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Abstract

In the fission yeast Schizosaccharomyces pombe, the RNA interference (RNAi) machinery is 

required to generate small interfering RNAs (siRNAs) that mediate heterochromatic gene 

silencing. Efficient silencing also requires the TRAMP complex, which contains the noncanonical 

Cid14 poly(A) polymerase and targets aberrant RNAs for degradation. Here we use high-

throughput sequencing to analyze Argonaute-associated small RNAs (sRNAs) in both the 

presence and absence of Cid14. Most sRNAs in fission yeast start with a 5′ uracil, and we argue 

these are loaded most efficiently into Argonaute. In wild-type cells most sRNAs match to repeated 

regions of the genome, whereas in cid14Δ cells the sRNA profile changes to include major new 

classes of sRNAs originating from ribosomal RNAs and a tRNA. Thus, Cid14 prevents certain 

abundant RNAs from becoming substrates for the RNAi machinery, thereby freeing the RNAi 

machinery to act on its proper targets.

RNAi is a conserved silencing mechanism that is triggered by double-stranded RNA 

(dsRNA)1,2. Silencing is mediated by small interfering RNAs (siRNAs) of about 22 

nucleotides (nt) in size, which are produced from the long dsRNA by the Dicer RNase3–7. 

siRNAs guide Argonaute proteins to complementary nucleic acids where they promote the 

inactivation of the homologous sequences. In some systems, efficient RNAi requires 

synthesis of dsRNA by an RNA-directed RNA polymerase (RdRP)8,9. Besides their role in 

post-transcriptional gene silencing (PTGS), siRNAs have also been implicated in regulation 

at the DNA and chromatin levels in plants and some fungi10,11.
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The role of siRNAs in gene regulation at the chromatin level has been well studied in fission 

yeast, whose genome encodes a single gene each for Argonaute, Dicer and RdRP: ago1+, 

dcr1+ and rdp1+, respectively. At centromeres, deletion of any of these genes results in a 

loss of gene silencing, reduced histone H3 lysine 9 (H3K9) methylation and Swi6 (the 

homolog of heterochromatin protein-1 (HP1)) localization, all of which are conserved 

molecular markers of heterochromatin12. Ago1 is found in the RNA-induced transcriptional 

silencing (RITS) and Argonaute siRNA chaperone (ARC) complexes13,14. Early 

sequencing of small RNAs from fission yeast revealed heterochromatic siRNAs that match 

centromeric repeats15. In addition, ∼1,300 siRNAs isolated from the RITS complex, using a 

tag on its Chp1 subunit, have been reported16. These RITS-associated siRNAs are 20–22-nt 

long and map to repeat elements embedded in heterochromatic regions, the ribosomal DNA 

(rDNA) array, intergenic regions, mRNAs, tRNAs, subtelomeric and silent mating-type 

regions16. Generation of these siRNAs requires Dicer, Argonaute and Rdp1 (refs. 13,17,18).

The RNAi pathway is essential for high levels of H3K9 methylation and gene silencing at 

fission yeast centromeres, but it is dispensable at other heterochromatic loci such as 

telomeres or the silent mating-type loci12,19. Although heterochromatin has long been 

thought to be transcriptionally inactive, recent observations in fission yeast show that 

heterochromatic domains are transcribed to some degree12,18,20,21. However, the resulting 

heterochromatic transcripts are rapidly turned over by a mechanism called co-transcriptional 

gene silencing (CTGS)11,18. Although possibly mediated by the RNAi pathway at 

centromeres, CTGS at other fission yeast heterochromatic regions depends on a specialized 

polyadenylation complex referred to as the TRAMP (Trf4-Air1/Air2-Mtr4 polyadenylation) 

complex22, most likely targeting heterochromatic transcripts for degradation by the 

exosome20.

The role of TRAMP in exosome-mediated degradation of aberrant RNAs was first described 

in budding yeast22. Homologs of the budding yeast TRAMP subunits Trf4/5, Air1/2 and 

Mtr4 are found in the fission yeast TRAMP complex20. The S. pombe homolog of the 

budding yeast Trf4/5 poly(A) polymerases is Cid14, a member of the Cid1 family of 

noncanonical poly(A) polymerases23. Cid14 is required for polyadenylation of ribosomal 

RNAs (rRNAs) and proper chromosome segregation24. In addition to its role in rRNA 

biogenesis and CTGS, deletion of cid14+ results in a dramatic decrease in centromeric 

siRNA levels, suggesting a role for Cid14 in siRNA biogenesis or stabilization20.

To better understand the role of Cid14 in accumulation of centromeric siRNAs, we used 

high-throughput sequencing to examine Ago1-associated small RNAs in wild-type and 

cid14Δ fission yeast cells. Most of the small RNAs recovered by an Ago1 pull-down start 

with a 5′ U and are 22 nt or 23 nt long. In wild-type cells, most Ago1-associated small 

RNAs correspond to repetitive DNA elements found at the centromeres. Other Ago1-

associated small RNAs match the sequences of tRNAs, small nucleolar RNAs (snoRNAs), 

rDNA and intergenic regions. The small RNA profile changes dramatically in cid14Δ cells. 

