evolutionary recent
genome duplication would be desirable.
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Background

Single Nucleotide Polymorphisms (SNPs) are highly
abundant markers which are evenly distributed through-
out the genome and can be functionally relevant|[1]. They
are suitable markers for fine mapping of genes and candi-
date gene association studies aimed at identifying alleles
potentially affecting important traits. Technologies that
enable simultaneous analysis of thousands of SNPs have
permitted genome-wide association studies for complex
traits in humans [2], chicken [3], cattle [4-6] and sheep
[7]. Additionally, reduced representation libraries and
pyrosequencing technologies have facilitated the high
throughput discovery of SNPs [8-12]. Developing a large
set of SNP markers for genome analyses in rainbow trout
will facilitate fine mapping of QTL and will improve the
identification and exploitation of genes affecting impor-
tant traits and enable selective breeding through genomic
selection.

Since 2002, the National Center for Cool and Cold Water
Aquaculture (NCCCWA) has selectively bred rainbow
trout broodstock for improvement of aquaculture produc-
tion traits. The primary objectives have been to reduce the
negative impacts of specifc bacterial pathogens on rain-
bow trout culture and to improve growth performance
[13-15]. Currently, additional economically important
traits such as stress tolerance [16,17] and meat/fillet qual-
ity are being evaluated. Molecular genetic technologies
have the potential of increasing the rate of genetic gain of
traditional selective breeding schemes [18]. Most produc-
tion traits are controlled by multiple genes and inherited
as quantitative traits. Analysis of quantitative trait loci
(QTL) to identify loci for use in marker assisted selection
(MAS) strategies can be used to optimize genetic improve-
ment of desired traits [18]. To this end the NCCCWA is
developing molecular resources for rainbow trout, includ-
ing ¢cDNA and BAC (Bacteria Artificial Chromosome)
libraries, microsatellite markers and a linkage map [19-
21]. The map was based on a panel of five families that
represent the starting genetic material of the selective
breeding program. At present, the linkage map consists of
1,124 microsatellite loci falling into 29 linkage groups,
with an average sex distance of 2,927 ¢cM and an average
resolution of 2.6 cM. A recent linkage disequilibrium (LD)
study by Rexroad et al. [22] found significant LD blocks at
distances of 2 cM or less, implying that, to be used in QTL
mapping, there is a need of a larger number of markers to
be included in the map.

Expressed Sequence Tags (ESTs) have been used for SNP
discovery in several non-model organisms, including sal-
monids [23-27]. However, when using EST data for SNP
identification, the salmonid pseudo-tetraploid genome
[28] can lead to assemblies of paralogous sequences and
false positive SNP identification [24,26,27]. Initially, we
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attempted an SNP discovery approach based on align-
ments of ESTs. The Genbank UniGene Build #22 http://
www.ncbi.nlm.nih.gov/sites/entrez?db=unigene presents
over 200,000 Rainbow trout EST sequences. We first used
custom bioinformatic pipelines to assemble the available
ESTs and discover SNPs in rainbow trout. The occurrence
of the genome duplication led to the assembly of paralo-
gous sequences and resulted in a high number of false
positive putative SNPs. Next, we sequenced genomic DNA
based on EST sequences which proved to be a more effi-
cient method for SNP discovery in rainbow trout,
genomic DNA sequencing would allow the representation
of the entire genome, and not just the transcriptomes, as
that is the case with ESTs. However, this procedure was
also extremely time consuming and not suitable for high
throughput SNP discovery and it became clear that an
alternative approach would be necessary to achieve the
goal of a dense set of markers spanning the entire rainbow
trout genome. In this study, we present the use of a high-
throughput methodology to discover SNPs in rainbow
trout based on pyrosequencing technology to generate
data from a reduced representation library (RRL) con-
structed with genomic DNA pooled from 96 unrelated
rainbow trout individuals, and evaluate the efficiency of
this approach.

