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Leveraging Population-Based Clinical Quantitative
Phenotyping for Drug Repositioning
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Computational drug repositioning methods can scalably nominate approved drugs for new diseases, with reduced risk of
unforeseen side effects. The majority of methods eschew individual-level phenotypes despite the promise of biomarker-driven
repositioning. In this study, we propose a framework for discovering serendipitous interactions between drugs and routine
clinical phenotypes in cross-sectional observational studies. Key to our strategy is the use of a healthy and nondiabetic
population derived from the National Health and Nutrition Examination Survey, mitigating risk for confounding by indication.
We combine complementary diagnostic phenotypes (fasting glucose and glucose response) and associate them with
prescription drug usage. We then sought confirmation of phenotype-drug associations in unidentifiable member claims data
from the Aetna Insurance company using a retrospective self-controlled case analysis approach. We identify bupropion as a
plausible glucose lowering agent, suggesting that surveying otherwise healthy individuals in cross-sectional studies can
discover new drug repositioning hypotheses that have applicability to longitudinal clinical practice.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 124–129; doi:10.1002/psp4.12258; published online 22 September 2018.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Observational studies are emerging as ways to

search for repositioning candidates, yet are fraught with

bias and do not consider quantitative phenotypes.
WHAT QUESTION DID THIS STUDY ADDRESS?
� That it is possible to use health monitoring surveys

and longitudinal administrative population databases

coupled with continuous phenotypes to search for and

replicate new repositioning candidates.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� We present a novel approach for drug repositioning
that harnesses health monitoring surveys and multiple
clinical trait phenotypes to avoid confounding bias and
increase specificity of evidence for repositioning discovery.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Our method enhances the repositioning process
using quantitative phenotyping from humans, potentially
closing the gap between computational and clinical
drug repositioning.

Identifying new indications for previously approved drugs,

known as drug repositioning, is an attractive alternative to the

traditional drug discovery paradigm, as previously approved

drugs have substantially lower risk of unforeseen adverse

events.1 Computational drug repositioning builds on this pre-

mise by prescreening for promising repositioning candidates,

with current methods primarily relying on molecular data2–5

and/or the biological literature.6–10 Although these methods

have been successful in predicting plausible repositioning

candidates, a key challenge in computational repositioning

is to provide direct evidence of candidate efficacy in humans,

rather than relying on surrogate biomarkers or indirect evidence.
One alternative is to consider a single or a few quantitative

phenotypes’ association with drug prescription history. In doing
so, one can not only be certain that the phenotypes chosen
are clinically relevant to a disease of interest, but also readily
access effect sizes for power considerations in future clinical
studies. Although such a strategy is appealing, even a study
limited to a single disease may be confounded due to
shared disease etiology,11 off-label drug usage,12 and vari-
able effects of drugs due to disease severity. We propose a

novel framework in which the association between drugs

and quantitative phenotypes is assessed in a noninstitution-

alized population who do not have the target disease for

repositioning.
To demonstrate the potential of this strategy, we search

for putative modulators of glycemic health in a normoglyce-

mic and US-representative population of participants from

the 2005–2012 National Health and Nutrition Examination

Survey (NHANES). We evaluated associations between

115 prevalent drugs and 2 diabetes diagnostic phenotypes,

fasting blood glucose and glucose after following a 2-hour

oral glucose tolerance challenge (or glucose response). By

combining findings from two glycemic phenotypes, we iden-

tified a single potential antidiabetic candidate associated

with lower glycemic phenotypes, the antidepressant bupro-

pion. Notably, other commonly used antidepressants did

not show multimodal antidiabetic potential. To replicate the

association, we designed a retrospective self-controlled

study in a normoglycemic cohort derived from unidentifiable

member claims data provided by Aetna Insurance, and

again verified that bupropion, but not other commonly
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prescribed antidepressants, was associated with lower lev-
els of fasting blood glucose after exposure to the drug.