Consistent with previous findings20, the levels of centromeric siRNAs are reduced in 

cid14Δ cells, whereas the levels of other small RNAs increase dramatically. The most 

prominent new class of small RNAs in cid14Δ cells includes those that match tRNA-Glu 

and ribosomal RNA sequences, which are normally substrates of TRAMP22,24–26. These 
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findings indicate that Cid14 acts as a negative regulator of siRNA biogenesis by competing 

with the RNAi machinery for substrates.

RESULTS

Ago1-associated small RNAs

To obtain a more comprehensive view of the S. pombe siRNA profile and to better 

understand the connection between Cid14 and RNAi20, we generated small RNA libraries 

from affinity-purified Flag-tagged Ago1. These libraries should contain siRNAs from RITS, 

ARC and free or other possible Ago1 complexes. We then subjected the libraries to high-

throughput pyrosequencing27 (Fig. 1a). Analysis of ∼200,000 sequences showed that most 

of the Ago1-associated small RNAs derived from wild-type cells were 22 nt or 23 nt long 

(Fig. 1b) and that most matched repetitive elements in the genome (55%, Fig. 1c,d). Other 

small RNAs matched annotated sequences of rDNA, tRNAs, snoRNAs, intergenic regions, 

introns, exons and mitochondrial DNA (Fig. 1c,d). We classified Ago1-associated small 

RNAs as siRNAs and sRNAs. The term ‘siRNA’ was used when there was evidence that 

Dcr1 generated the small RNA. In other cases, Ago1 seemed to be associated with small 

RNAs that corresponded to abundant cellular RNAs and derived from mostly the sense 

strand, and thus seemed to be generated primarily by non-Dcr1 degradation processes. For 

example, no reads were antisense to mitochondrial genes, suggesting that all mitochondrial 

reads were fragments of normal transcripts. To distinguish this set of small RNAs, we refer 

to them throughout this work as ‘sRNAs’. Although some sRNAs, such as antisense gene-

specific sRNAs, might be produced by Dcr1 and could have physiological roles, a larger 

fraction seemed to be degradation products that may nonspecifically associate with 

overexpressed Flag-Ago1. In this paper, we focus on the small RNA populations that either 

derived from centromeric repeat sequences or showed a shift in their abundance in cid14Δ 

cells.

General properties of Ago1-associated siRNAs

Consistent with previous reports16,20, siRNAs corresponding to the centromeric dg and dh 

repeats were present in the Ago-associated small RNA pool, with similar numbers matching 

the forward and reverse strands. Most siRNAs in plants also derive from both DNA 

strands28, whereas those in Caenorhabditis elegans are predominantly antisense to 

mRNAs29,30. In S. pombe, the origin from both strands probably reflects RNA polymerase 

II (RNA Pol II) transcription in both directions, which gives rise to forward and reverse 

transcripts that are then converted to dsRNA by the RNA-directed RNA polymerase 

complex (RDRC).

As observed for some classes of Argonaute-associated sRNAs in other lineages30–38, a 

large majority (>98%) of the siRNAs corresponding to centromeric dg and dh repeats started 

with a 5′ U (Fig. 1b). Previous projects using the same methods for library construction and 

sequencing revealed classes of siRNAs that started predominantly with 5′ guanosine and 

another that started mostly with 5′ adenosine, thereby indicating that our method does not 

artifactually favor the sequencing of RNAs with 5′ U28,30. Processing of the double-

stranded RNA was also unlikely to explain most of this extreme bias for RNAs with 5′ U, 

Bühler et al. Page 3

Nat Struct Mol Biol. Author manuscript; available in PMC 2011 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because Dicer cleavage is thought to occur sequentially in 22–23-nt intervals, and the 

genome does not encode uracil at such regularly spaced intervals. Nonetheless, processing 

preferences could contribute to this bias, and we uncovered some evidence that they do 

contribute to a small degree.

Because the siRNAs were predominantly a near-equal mixture of 22-mers and 23-mers, a 

reasonable proposal would be that Dicer has some leeway in choosing the precise cleavage 

site and that sequence context might influence the choice of whether to cleave to produce 

22-nt siRNAs or to cleave at the next base pair to produce 23-nt siRNAs. Therefore, we 

examined all 16 dinucleotide possibilities at positions 23 and 24, counting from the 5′ end of 

each sequenced siRNA (Supplementary Table 1 online). As would be expected if Dicer 

prefers to cleave before a uracil and thereby preferentially generates a downstream siRNA 

beginning with uracil, we observed a propensity toward 22-mers when the nucleotide at 

position 23 was a uracil. Other notable biases suggested that Dicer prefers to cleave at sites 

that avoid creating an siRNA beginning with G. However, all of these propensities were 

modest, generally less than three-fold, indicating that preferential siRNA processing 

contributes relatively little to the striking preference for 5′ U. Having ruled out a more-than-

modest effect of preferential processing, we conclude that preferential stability of siRNAs 

beginning with U explains most of the bias for a 5′ U. This preferential stability could be at 

different levels, including preferential stability before encountering Ago1 or preferential 

stability after loading into Ago1. A reasonable hypothesis is that the much higher stability of 

5′ U siRNAs arises primarily from a strong preference of Ago1 for loading siRNAs 

beginning with a 5′ U, and that those siRNAs that Ago1 rejects because they do not begin 

with a U are rapidly degraded.