Results

Construction of Reduced Representation Libraries
Restriction enzymes HpyCH4V and BstUI did not entirely
digest the rainbow trout DNA, therefore, they were not
considered for further procedures. Trout DNA of an indi-
vidual animal was completely digested with Alul, BstUI
and Haelll. In contrast with bovine DNA[9], and similar
to swine[12], repetitive DNA bands were not observed
when separating the fragmented DNA in polyacrylamide
gels with any of the three enzymes. The restriction enzyme
Haelll (Figure 1) was selected for the library construction
based on analysis of sequence data of 960 clones contain-
ing fragments from the approximately 440 bp size range:
94% of the sequenced fragments were unique and only
12% of the unique sequences matched other sequences
when blasted against the NCBI salmonids nucleotide
DNA database, indicating acceptably low content of repet-
itive DNA in the fragment pool.

After digesting the pooled DNA from 96 unrelated indi-
viduals with Haelll, the 440 bp fragments were selected
for library construction (3.2 pg of fragment DNA was
recovered from the preparative gel). An aliquot of the
recovered fragments was cloned and Sanger sequenced
before proceeding with the library construction protocols:
89% of 1,269 sequenced fragments were unique and 33%
of the analyzed bases masked to the cGRASP salmon
repeat masker database htt .ceh.uvic.ca/repeatmas

ker/cbr_repeatmasker.py.
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Gel image of rainbow trout DNA digested with
Haelll. DNA fragments between 400 and 500 bp were
excised from both lanes containing Haelll digested pooled
DNA. Slices were cut every 2 mm or approximately 20 bp.

Sequencing results and SNP discovery

The Genome Sequencer FLX system produces about
400,000 reads (250 bp) per run, therefore, to cover 1% of
the trout genome and to achieve a 6x average coverage,
4.5 runs were carried out, which resulted in 2,044,864
reads that contained a total of 459,825,391 bases for an
average of 217 bp/read. The distribution of read lengths is
rather asymmetric with a thick tail on the shorter side of
the most common read length, which is 242 bp. After
repeat masking, culling reads with less than 50 consecu-
tive base pairs of non-repetitive content, and trimming
repetitive ends, the result is 1,128,655 reads with an aver-
age length of 206 bp. Less than 15% of these reads con-
tained internal repetitive content. The Newbler assembly
of the 2 million unmasked reads resulted in 149,096 con-
tigs with an average length of 259 bp and an average depth
of coverage of 5.9. One-quarter of the contigs covered the
length of the restriction fragments by connecting the reads
from each end that overlap sufficiently in the middle. The
rest of the contigs had lengths consistent with the read
lengths. The estimate of the number of loci given in table
1 counts each long contig as one locus and each short con-
tig as half a locus. Multiplying the estimated number of
loci by the length of the restriction fragments indicates
that 42.3 million base pairs of the trout genome were rep-
resented in this study. For reasons described below, a sec-
ond assembly of the reads was constructed using the
Velvet algorithm. The computational hardware available
at the time did not allow an assembly of all the reads, but
did enable an assembly of the smaller set of masked,
culled and trimmed reads, resulting in 125,801 contigs
with an average length of 192 bp/contig and an average
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Table I: Sequence data analysis results

Newblerl Newbler2  Velvet
No. of contigs 149,096 125,081
No. of loci 94,000 69,000
Read coverage 5.9% 6.4%
Putative SNPs 47,128 22,022 33,624
No. of contigs (SNPs) 24,627 13,140 20,963

depth of coverage of 6.4. Only 9% of the contigs spanned
the restriction fragments. Using ssaha2 to compare the
Velvet and Newbler assemblies showed that 77% of the
Velvet contigs matched (minimum score of 80) to New-
bler contigs.