METHODS
Cross-sectional study cohort
The cross-sectional study cohort was derived from a combi-
nation of four independent waves of the continuous NHANES:
the 2005–2006, 2007–2008, 2009–2010, and the 2011–2012
surveys.22 NHANES is a cross-sectional survey conducted by
the United States Centers for Disease Control and Prevention,
wherein a large number of participants are recruited to
answer a number of questions pertaining to their medical,
psychosocial, and sociodemographic histories. A random sub-
set of respondents also receive extensive anthropometric and
laboratory testing, including a variety of routine clinical mea-
sures. For this study, several variables were obtained for each
respondent, including: (1) self-reported history of diabetes
(field DIQ010 from the respective DIQ questionnaire data-
sets); (2) fasting blood glucose and fasting time, as well as
glucose taken at 2-hours postoral glucose tolerance test (field
LBXGLU, PHASFSTHR, and LBXGLT, respectively, from the
respective GLU laboratory datasets); (3) self-reported pre-
scription drug usage at the time of interview (including generic
drug names and drug category, as defined in the Lexicon
Plus database, Cerner Multum; see Figure 1a); (4) routine
demographic information, including age (field RIDAGEYR),
sex (field RIAGENDR), race/ethnicity (field RIDRETH1), and
body mass index (BMI; field BMXBMI); and (5) history of
chronic disease, including hypertension (field BPQ020), coro-
nary heart disease (field MCQ160c), and kidney disease (as
ascertained using field KIQ022). Respondents without

complete information for any of these fields were excluded
from further analysis. To obtain a nondiabetic final cohort for
association testing, respondents were filtered to include those
with no reported history of diabetes, no use of antidiabetic
medications at the time of interview, and normal glycemic sta-
tus (fasting blood glucose less than 100 mg/dL according to
American Diabetes Association guidelines13).

Drug-phenotype association in the cross-sectional
study cohort
Linear regression was performed to individually test the
association of usage of 1,133 drugs (mean [95% confidence
interval (CI)] drugs per participant 1.16 [1.11–1.22]) and either
fasting blood glucose or blood glucose taken at 2-hours
postoral glucose tolerance test. All testing was performed
controlling for age, sex, race, BMI, number of hours fasted,
and history of hypertension, coronary heart disease, or
chronic kidney disease. Variables were chosen to include a
variety of cardiometabolic health-modifying demographics and
comorbidities associated with poor cardiometabolic health
(Saydah et al.15 2017); all controlling variables were included
in all regression models regardless of significance. Regres-
sion coefficients and significance were estimated using the
survey package in R software to account for the stratified
design of NHANES.23 To avoid erroneous associations, drugs
with <12 prescribed individuals were removed from further
analysis (see Austin & Steyerberg17 for rationale). For the
remaining 115 drugs, regression coefficients and significance
were obtained and corrected for multiple testing using the
false discovery rate (FDR) method.25 Drugs with loosely sig-
nificant (FDR <0.3), negative associations with both fasting
blood glucose and blood glucose following a 2-hour postoral

Figure 1 Quantitative-phenotype based repositioning overview. (a) The National Health and Nutrition Examination Survey (NHANES;
cross-sectional) quantitative-phenotype based repositioning workflow. (b) Conceptual diagram of claims data-based replication efforts.
FDR, false discovery rate.
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glucose tolerance test were considered candidate antidiabetic
agents (Figure 1a). To provide additional confidence in the
results of the association analysis and the loose FDR cutoff,
simulation studies were performed as follows: (1) drug use
labels were permuted randomly 50 times for numbers of
exposed individuals ranging from 12–200 individuals;
(2) survey-adjusted regressions were performed as above;
and (3) the resulting absolute effect sizes were compared to
FDR significant drugs.