To investigate 5′ nucleotide preferences in more depth, we considered the inferred siRNA 

duplexes corresponding to sequenced 23-mers deriving from the centromeric dg/dh repeats. 

(The choice of 23-mers over 22-mers stemmed from the notion that these longer siRNAs 

were less likely to be degradation intermediates of longer siRNAs.) When considering the 

influence of the 5′ nucleotide on siRNA loading and stability, six classes of duplexes that 

each involved siRNAs with different 5′ nucleotides were informative (Table 1). Regardless 

of the duplex under consideration, a consistent hierarchy was observed in the sequenced 

reads, with 5′ U >> A > C > G.

The >100-fold bias in reads from the strand beginning with a 5′ U was consistent with the 

idea that one of the two siRNA strands, the passenger strand, was discarded during 

loading14,39,40, probably after cleavage of the passenger strand by the inherent slicer 

activity of Ago1 (refs. 14,41). Moreover, this bias showed that nearly all of the siRNAs that 

were sequenced were already single stranded, which indicated that in fission yeast the 

siRNA duplex is transient when compared to the loaded single strand. Furthermore, the 

predicted pairing asymmetry42 had no correlation with the most frequently sequenced strand 

of these duplexes (Supplementary Table 2 and Supplementary Results online), as has been 

reported for endogenous siRNAs of plants28.

Having ruled out pairing asymmetry as a factor influencing strand choice, we examined 

whether strand choice might be influenced by the identity of the 5′ nucleotide. As mentioned 
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earlier, one hypothesis for explaining the abundance of siRNAs beginning with U is that 

Ago1 has a strong preference for loading siRNAs beginning with a 5′ U, and that those 

siRNAs that Ago1 rejects because they do not begin with a U are rapidly degraded. The 

alternative hypothesis is that siRNAs are loaded equally efficiently regardless of their 5′ 

nucleotide, and those siRNAs beginning with G, C and A are much less stable after loading 

than those are those beginning with U. Examination of the reads matching centromeric 

dg/dh repeats indicated that 5′ U siRNAs were more likely to be associated with Ago1 if 

they were paired originally to a 5′ A siRNA than if they were paired with another 5′ U 

siRNA. Because the model positing differential post-loading stabilities cannot explain this 

observation, but the model positing differential loading can explain it, we conclude that at 

least part of the 5′ U bias is due to the preferential loading of siRNAs beginning with U 

(Supplementary Results and Supplementary Fig. 1 online).

The cells used for the isolation of Ago1-associated small RNAs in our experiments 

contained a ura4+ transgene inserted into the outer centromeric repeats on the right arm of 

chromosome 1 (otr1R ::ura4+)43. We sequenced 249 siRNAs (20–25 nt) that corresponded 

to ura4+ sequences (Fig. 2a and Supplementary Table 3 online). Like the cen siRNAs, ura4+ 

siRNAs showed a preference for uracil at their 5′ terminus, but, unlike the cen siRNAs and 

consistent with previous results20, ura4+ siRNAs showed a five-fold preference for the 

sense strand (206 sense, 43 antisense; Fig. 2a–c and Supplementary Table 3).

More than 90% of the antisense reads corresponding to coding exons matched tlh1 and tlh2 

(Fig. 1c), which are subtelomeric genes classified as ‘repeat associated’. The remaining 661 

reads antisense to protein-coding exons were distributed among 341 genes, usually in far 

lower numbers than those of sense reads, although for adh1+ the numbers were roughly 

equal (Fig. 2d and Supplementary Table 3).

Small RNA profile changes in cid14Δ cells

In addition to its role in rRNA biogenesis and CTGS, Cid14 has been proposed to be 

involved in siRNA generation, as deletion of cid14+ results in a dramatic decrease in 

centromeric repeat-associated siRNA levels20. We found that deletion of cid14+ had no 

effect on the size distribution of siRNAs (Fig. 3). Consistent with previous findings, we 

observed a marked (five-fold) decrease in the fraction of reads mapping to centromeric 

repeats in cid14Δ cells (compare Fig. 1c,d with Fig. 3a,c). However, other classes of Ago1-

associated small RNAs spanning many regions across all three chromosomes increased 

disproportionately (Fig. 3d), the most prominent among them being small RNAs antisense to 

rRNA, which increased by 274-fold (compare Fig. 1c with Fig. 3a,c). Both rRNAs and 

tRNAs have previously been shown to be targets for processing or degradation by the 

TRAMP and exosome pathway22,24–26. In contrast, the fraction of reads from gene-

specific sense and antisense sRNAs were similar in wild-type and cid14Δ cells (increases of 

1.4-fold and 1.1-fold, respectively). Our observations suggest that, in cells lacking Cid14, 

accumulated rRNAs become substrates for the RNAi pathway and give rise to siRNAs.