In order to discover SNPs present only in non-repetitive
regions, the set of masked reads were mapped onto the
two assemblies, with 75% mapping to the Newbler
assembly and 63% mapping to the Velvet assembly. Both
assemblies had similar distributions of coverage depth:
~40% less than 4x, ~10% greater than 10x and ~50% 4-
10x. The average read depth at SNPs was skewed to the
high end, ~9x. Despite the similarities, the two methods
discussed thus far produced widely different predictions
for the number of SNPs: 187,916 for Newbler and 52,942
for Velvet. The distribution of the SNPs across the contigs
reveals that the vast majority of SNPs in the Newbler set
came from contigs with 5 or more predicted SNPs. Filter-
ing out such SNPs from both sets leaves 47,128 for New-
bler and 33.624 for Velvet. Previous experience with SNP
discovery in swine using a reduced representation library
showed a much more reasonable distribution of putative
SNPs across the assembled contigs [12]. One of the two
attempts to lower the high rate of false positives was to use
Velvet to create a different assembly. The other was to add
an additional layering of filtering at the mapping stage
(method N2 as described in the Methods section). N2 pre-
dicted 23,923 SNPs before filtering out the contigs with 5
or more SNPs and 22,022 after applying the filter. Results
of the three analyses are summarized in Table 1.

A comparison of the SNPs from the three methods was
done on a contig by contig basis, allowing for imperfect
matches between velvet contigs and newbler contigs, as
well as the occasionally varying numbers of predicted
SNPs for the contigs. While compiling the lists of testable
SNPs, some moderate filtering was performed to ensure
sufficient quality and quantity of flanking sequence. As
stated above, the two assemblies were more alike than dif-
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ferent, yet the largest subgroup of SNPs is V1, indicating
that the contigs unique to the Velvet assembly contain
either a rich source of false positives or the best source of
true SNPs. The next largest subgroup is N1, despite the fact
that most of its potential SNPs were filtered out due to
their presence in contigs with 5+ SNPs. The false positives
seem to be infiltrating the unfiltered contigs as well. The
third largest subgroup contains the SNPs predicted by all
three methods, giving some assurance that the three
approaches are similar enough to warrant comparison of
validation rates as a means to incrementally improve the
computational methods for SNP discovery. Even though
the reads mapped in N2 were a subset (48%) of those
mapped in N1, N2 contained SNPs not predicted in N1.
These were from contigs that had 5 or more SNPs pre-
dicted by N1 but fewer than 5 predicted in N2. SNPs from
each of the subgroups were tested and the validation
results are discussed in the next section.

SNP validation

GoldenGate genotyping assays resulted in the validation
of 183 (48%) of the tested putative SNPs (384); 46 (12%)
were homozygous; 4 (1%) showed paralogous sequences
without allelic variation (all samples were heterozygous).
It was not possible to obtain satisfactory genotyping
results from the remaining sequences (39%), due to either
unacceptable genotyping quality or the presence of paral-
ogous sequences with allelic variation, therefore not con-
clusive to contemporary approach. Table 2 shows the

Table 2: Number of genotyped and validated markers from the
three data analysis approaches.

Approach Tested Validated

#markers % #markers %
NI 47 12.2 17 36
N2 46 12.0 22 48
NIN2 47 12.2 15 32
\4 100 26.1 53 53
VINI 47 12.2 30 64
VIN2 47 12.2 18 38
VININ2 50 13.1 28 56
Total 384 100 183 48

N1, N2 and VI represent SNPs predicted by only one of those three
analyses; NIN2, VINI, VIN2, and VININ2 indicate SNPs predicted
by multiple analyses. Tested percentage refers to the number of
markers in each group compared to all; the rate of validation within
each approach is given as the validated percentage.
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validation rates within each group of predicted SNPs,
which gives an indication of the merits of each computa-
tional method. The three highest validation rates all
involved Velvet contigs, and three of the four lowest rates
involved Newbler contigs that did not have a Velvet
homologue, indicating that Velvet built a superior assem-
bly with the difficult trout genome. Within the Newbler
assembly that did not overlap the Velvet assembly, N2
produced better results than N1, but within the contigs
common to both assemblies, N1 performed better than
N2 (with the added condition that V1 co-predicted a
SNP).

Call frequencies; minor allele frequencies and expected/
observed heterozygosis of the validated SNPs are reported
in Additional file 1. Call frequencies were higher than
90% for all markers and minor allele frequencies ranged
from 1.3% to 49.7%. The double haploid samples were of
great assistance for the validation process. Both Whale
Rock samples were monomorphic for all validated mark-
ers; Skookumchuck, Hot Creek and Swanson were poly-
morphic for only one marker (OMS00033, OMS00163
and OMS00108, respectively) and Klamath for three
markers (OMS00018, OMS00015 and OMS00108). The
WGA DNA sample was successfully genotyped, 100% gen-
otypes being equal to the original sample. Using SNaP-
shot, four SNPs were cross-validated. Genotyping results
of the double-haploid fish were equal in both methods
and 96% of the genotypes from the discovery samples
were also equivalent.