Longitudinal validation cohort and self-controlled
analyses
The longitudinal validation cohorts were derived from uniden-
tifiable member claims data from Aetna Insurance, spanning
8 years (2008–2016) with over 50 million lives in all 50 states.
To obtain drug-specific nondiabetic cohorts, the following
restrictions were made: (1) patients did not have any instance
of diabetes diagnosis (International Classification of Disease
(ICD)-9 codes 250–250.93) and were not prescribed any
antidiabetic medications during their entire subscription to
Aetna Insurance (any of the following: metformin, Gluco-
phage, Glumetza, Glyburide, Glipizide, Glimepiride, Repagli-
nide, Nateglinide, Rosiglitazone, Pioglitazone, Sitagliptin,
Saxagliptin, Linagliptin, Liraglutide, Canagliflozin, Dapagliflo-
zin, Insulin glulisine, Insulin lispro, Insulin aspart, Insulin
glargine, Insulin detemir, Insulin isophane, Dapagliflozin,
Sulfonylureas, Meglitinides, Thiazolidinediones, DPP 4
inhibitors, Byetta, Victoza, Invokana, Farxiga, Apidra, Novo-
log, Humalog, Lantus, Levemir, Humulin N, or Novolin N);
(2) patients were prescribed one of the study drugs (bupro-
pion, escitalopram, or gabapentin); (3) patients were
enrolled in an insurance plan for at least 1 year before the
first prescription date for the respective study drug; (4)
patients had a fasting blood glucose measurement up to 1
year before starting the respective study drug (“pre” mea-
surement), and between 8 and 60 days after starting (“post”
measurement; Figure 1b). Time points were chosen to
enable the collection of at least two glucose measurements
(typically taken annually, per the American Diabetes Associ-
ation recommendations), and for individuals to have reached
steady-state concentrations of study drug (typically �1
week) while still minimizing time-dependent variation. Preva-
lence of three chronic diseases were ascertained for all
patients fitting these criteria by searching for billing codes
for hypertension (ICD-9 codes 401–405), coronary heart
disease (ICD-9 codes 410–414.9), and chronic kidney dis-
ease (ICD-9 codes 585–585.9).

Following cohort creation, self-controlled analysis was per-
formed for each dose of each study drug using a paired t test
between the preglucose and postglucose measurements, as
previously described.19 More recent methods have proposed
additional corrections to the simple paired t test method; how-
ever, these methods examine longer time periods of exposure
(which allows for additional confounders to accumulate), and a
population containing cases in addition to healthy controls.26 In
contrast, the method described here relies on a very short anal-
ysis window. Dosage forms of study drugs with <198 partici-
pants were removed from further analysis due to power
considerations (assuming a small effect size, Cohen’s d equal
to 0.2, requiring power of 80% or greater, see ref. 27 for details).

Study drugs with significant (t test P value< 0.05) and negative
associations (improved glucose response) with the predrug to
postdrug regimes were considered replicated agents. For the
purposes of validation, multiple testing correction was not
required due to the small number of independent tests (three
total), and, furthermore, would not alter the ascertainment of
significance.

RESULTS
Association of bupropion with complementary diabetes
phenotypes in a normoglycemic population
To develop a nondiabetic cohort from NHANES, we began
with all participants in the 4 surveys considered, totaling
40,790 participants. We first excluded participants without
complete demographic, chronic disease history, and glyce-
mic (glucose and tolerance testing) information resulting in a
subcohort of 7,229 participants. These participants had simi-
lar demographics as compared to the full cohort in terms of
sex, race (black, Hispanic, and other race), and chronic dis-
ease burden (Z-test for proportions, P> 0.1). The subcohort
did differ significantly in terms of age (�10 years older on
average, two-sample t test, P< 0.05), and BMI (two-sample t
test, P< 0.05); however, these did not impact chronic disease
rates (see Supplementary Table S1 for demographics of full
and subcohorts). We then excluded participants with a
reported history of diabetes, abnormal fasting blood glucose
(including diabetes and prediabetes, according to the Ameri-
can Diabetes Association guidelines, �100 mg/dL), and who
were currently prescribed an antidiabetic drug, to obtain a
final NHANES-derived cross-sectional cohort of 3,831
participants with putatively normoglycemic status (see
Table 1 for demographic characteristics of the cohort).