Internal repeat elements flank the centromeric repeat regions of chromosome 3 (Internal 

repeat centromere 3, IRC3R, Fig. 4a) and coincide precisely with a sharp decrease in H3K9 

methylation and Swi6 levels16. Therefore, they have been proposed to serve as boundary 
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elements, similar to tRNA genes44, that prohibit spreading of heterochromatin to 

euchromatic regions surrounding centromeres. H3K9 methylation levels at fission yeast 

centromeres, including dg/dh repeats and IRC elements16, are reduced substantially in cells 

lacking siRNAs (dcr1Δ), and RNAi has an essential role in the proper assembly of 

heterochromatin at these repeat elements. Consistent with previous results, in cid14Δ cells, 

centromeric siRNA levels were reduced by about 20-fold, but the levels of H3K9 

methylation at the centromeric dg/dh repeats were unaffected20 (Fig. 3 and Fig. 4b). This 

reduction was far greater at IRC sequences, where we observed a nearly complete loss of 

siRNAs in cid14Δ cells (Fig. 4a).

To determine the possible contribution of RNAi, heterochromatin and the TRAMP and 

exosome pathways to the regulation of IRC transcripts, we used quantitative reverse-

transcription PCR (RT-PCR) to analyze IRC3R transcript levels in cells that carried 

deletions or mutations in an essential gene in each pathway. IRC3R transcript levels were 

unaffected in clr4Δ and dcr1Δ cells (Fig. 4c), suggesting that these transcripts were not 

silenced by RNAi-mediated heterochromatin formation. In contrast, IRC3R transcript levels 

increased five- to seven-fold in cid14Δ, mtr4-1 and dis3-54 mutant cells, indicating that 

IRC3R is a substrate of the TRAMP (Cid14/Mtr4) and the exosome (Dis3) pathways (Fig. 

4c). Furthermore, deletion of rrp6+, a subunit of the nuclear exosome, did not affect IRC3R 

transcript levels, suggesting that degradation occurs in the cytoplasm rather than in the 

nucleus. We next asked whether H3K9me levels at the IRC on the right arm of chromosome 

3 (IRC3R) were affected in cid14Δ cells. Unexpectedly, we did not detect any difference in 

H3K9 methylation levels between wild-type and cid14Δ cells (Fig. 4b). In contrast, H3K9 

methylation has been shown to be absent at IRCs in dcr1Δ cells16. Together, these 

observations suggest that the spreading of H3K9 methylation into the IRC regions can occur 

independently of siRNAs but may be lost in dcr1Δ cells because of defects in RNAi-

mediated nucleation of heterochromatin at the dg/dh repeats.

The sRNAs corresponding to the 5′ end of tRNA-Glu formed the third largest class of small 

RNAs found in the cid14Δ library (Fig. 3c). Whereas these RNAs were sequenced 1,381 

times in wild-type cells, they were sequenced 30,850 times in cid14Δ cells (Fig. 3a,c and 

Fig. 4d). They also were clearly much more abundant than any other sRNAs mapping to 

tRNAs. Consistent with the sequencing data, the tRNA-Glu sRNA was specifically detected 

on northern blots of Ago1-associated RNAs from cid14Δ cells, but not from wild-type cells 

(Fig. 4e). The larger tRNA fragments present in Flag-Ago1 preparations were background 

RNAs, because they were also recovered from an untagged Ago1 strain (Fig. 4f). In 

contrast, tRNA-Glu sRNA was present only in Flag-Ago1 pull-downs (Fig. 4f). However, 

the tRNA-Glu sRNA was not generated by Dcr1 or Rdp1 (Fig. 4e). This observation is 

consistent with the idea that abundant small RNAs, which are in the size range of siRNAs, 

can associate with Ago1. However, the physiological significance of this association 

remains to be determined. In particular, chromatin immunoprecipitation (ChIP) experiments 

indicated that there was no increase in histone H3K9 methylation at the tRNA-Glu locus in 

cid14Δ cells (Fig. 4g). Sense sRNAs loaded onto Ago1 may be unable to initiate H3K9 

methylation because they cannot base pair with sense nascent tRNA-Glu transcripts. The 
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propensity of this sRNA to associate with Ago1 might stem in part from its 5′ U, although 

10 of the other 69 unique tRNAs also begin with U.

Ribosomal RNAs give rise to antisense siRNAs in cid14Δ cells

Small RNAs mapping to rDNA were identified previously and represented about 30% of the 

total number of sequences in the collection of ∼1,300 RITS-associated small RNAs16. 

However, fragments of the abundant rRNAs are present in nearly all small RNA sequence 

libraries, and it had remained unclear whether these rRNA-associated small RNAs were 

produced by the RNAi pathway or were degradation products. We observed that in wild-

type cells small RNAs corresponding to rRNAs were mainly of the sense orientation (Fig. 