BLAST analysis of the potential SNP sequences revealed
that 1201 (1.5% of the total sequences) are associated
with 790 ESTs/TCs in the rainbow trout transcriptome
(>98% homology over at least 100 bp, E-value < 7.0E-41).
The validated SNP sequences have 4 sequences associated
with rainbow trout transcripts including proteins
involved in lipocalin-type prostaglandin metabolism and
immune system-Toll-like receptors (Table 3).

Validated markers were also genotyped using the
NCCCWA mapping families and 167 markers were poly-
morphic and mapped to the rainbow trout second gener-
ation map|21]. In Additional file 2, the position of the
SNP markers in the linkage map is indicated. The posi-
tions are based on the two-point distance of the SNP
markers to the closest linked marker in the map with the
highest confidence in map location. The newly developed
markers were distributed along all linkage groups of the
rainbow trout map; there are at least two markers in each
linkage group.

Discussion
In our first attempts to find SNPs in rainbow trout we eval-
uated multiple bioinformatic pipelines for their ability to
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Table 3: Validated SNPs annotation.
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OMS GENE Percentage_homology E_VALUE Annotation
OMS00035  CU065093 98.01 IE-101 AAIl16452-B-cell CLL/lymphoma 9 [Homo sapiens]
OMS00028  TC158345 99.01 |E-104 CAG02508-unnamed protein product [Tetraodon nigroviridis]
OMS00080  TC139092 99.49 6E-106 Unknown
OMS00122  TCI155403 99.49 3E-105 ACI166580-Lipocalin precursor [Salmo salar]

detect SNPs from EST data (unpublished). The occurrence
of the genome duplication resulted in many assemblies of
paralogous sequences, which led to the identification of a
large proportion of false positives (data not shown). In
addition, a high number of the putative markers were not
validated due to PCR amplification problems caused by
incorrect assemblies of sequences; presence of introns in
the amplicons and unspecific binding of primers (multi-
ple loci). Similar results were observed in other salmonid
species [23,26,27] and were attributed to the amplifica-
tion of both paralogs of the same loci. A customized SNP
discovery process using only 3' ESTs was then developed,
which used stringent assembly parameters (98% identity;
at least 50 bp overlap) were set to overcome issues associ-
ated with the genome duplication. 3' EST sequences were
selected to avoid intron/exon boundaries; increase primer
binding specificity and to raise the probability of finding
SNPs in UTRs. However, the results were not improved
and no markers were validated. The next approach was to
sequence genomic DNA based on ESTs sequences, which
proved to be an effective method of SNP identification in
rainbow trout. Twenty putative SNPs were tested and 12
SNPs representing 10 different genes were validated on
the double haploid samples; 5 of the validated SNPs were
successfully genotyped on the 96 NCCCWA broodstock
unrelated individuals (data not shown). However, this
methodology is extremely time consuming and not suita-
ble for high throughput SNP discovery.

Using a high throughput technology, over 20,000 putative
SNPs were identified, 384 were tested and 183 validated;
90% of the validated markers were placed and widely dis-
tributed in the rainbow trout linkage map. A BLAST anal-
ysis was performed to identify coding regions in validated
SNP sequences and 2% of the validated markers were
associated with relevant genes. SNPs found within or near
a coding sequence, are of particular interest because they
are more likely to alter the biological function of a pro-
tein. This class of SNPs is especially important for species
without a genome sequence such as aquaculture species.
Gene-associated SNPs serve as suitable markers for map-

ping in comparative genome studies and in MAS of eco-
nomically important traits [29,30].