Using the normoglycemic cohort, we performed compre-
hensive association testing between prescription drug use
and either fasting blood glucose or blood glucose following an
oral glucose tolerance test, adjusting for age, sex, race, and
BMI. Of the 115 prescription drugs with power to detect an
association (from 1,133 total drugs tracked), 16 drugs had
significant associations with either fasting blood glucose or
blood glucose following an oral glucose tolerance test. Even
with a lenient significance cutoff of FDR <0.3, all but one
drug-trait association fell within the 95th percentile of abso-
lute effect sizes in simulation studies (see Methods section,
Supplementary Figure S1). Five of the 16 significant drugs
had concordant, negative associations with both glycemic
measures (Table 2); however, only the antidepressant bupro-
pion was significantly and negatively associated with both
glycemic phenotypes (survey-corrected linear regression
b <0, FDR <0.3, Figure 1a). Bupropion was associated with
22.3 mg/dL (95% CI [24.2, 20.4]) lower fasting blood
glucose, and 29.6 mg/dL (95% CI [215.7, 23.5]) lower blood
glucose following an oral glucose tolerance test. Notably, we
did not observe significant differences in age, BMI, or chronic
disease burden between those exposed to bupropion and
those not exposed (full demographic differences between
exposed and unexposed participants are available in Supple-
mentary Table S2).

In addition to bupropion, we selected escitalopram and
gabapentin for replication in longitudinal claims data, which
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had stronger negative associations than bupropion with

blood glucose following an oral glucose tolerance test and

fasting glucose, respectively. We reasoned that gabapentin

and escitalopram would serve as negative controls and

demonstrate whether multiple complementary associations

are required for glycemic status improvement in a longitudi-

nal setting. Escitalopram is an antidepressant like bupro-

pion and would further serve as a control for confounding

by indication (i.e., whether improvement in depression sta-

tus, rather than use of drug, directly drives the effect).

Replication in a retrospective self-controlled study
To replicate the association of bupropion with improved fast-

ing blood glucose, we performed a self-controlled study of

fasting blood glucose using unidentifiable member claims

data from Aetna Health Insurance, Inc., containing informa-

tion from 50 million individuals over 9 years. We extracted

three nondiabetic populations with exposure either to bupro-

pion or to one of two control antidepressants, duloxetine, and

escitalopram (see Table 1 for demographic characteristics of

each drug-exposed cohort). Age, sex, and chronic disease

burden (as ascertained by hypertension, coronary heart dis-

ease, and chronic kidney disease status) were not signifi-

cantly different between drug-exposed cohorts (analysis of

variance, P> 0.1). Within each drug-exposed cohort, we

identified individuals with a fasting glucose measurement up

to a year before being exposed (glucose measurements are

typically performed on an annual basis13), and within 2

months after being exposed (with a buffer of 8 days to reach

steady-state drug concentration). Within each drug, we

selected dosage forms with at least 198 individuals for well-

powered association testing. For bupropion, the only dosage

form with sufficient individuals was 150 mg sustained release

with 383 individuals (of 11 total dosage forms), for escitalo-

pram only 10 mg was powered with 199 individuals (of 3 total

dosage forms), and for gabapentin only 300 mg was powered

with 547 individuals (of 6 total dosage forms). We note here

that, although there are substantial differences in the raw

doses of drug in this analysis, the dosage forms presented in

this study all represent the recommended initial dose for each

given formulation. We found that only bupropion 150 mg sus-

tained release was associated with significantly decreased

fasting blood glucose (mean difference 21.92 mg/dL, 95% CI

[22.97, 20.87], P< 0.0005, see Table 3).