5a,b), and furthermore, were generated independently of the RNAi pathway (Fig. 5c), 

suggesting that they may be rRNA degradation products that nonspecifically associate with 

Ago1. In cid14Δ cells, we observed a dramatic increase in small RNAs of the opposite 

orientation (antisense). Unlike the sense-strand small RNAs, antisense ribosomal small 

RNAs required Rdp1 and Dcr1 for their biogenesis (Fig. 5c). These antisense ribosomal 

small RNAs were therefore classified with confidence as siRNAs (rr-siRNA). Ribosomal 

RNA genes are transcribed as a unit by RNA polymerase I, and the completed transcript is 

rapidly processed to form the mature 18S, 5.8S and 28S rRNAs45 (Fig. 5a). Notably, 

antisense rr-siRNAs were more or less equally distributed along the 18S and 5.8S rRNAs, 

whereas most of the antisense 28S rr-siRNAs mapped to the 3′ end (Fig. 5b). Together, these 

observations suggested that, in cid14Δ cells, rRNAs become substrates for dsRNA synthesis 

by the RDRC complex and processing into siRNAs by Dcr1, thereby suggesting competition 

between the components of the RNAi machinery and possible degradation or processing 

initiated by the TRAMP complex. The RNAi pathway is required for H3K9 methylation and 

silencing of foreign promoters inserted within the rDNA repeats16, suggesting that the low 

levels of rr-siRNAs observed in cid14+ cells are functional. The dramatic increase in rr-

siRNA levels in cid14Δ cells is likely to increase the efficiency of rDNA silencing and 

rDNA H3K9 methylation. Our efforts to unambiguously determine the role of Cid14 in 

regulation of rDNA H3K9 methylation were unsuccessful, probably because of the 

previously described variations in rDNA copy number in cid14Δ cells46.

Deletion of Clr4 gives rise to antisense rr-siRNAs

In addition to components of the RNAi pathway, the Clr4 H3K9 methyltransferase and its 

associated factors are required for centromeric siRNA generation in fission 

yeast13,17,18,47,48. The requirement for Clr4 in both H3K9 methylation and siRNA 

generation has been suggested to indicate a chromatin-dependent step in recruitment of 

RITS and RDRC to their target transcripts17,49. Here we found detectable levels of 

antisense rr-siRNAs in Ago1 pull-downs from clr4Δ cells (Fig. 5c). These observations 

suggest that rRNAs can become targets for the RNAi machinery when the components of 

the RNAi pathway are released from centromeres as a result of the lack of H3K9 

methylation in clr4Δ cells, thus allowing them to access rRNAs that would usually be 

processed by the TRAMP pathway. Furthermore, the high rRNA abundance is likely to 

overcome the requirement for H3K9 methylation–dependent recruitment of RDRC, allowing 

siRNA generation on rRNA substrates.
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DISCUSSION

Our results provide a more comprehensive picture of Ago1-associated small RNAs in fission 

yeast and reveal new insights into their biogenesis and genomic distribution. Furthermore, 

our analysis of sRNAs in wild-type and cid14Δ cells revealed a previously unsuspected role 

for the RNA surveillance pathway involving the TRAMP complex in regulation of genomic 

siRNA distribution through removing entire classes of RNAs that have the potential to enter 

the sRNA pathways.

Specific siRNA features

The vast majority of Ago1-associated sRNAs contained U at the 5′ position. This preference 

for 5′ U was mostly attributed to much higher stability of the 5′ U siRNAs, which reflects a 

marked loading preference for those siRNAs beginning with U. Although the relationship 

between 5′ nucleotide composition and biogenesis, loading and stability have not been 

teased apart in most other systems, this preference for a 5′ U in loading might be conserved 

in a large subset of Argonaute and Piwi family proteins. U is the preferred 5′ nucleotide of 

miRNAs of animals and plants31,32, piRNAs of flies33 and mammals34–38 and 21U-

RNAs of worms30, although G is the preferred 5′ nucleotide of endogenous siRNAs of 

worms29 and A is the preferred 5′ nucleotide of the most populated class of endogenous 

siRNAs in plants28.

Role of Cid14 in regulation of siRNA distribution

Members of the family of noncanonical poly(A) polymerases that includes Cid14 seem to 

have central roles in surveillance mechanisms that monitor RNA quality. These enzymes are 

involved in rRNA processing, tRNA processing, snoRNA processing and the interferon 

response23,50. Furthermore, members of this family have been implicated in RNAi and 

siRNA biogenesis in C. elegans, S. pombe and Tetrahymena thermophila17,20,51,52. They 

are therefore likely to have a broad and ancient role in coordination of endogenous RNA 

quality control and the recognition of aberrant and foreign RNAs.

In addition to Cid14, another member of the fission yeast family of noncanonical poly(A) 

polymerases, Cid12, has previously been implicated in siRNA biogenesis17. Whereas in 

cells lacking Cid12 cen siRNAs are absent17, cen siRNA levels in cid14Δ cells are 

dramatically reduced20. Our results provide an explanation for this reduction in cen siRNA 

levels. Cid14 is a subunit of the TRAMP polyadenylation complex, which is involved in 

recognition and targeting of aberrant RNAs for exosomal degradation22,25. Recognition is 

thought to involve polyadenylation of aberrant 3′ ends by Trf4 in S. cerevisiae and Cid14 in 