Recent reports of using highly parallel sequencing meth-
odologies in combination with reduced representation
libraries (RRL) for SNP discovery in cattle and swine
reported validation rates above 92% [9,12]. These species
do not have the complication of recent whole genome
duplication that is a prominent feature of the salmonid
genome, which resulted in the dramatically reduced vali-
dation rate of approximately 48% reported here. Never-
theless, the RRL approach proved much more efficient
than previous approaches used for trout SNP detection,
providing tens of thousands of putative SNPs at a fraction
of the cost of generating them by PCR and Sanger
sequencing and in a much shorter time. Future work will
attempt to revise the method to more efficiently avoid the
class of putative SNPs resulting from comparisons
between paralogous loci, by sequencing RRL produced
from a double haploid strain in parallel to the pool of dis-
covery, diploid animals. Additional gains may be made by
refinement of filtering strategies by incorporating flanking
sequence data more effectively, especially as develop-
ments in the pyrosequencing platform increase read
lengths later this year permitting creation of RRL with
longer fragments and increasing the ability to discrimi-
nate paralogs. We anticipate that future studies using RRL
and pyrosequencing will approach the 90% success of
other organisms, although we recognize that the tetra-
ploid genome of rainbow trout will necessitate a much
larger ratio of DNA sequenced to valid SNPs discovered
than in species with less complex genomes.

Conclusion

The use of reduced representation libraries and pyrose-
quencing technology proved to be an effective strategy for
the discovery of a high number of SNPs in rainbow trout.
Over 20,000 putative SNPs were discovered and 384 were
tested, resulting in a 48% validation rate. A hundred and
eighty three markers were validated and 167 (43.5%) of
those markers were polymorphic and placed in the rain-
bow trout linkage map. According to the validation
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results, it could be implied that at least 10,000 putative
SNPs from this data set would be validated and useful in
future genomic studies. However, it is still necessary to
dramatically decrease the false discovery rate.

Methods

Construction and sequencing of Reduced Representation
Libraries

Five different restriction enzymes (Alul; BstUl;, Haelll;
HpyCHA4V and Rsal) having four-base recognition target
sequences and producing fragments with blunt ends were
tested for the library construction. Digestions of 1 mg of
DNA from a single fish were performed for each enzyme
as suggested by the manufacturer (New England Bio
Labs). The digested DNA was separated on 3 mm thick 5%
nondenaturing polyacrylamide gels. DNA fragments
between 400 and 500 bp were excised from the gels (slices
were cut every 2 mm or approximately 20 bp), fragments
were eluted using a modified [31] "crush and soak" proce-
dure and DNA was purified by alcohol precipitation. For
trial Sanger sequencing to identify the best enzyme for
reduced representation library construction, the frag-
ments were ligated into the pSTBlue-1 vector of the Per-
fectly Blunt Giga Cloning kit (Novagen). DNA sequencing
was carried out with an ABI Prism 3100 Genetic Analyzer.
The ability to completely digest the trout genomic DNA
and the number of DNA repetitive elements present in the
selected fragment size range were evaluated for each
enzyme.

Approximately equal amounts of DNA from 96 unrelated
individuals from the NCCCWA 2005 and 2006 brood
years [22] was pooled prior digestion with Haelll. Com-
plete digestions of 1 mg of DNA from the pool (3 U
enzyme/ng) were performed overnight at 37°C. DNA
fragments were separated and eluted from the gel follow-
ing the procedures previously described. Excised frag-
ments approximately 440 bp in length were selected to
construct the library; 600 ng of DNA obtained from the
preparative gel was used for construction of the library
and ligated to the sequencing adapters provided in the GS
FLX library construction kit (Roche Applied Science).
From this point, the library was prepared and sequenced
on the GS FLX as per the manufacturer's protocols.