DISCUSSION

In this study, we describe preliminary results from a novel

quantitative phenotype-based drug repositioning methodol-

ogy. Our methodology uses a combination of complemen-

tary quantitative phenotypes to efficiently reduce the

number of potential repositioning candidates. Our method

enables straightforward follow-up in prospective investiga-

tions and provides estimation of the population sizes

required to detect modulation of disease-relevant

Table 1 Demographic breakdown of NHANES (cross-sectional) and unidentifiable member claims data from Aetna Insurance (longitudinal) cohorts

Claims dataa

NHANES

Nondiabetic

Bupropion

(150 mg SR)

Escitalopram

(10 mg)

Gabapentin

(300 mg)

No. of patients 3,381 378 199 547

Age, mean [95% CI] 42.5 [41.7–43.2] 56.4 [55.2–57.6] 58.5 [56.3–60.7] 64.6 [63.5–65.7]

% Female [95% CI] 0.58 [0.57–0.6] 0.7 [0.65–0.75] 0.72 [0.66–0.78] 0.71 [0.67–0.75]

Race – – –

% White [95% CI] 0.75 [0.73–0.77]

% Black [95% CI] 0.11 [0.09–0.12]

% Latino [95% CI] 0.08 [0.07–0.10]

% Other race [95% CI] 0.06 [0.04–0.08]

BMI, mean [95% CI] 27 [26.7–27.2] – – –

Hypertension, % diagnosed 0.2 [0.19–0.22] 0.53 [0.48–0.58] 0.53 [0.46–0.6] 0.69 [0.65–0.73]

Coronary heart disease, % diagnosed 0.01 [0.01–0.02] 0.13 [0.1–0.17] 0.17 [0.11–0.22] 0.23 [0.2–0.27]

Chronic kidney disease, % diagnosed 0.01 [0.009–0.02] 0.05 [0.03–0.07] 0.06 [0.02–0.09] 0.12 [0.09–0.15]

aBMI, body mass index; CI, confidence interval; NHANES, National Health and Nutrition Examination Survey; SR, sustained release.

Race and BMI information is not available for nonidentifiable Aetna Insurance claims data.

Table 2 NHANES (cross-sectional) results for drugs associated (FDR <0.3) with decreased fasting glucose and improved glucose tolerance

Drug name

Participants

prescribed (of 3,831)

Observed effect on fasting

glucose, mg/dL [95% CI] FDR

Observed effect on glucose

tolerance, mg/dL [95% CI] FDR

Bupropion 39 22.3 [24.2, 20.4] 0.29 29.6 [215.7, 23.5] 0.11

Escitalopram 42 21.9 [23.7, 0] 0.34 213.5 [222.3, 24.7] 0.11

Gabapentin 30 22.6 [24.6, 20.6] 0.24 24.9 [228, 18.2] 0.93

Levothyroxine 196 21.5 [22.5, 20.5] 0.17 21.4 [26.1, 3.3] 0.91

Trimaterene 48 22.1 [23.9, 20.3] 0.29 27.3 [217.2, 2.7] 0.54

CI, confidence interval; FDR, false discovery rate; NHANES, National Health and Nutrition Examination Survey.
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phenotypes by a candidate drug. Furthermore, we perform

all association testing in a nondiseased and otherwise

nationwide representative population to avoid common

sources of confounding.
To demonstrate our complementary phenotype-based

approach, we predicted repositioning candidates with the

potential to modulate diabetes health using a 3,831 person

nondiabetic cohort in NHANES. Fasting blood glucose and

glucose following an oral glucose tolerance test capture

related but distinct etiological components of diabetes

health, and impairment in either test implies distinct disease

etiology (hepatic and muscular insulin resistance, respec-

tively).14 By combining these two phenotypes, we identified

a single candidate, the antidepressant bupropion, associ-

ated with improved glycemic status across multiple etiologi-

cal pathways in diabetes.
Bupropion is well-known as a treatment for obesity

comorbid with diabetes, both alone15,16 and in combination

with naltrexone,17 as well as a monotherapy for comorbid

depression and diabetes.18 However, what was unclear

from the previous studies is the degree to which the

observed glycemic effects were caused by improvement in

BMI or depression, which subsequently led to improvement

in glycemic status (confounding by indication). In contrast,

we explicitly address confounding by adiposity, depression

status, and glycemic status: (1) by explicitly adjusting for

BMI and cardiometabolic disease status in all associations;