S. pombe. Notably, Cid12 is a stable component of the RDRC complex, which is required 

for RNAi-mediated heterochromatin formation17. Together with our present observations 

on the specific appearance of antisense rRNA siRNAs (rr-siRNAs) in cid14Δ cells, these 

results suggest a model for the regulation of siRNA levels from different genomic regions 

that involves competition between the TRAMP and RDRC complexes for RNA substrates, 

mediated by the two poly(A) polymerase proteins Cid12 and Cid14. In this model, Cid12 

and Cid14 would have preferences for different substrates but could also act on 

noncanonical substrates. For example, Cid14 would normally promote the targeting of 
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rRNA precursors or the tRNA-Glu fragment for exosomal degradation or processing. In the 

absence of Cid14, such precursors accumulate and become targets for RDRC, recruit RDRC 

away from centromeric transcripts, and thus give rise to rr-siRNAs with a concomitant 

decrease in cen siRNAs (Fig. 6). In support of this competition model, we also observe the 

emergence of antisense rr-siRNAs in clr4Δ cells. Clr4 is required for efficient cen siRNA 

generation and for the physical association of RDRC with RITS and centromeric transcripts, 

and localization of RDRC to centromeric DNA repeats17. The release of RDRC (Cid12) 

from heterochromatic regions probably allows RDRC to more effectively compete for 

abundant rRNA precursors, even in the presence of a functional TRAMP complex.

A second possible level of competition could arise from the preference of Ago1 for small 

RNAs with a 5′ U, independently of RDRC and Dcr1. In this case, any small RNA with a 5′ 

U not degraded by TRAMP and exosome would have the potential to load onto and 

therefore sequester Ago1. Presumably, those sRNAs that resemble Dcr1 products in being 

double stranded with 2-nt 3′ overhangs would have the benefit of preferential loading into 

Ago1, but even single-stranded sRNAs would have some ability to be loaded into, or at least 

associated with, Ago1. As a result, aberrant RNAs may directly interfere with Ago1 function 

at centromeres, providing another possible explanation for reduced cen siRNA levels in 

cid14Δ cells. In support of this model, we find that Ago1 is associated with massive amounts 

of an sRNA, starting with 5′ U and matching sense to tRNA-Glu, in cid14Δ cells. Although 

this sRNA may not be functional, its sheer abundance in ago1-associated small RNAs (14% 

of total reads) suggests that it may directly interfere with Ago1 function at centromeres, 

contributing to the reduced cen siRNA levels in cid14Δ cells.

Gene-specific sRNAs

A substantial portion (∼28,000, 13%) of the Ago1-associated sRNAs in this study map to 

genes and intergenic regions (Figs. 1 and 3, and Supplementary Table 3). In particular, we 

note that the sRNAs that map to intergenic regions account for a large fraction (∼22%) of 

this class. Although intergenic regions are not expected to be as highly transcribed as 

annotated genes, they are transcribed to some extent. A recent study suggests that extensive 

read-through transcription occurs at convergent gene pairs in the G1 phase of the cell cycle, 

giving rise to overlapping sense and antisense transcripts53. Such overlapping transcripts are 

proposed to create a dsRNA substrate for siRNA generation by Dicer, which then leads to 

RITS recruitment and transient heterochromatin formation53. However, Ago1-bound 

sRNAs do not preferentially correspond to convergent gene pairs, suggesting that siRNAs 

resulting from overlapping transcripts in these regions may be too rare in asynchronous 

fission yeast cultures to be represented above the level of background Ago1-bound gene-

specific sRNAs. Finally, we note that global analyses of H3K9 methylation and RNA levels 

show that, for most S. pombe genes, neither H3K9 methylation nor RNA levels change 

substantially in RNAi mutants16,54. These observations suggest that the sRNAs identified 

in our study may act at the post-transcriptional level, but the functional relevance of the 

gene-specific sRNAs, if any, remains speculative and requires further investigation.

In conclusion, eukaryotes have evolved elaborate surveillance mechanisms to monitor the 

quality of the transcriptome. These mechanisms often involve the degradation of aberrant 
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RNAs that lack proper processing signals. Translation-dependent mechanisms such as 

nonsense-mediated mRNA decay act in the cytoplasm to control the quality of open reading 

frames and thereby prevent the production of potentially malfunctioning proteins. The 

surveillance system also recognizes and degrades other types of aberrant transcripts, some of 

which lack the potential to be translated into protein. As we show in this study, such 

aberrant RNAs may have deleterious effects by interfering with the generation of 

endogenous siRNAs or serving as templates to generate new siRNAs with the potential to 

silence genetic information.

METHODS

Fission yeast strains and plasmids

The plasmid pREP1-3×Flag-Ago1 was described previously14. Schizosaccharomyces 

pombe strains used in this study are described in Supplementary Table 4 online and were 

grown at 30 °C in YEA medium (yeast extract supplemented with adenine). If transformed 

with pREP1-3×Flag-Ago1, cells were grown at 30 °C in EMMC−leu+his medium.

Generation of small RNA libraries for 454 deep sequencing

Ago1-associated RNA was isolated as described previously20 and 20–30-nt RNAs were 

PAGE purified. The eluted small RNAs were cloned based upon the preactivated, 

adenylated linkering method described previously31 using a mutant T4 RNA ligase 

(Rnl21–249)55. Single-stranded DNA suitable to go directly into the emulsion PCR step of 

454 pyrosequencing was generated as described previously27.