Sequence analysis and SNP discovery

Three independent SNP discovery approaches were used.
The first two, which were called N1 and N2, were initiated
by creating a reference sequence set by using the Newbler
algorithm (version 1.1.03, provided with the GS FLX
sequencer) to assemble all the unmasked sequence data
into contigs. The individual reads were then screened for
known repetitive elements and repeat masked using the
cGRASP RepeatMasker database htt .ceh.uvic.ca

repeatmasker/cbr_repeatmasker.py and sequences with at
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least 50 consecutive non-repetitive bases were mapped
onto the assembly using ssaha2[32]. N2 differs from N1
in that the mappings for N2 were filtered so that only
those with at least 90% sequence identity over at least
80% of the full length of the read were mapped onto the
reference assembly. This step was done to decrease the
likelihood of reads being mapped to duplicated regions of
the genome. The third approach (V1) used the Velvet algo-
rithm [33] for the assembly; in this case, all the sequence
data was repeat-masked first, and the reads that contained
at least 50 consecutive non-repetitive bases were used as
input data. This same set of masked and filtered reads
were then mapped back onto the Velvet assembly using
ssaha2. The next step in all three approaches was to use
ssaha_pileup [32] to detect sequence variation among the
mapped reads. To be included as putative SNPs, both the
major and the minor allele had to be detected at least
twice each, without a third allele being observed. All SNPs
from contigs that presented more than 5 putative SNPs (1
putative SNP/100 bp) were discarded, as a compromise
balancing number of SNPs discovered and false discovery
rate, since contigs with multiple apparent SNPs are more
likely to represent paralogous loci (discarding loci with
only two putative SNPs greatly decreases number of
apparent SNPs but likely increases validation rate; allow-
ing higher numbers adds additional SNPs but also
increases false discover rate). Additionally, flanking
sequence of at least 50 bp in one side (with a limit of 10%
unknown bases) and 10 bp on the other side was
required, in order to provide sufficient flanking sequence
data to support assay design in the Illumina system to be
used for genotyping.

SNP Validation

[llumina GoldenGate assays [34] were used to evaluate a
fraction of the discovered SNPs. A set of 384 putative SNPs
was randomly chosen (from among those with the high-
est scoring flanking sequences) to represent each one of
the three sequence analysis methods (N1: 47; N2: 46 and
V1: 100) and putative SNPs found in more than one anal-
ysis were also tested (N1 and N2: 47; V1 and N1: 47; V1
and N2:47; V1, N1 and N2: 50).

Genomic DNA from 85 of the discovery panel fish and 98
samples from five NCCCWA mapping families [21] were
used for the validation assays. In addition, seven double
haploid samples from the Arlee, Hot creek, Klamath,
Whale rock female, Whale rock male, Skookumchuck and
Swanson clonal lines [35,36] were genotyped and used as
a control to eliminate the paralogous sequences that can
erroneously be identified as SNPs. In some genotyping
projects, the amount of DNA available for the assays is
limited, and it is necessary to use Whole-Genome Ampli-
fied (WGA) DNA, as has already been used in GoldenGate
assays [37]. A protocol based on the method described by
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[38] was used to prepare one WGA sample, which was
added to the SNP validation panel, its respective template
was also genotyped for comparison.

The BeadStudio software version 3.2 (Illumina) was used
to analyze the Goldengate assays SNP data. Genotyping
data quality was assessed following the guidelines sug-
gested by Illumina [39]. The no-call threshold used was
0.25 and all the samples used for validation had at least a
0.85 Call rate score. A cross-validation assay was done
using the ABI SNapshot method; four SNPs were ran-
domly selected and the 96 discovery samples and the
seven double-haploid individuals were genotyped.

A local BLAST search using the sequences of the validated
SNPs against the rainbow trout transcriptome data from
TIGR (BioEdit software at default settings http://
www.mbio.ncsu.edu/BioEdit/BioEdit.html) was per-
formed to identify coding regions.

Linkage analysis

Segregating data from the NCCCWA mapping families
was used to anchor the polymorphic validated markers
into the second generation rainbow trout linkage map
[21]. Genotype data combined for both sexes were for-
matted using MAKEPED of the LINKAGE [40] program
and checked for inconsistencies with Mendelian inherit-
ance using PEDCHECK [41]. RECODE [42] and LNK-
TOCRI [43] were used to assemble the data into CRIMAP
[44] format. SNP genotype data were added to that of
Rexroad et al [21] and MULTIMAP [45] was used to con-
duct two-point linkage analyses to identify the closest
markers from the published map which were ordered at
the highest level of significance.
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