(2) by testing another commonly used antidepressant for

associations with improved glycemic health; and (3) by test-

ing for associations in a nondiabetic and normoglycemic

cohort, decreasing the likelihood of more complex con-

founding scenarios (e.g., statins lower low-density lipopro-

tein levels, which, in turn, lowers heart attack and stroke

risk simultaneously). Although we explicitly control for sev-

eral key cardiometabolic factors in our models, we note

here that there are likely additional hidden confounders that

may influence the observed effects, including prescription

patterns and unascertained disease status. We, therefore,

urge further follow-up clinical studies that explicitly control

for these and other known variables that may be possible

confounders to the extent possible.
Another key benefit of our method is the ability to design

clinical studies derived from our potential discoveries; we

demonstrated this benefit by performing a retrospective

self-controlled study using unidentifiable member claims

data from Aetna Insurance. By designing an experiment by

which patients serve as their own control, we avoid time-

invariant confounding.19 We successfully replicated that

bupropion alone among the drugs considered is associated

with lower fasting blood glucose. Neither escitalopram nor

gabapentin, which were more strongly associated with

improved fasting glucose and glucose tolerance than bupro-

pion in NHANES, respectively, showed a significant impact
on fasting blood glucose in the self-controlled study. This

result underscores the importance of combining multiple

quantitative phenotypes to achieve high specificity in reposi-

tioning candidates and to enable future clinical trials.
Although we have discussed the potential of combining

complementary quantitative phenotypes for drug reposition-
ing, we do note that it has some limitations. Chief among

these is the requirement that nondiseased individuals are

assayed for quantitative phenotypes. Whereas common

diseases by necessity have associated routine diagnostics,

for example, fasting blood glucose and glucose tolerance for
diabetes or lipid levels and blood pressure for cardiovascular

disease, repositioning for rarer diseases may require non-

standard tests. We expect that this limitation will diminish

over time with the development of birth cohorts (e.g., Avon

Longitudinal Study of Parents and Children (ALSPAC)20), and
large biobanking initiative (e.g., UK Biobank21 among others),

most of which include clinical phenotyping of all participants

to complement a variety of “omic measurements.” Although

this may not be the case in follow-up replication studies,

whereas ascertainment bias (i.e., some tests are prescribed
preferentially to those suspected of having a disease) may

skew results. It is important in future studies, therefore, to

contextualize diagnostic testing as either routine preventative

screening, or high-risk screening. A second potential limita-

tion is the requirement for multiple complementary quantita-
tive phenotypes that are associated with the disease of

interest for repositioning. For diseases in which such pheno-

types are not available, further biomarker identification may

be required before using our repositioning strategy. We note

that any quantitative phenotype-based methodology would
likely require disease-associated phenotypes before produc-

ing meaningful and interpretable results. Last, because we

assess all associations between drugs and phenotypes in a

nondiseased population, it will be important to verify any

repositioning candidates that arise from this method in
patients with diseases, and especially so for cardiometabolic

diseases like diabetes, in which insulin sensitivity differs dra-

matically between healthy individuals and those with disease.

We, therefore, recommend follow-up studies of bupropion’s

effect on glycemic status in a diabetic population.
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Table 3 Unidentifiable member claims data from Aetna Insurance (longitudinal)

replication analysis of selected drugs

Drug name (dosage)

Sample

size

Mean difference

in fasting glucose,

mg/dL [95% CI] P value

Bupropion (150 mg SR) 378 21.92 [22.97, 20.87] <0.0005

Escitalopram (10 mg) 199 0.08 [21.31, 1.47] N.S.

Gabapentin (300 mg) 547 0.24 [20.62, 1.10] N.S.

CI, confidence interval; N.S., not significant; SR, sustained release.
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