In silico analysis of sequencing data

We selected 454 reads with matches to the terminal 9 nt of the 5′ linker and the first 9 nt of 

the 3′ linker, which resulted in a total of 349,477 wild-type reads and 315,701 reads in 

cid14Δ. Next, we mapped reads of size 15–29 nt to the S. pombe genome, requiring a perfect 

match to the genome. This yielded 255,487 reads (73%) in wild-type and 240,471 reads 

(76%) in cid14Δ, which we analyzed in this paper. We used the genome and annotations that 

were current as of 18 July 2007, available from The S. pombe Genome Project (http://

www.sanger.ac.uk/Projects/S_pombe/). Unless otherwise noted, all read counts were 

normalized by the number of times the read perfectly matched the genome. The mating-type 

K-region was obtained from PubMed (U57841).

DNA oligonucleotides

Sequences of the DNA oligonucleotides used in this study are described in Supplementary 

Table 5 online.

Northern blot analysis

Ago1-associated RNAs were recovered from Flag-purified Flag-Ago1 protein and analyzed 

by northern blot as described previously20. To detect centromeric siRNAs (cen dg/dh), a 

mixture of oligonucleotides complementary to the siRNAs sequenced by Reinhart and 

Bartel15 were 5′ end labeled. Sense ribosomal small RNAs (rsRNAs), antisense ribosomal 
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siRNAs (rsiRNAs) and tRNA-Glu sRNAs were detected with labeled DNA oligonucleotides 

rsi1-10, rsi11-18 and mb512, respectively.

Chromatin immunoprecipitation

ChIP was performed with the antibody ab1220 (abcam) as described previously18. Primers 

to amplify IRC3R and actin were mb510/511 and mb90/91, respectively. Primers to amplify 

dh/imr1R sequences 1–5 surrounding the tRNA-Glu gene were DM566/567, mb527/528, 

mb521/522, mb523/524 and mb525/526, respectively.

Accession codes

Gene Expression Omnibus: small RNA sequencing data were deposited with the accession 

number GSE12416.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Profiling of Ago1-associated small RNAs from wild-type cells. (a) Ago1-associated RNA 

was isolated and 20–30-nt RNAs were PAGE purified. Small RNA libraries suitable for 454 

deep sequencing were generated as described previously3. IP, immunoprecipitation. (b) Size 

distribution and the 5′-most nucleotide of Ago1-associated small RNAs. (c) Classification of 

Ago1-associated small RNAs isolated from wild-type cells into mitochondrial, repeat-

associated, gene-associated, rRNA-associated, tRNA-associated and snoRNA-associated 

small RNAs. If possible, the orientation of the small RNA with respect to its target is 

indicated. NA, not applicable. (d) Pie chart illustrating percentages for the individual small 

RNA classes relative to the total number of small RNAs sequenced from wild-type cells.
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Figure 2. 
Distribution of reads mapping to genomic loci. (a) Distribution of siRNAs at a ura4+ 

transgene inserted into the outermost centromeric repeats on the right arm of chromosome 1 

(otr1R ::ura4+). ura4+ small RNAs show a five-fold preference for the sense strand, and 

only one of the two strands is found in Ago1. Peaks indicate the number of ura4+ reads with 

5′ ends at each genomic position. (b) Zoomed in version of a. Note that nearly all of the 

reads start with a T (U). (c) Distribution of siRNAs at a centromeric dg repeat. For any given 

position, generally only one of the two centromeric siRNA strands, starting with a T (U), is 

present in Ago1. (d) Distribution of sRNAs at the endogenous adh1+ gene.
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Figure 3. 
Profiling of Ago1-associated small RNAs from cid14Δ cells. Small RNA libraries suitable 

for 454 deep sequencing were generated as for wild-type cells. (a) Classification of Ago1-

associated small RNAs isolated from cid14Δ cells into the same classes as shown in Figure 

1. (b) Size distribution and indication of the 5′-most nucleotide of small RNAs. (c) Pie chart 

illustrating percentages for the individual small RNA classes relative to the total amount of 

small RNAs sequenced from cid14Δ cells. (d) Chromosomal distribution profiles of Ago1-

associated small RNAs isolated from wild-type (blue) and cid14Δ (red) cells. Blue bullets 

indicate the location of tRNA genes.
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Figure 4. 
Small RNAs generated from centromeres in wild-type and cid14Δ cells. (a) siRNA 

distribution at centromeres in wild-type (blue) and cid14Δ (red) cells. IRC3-L/R, unique 

inverted repeats flanking both the left and right sides of centromere 3 (ref. 9); blue bullets, 

tRNA genes in single letter amino acid code. Three identical tRNA-Glu genes are found in 

centromeric heterochromatin, as well as three noncentromeric genes with identical sequence. 

Because all reads come from regions of perfect identity, it is ambiguous from which tRNA-

Glu locus or loci these reads originate. (b) Quantitative RT-PCR was performed to 

determine IRC transcript levels in various mutant backgrounds as indicated on the x-axes. 

H3K9me2, dimethylated H3K9. (c) ChIP experiment showing that H3K9me2 in cid14Δ 

cells, where siRNAs are absent, is not affected at IRC3R. DNA from ChIP reactions with or 

without an antibody against H3K9me2 was used for PCR with primers to amplify the 

indicated sequences. Error bars are s.d. (d) Cloverleaf schematic of tRNA-Glu. Bold line 

represents the most prevalent Ago1-associated small RNA (5′-
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TCCGTCATGGTCCAGTGGCTAGG-3′), which matches the tRNA-Glu 5′ end and D-loop. 

(e) Northern blot of Ago1-associated RNAs demonstrating that the tRNA-Glu sRNA 

(indicated with an asterisk) was specifically detected from cid14Δ cells, but not from wild-

type cells, in a dcr1- and rdp1-independent manner. (f) Larger tRNA fragments are 

background contaminating RNAs, because they were also recovered from an untagged Ago1 

strain. (g) ChIP experiment showing that H3K9me2 around the tRNA-Glu genes found in 

centromere 1 is not different in wild-type and cid14Δ cells. DNA from ChIP reactions with 

or without an antibody against H3K9me2 was used for PCR with primers to amplify imr 

fragments 1–5.
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Figure 5. 
Ribosomal RNAs give rise to antisense siRNAs (rr-siRNAs) in cid14Δ cells. (a) Structure of 

the S. pombe rDNA unit45. The long precursor RNA indicated by the arrow is rapidly 

processed to form the mature 18S, 5.8S and 28S rRNAs through removal of the 5′ and 3′ 

external transcribed spacers (ETS) and the internal transcribed spacers (ITS) 1 and 2. The 

nontranscribed spacer (NTS) separates the different rRNA units at the rDNA locus. (b) 

Antisense rr-siRNAs are produced only in cid14Δ cells. Antisense rr-siRNAs are more or 

less equally distributed along the 18S and 5.8S rRNAs, whereas most of the antisense 28S 

rr-siRNAs map to the 3′ end. (c) Antisense rr-siRNA biogenesis strictly depends on Rdp1 

and Dcr1, but not Clr4. Northern blot was performed with Ago1-associated RNAs isolated 

from different genetic backgrounds as indicated. The same blot was consecutively 

hybridized with probes specific for either centromeric dg/dh repeat–associated siRNAs (ra-

siRNAs), antisense rr-siRNAs or sense rr-sRNAs.
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Figure 6. 
Model for competition between the RNAi and the Cid14–TRAMP RNA surveillance 

pathways. In wild-type cells, RDRC and Dicer are recruited to centromeric repeats by the 

RITS complex, which is tethered to chromatin via siRNA-dependent base-pairing 

interactions with noncoding centromeric RNA (cenRNA) and association with H3K9 

methylated nucleosomes (red lollipops). This results in dsRNA synthesis and the generation 

of repeat-associated siRNAs (rasiRNAs), which mediate further RITS recruitment coupled 

to H3K9 methylation by the Clr4-containing CLRC methyltransferase complex. The 

TRAMP complex targets rRNA fragments for exosomal degradation. In cid14Δ cells, rRNA 

fragments accumulate and become substrates for RDRC and Dicer. This titrates RDRC and 

Dicer away from cenRNA, resulting in the generation of rRNA-siRNAs (rr-siRNAs) and a 

reduction in rasiRNAs.
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Table 1

5′ nucleotide preference for centromeric reads

Informative inferred duplexes

Comparison Preference Duplexes compared Reads

U vs. G 99.9% 5′   U...................C.. 3′ 7,423

3′ ..A...................G   5′ 4

U vs. C 99.7% 5′   U...................G.. 3′ 7,835

3′ ..A...................C   5′ 24

U vs. A 99% 5′   U...................U.. 3′ 9,245

3′ ..A...................A   5′ 90

A vs. G. 96% 5′   A...................C.. 3′ 123

3′ ..U...................G   5′ 4

A vs. C 78% 5′   A...................G.. 3′ 88

3′ ..U...................C   5′ 23

G vs. C 0% 5′   G...................G.. 3′ 0

3′ ..C...................C   5′ 7

Other inferred duplexes

Comparison Duplexes compared Reads

A vs. A 5′   A...................U.. 3′ 99

3′ ..U...................A   5′

C vs. C 5′   C...................G.. 3′ 15

3′ ..G...................C   5′

G vs. G 5′   G...................C.. 3′ 0

3′ ..C...................G   5′

U vs. U 5′   U...................A.. 3′ 7,654

3′ ..A...................U   5′

For the informative duplexes, each comparison indicates the number of 23-nt centromeric reads with the given nucleotides at positions 1 and 21 
relative to the total number of reads from either strand of the inferred duplex. For any given read, we did not require a read from the opposite 
strand. For example, we found 7,423 reads with a 5′ U and a C at position 21, but only 4 reads with 5′ G and A at position 21. We assumed that 
every read with a C at position 21 was once part of a duplex with an opposite strand whose 5′ nucleotide was G, and hence calculated the U versus 
G preference as 7,423 / (7,423 + 4)*100%=99.9%. Similar preferences were obtained when we required reads from both strands for every duplex, 
although some duplexes were not present at all in the centromeric reads. Also listed are reads from the other four types of inferred duplexes, which 
were not informative for assessing strand preferences.
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