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Abstract

Complex diseases are often caused by interplay between genetic and environmental factors. Existing gene–environment interaction
(G�E) tests for rare variants largely focus on detecting gene-based G�E effects in a single study; thus, their statistical power is limited by
the sample size of the study. Meta-analysis methods that synthesize summary statistics of G�E effects from multiple studies for rare var-
iants are still limited. Based on variance component models, we propose four meta-analysis methods of testing G�E effects for rare var-
iants: HOM-INT-FIX, HET-INT-FIX, HOM-INT-RAN, and HET-INT-RAN. Our methods consider homogeneous or heterogeneous G�E
effects across studies and treat the main genetic effect as either fixed or random. Through simulations, we show that the empirical distribu-
tions of the four meta-statistics under the null hypothesis align with their expected theoretical distributions. When the interaction effect is
homogeneous across studies, HOM-INT-FIX and HOM-INT-RAN have as much statistical power as a pooled analysis conducted on a single
interaction test with individual-level data from all studies. When the interaction effect is heterogeneous across studies, HET-INT-FIX and
HET-INT-RAN provide higher power than pooled analysis. Our methods are further validated via testing 12 candidate gene–age interac-
tions in blood pressure traits using whole-exome sequencing data from UK Biobank.

Keywords: meta-analysis; gene–environment interaction; variance component method; rare variants; whole-exome sequencing; blood
pressure; UK Biobank

Introduction
With the advancement of high-throughput sequencing technolo-
gies (Ansorge 2009), a variety of statistical tests (Li and Leal 2008;
Madsen and Browning 2009; Wu et al. 2011; Lee et al. 2012; Cheng
et al. 2014; Sun et al. 2016; Liu et al. 2019) have been developed to
identify associations between rare variants and complex diseases
or traits. For most complex diseases or traits, thousands of ge-
netic variants identified by genome-wide association studies
(GWASs) explain only a small proportion of their heritabilities,
leaving much of those heritabilities still unexplained; this phe-
nomenon is known as “missing heritability” (Tong and
Hernandez 2020). Variants identified through GWASs are mostly
common variants with minor allele frequencies (MAFs) larger
than 5%. Studies have demonstrated that rare variants may ex-
plain some of the “missing heritability” (Lee et al. 2014; Kao et al.
2017; Yu et al. 2018). For example, two rare variants have been
identified to be associated with low-density lipoprotein choles-
terol and high-density lipoprotein cholesterol (Igartua et al. 2017).
Five rare variants have been associated with low systolic blood
pressure (SBP) (He et al. 2017). On the other hand, complex dis-
eases are often caused by a combination of genetic factors, envi-
ronmental exposures, and the interplay between them; thus,
gene–environment interaction (G�E) may explain some of the
“missing heritability” of complex diseases (Lim et al. 2020).

Recently, an increasing number of statistical methods have
been developed for testing G�E with rare variants. These meth-
ods aim to detect individually weak but collectively strong G�E
effects in a functional set, typically a gene or a gene region. Tzeng
et al. (2011) proposed a similarity-based regression approach
(SIMreg) to test the G� E of rare variants in which trait similarity
is regressed on pairwise genetic similarity. The approach is appli-
cable for both continuous and binary traits and allows testing for
main genetic effects, interaction effects, and joint effects. Jiao
et al. (2013) presented a gene-based G�E test (SBERIA) for case-
control studies in which gene-environment correlations are used
to filter out variants showing no promising G�E effects. Lin et al.
(2013) proposed a G�E set association test (GESAT) under gener-
alized linear models and tested the interaction effect between a
marker set and an environmental variable for continuous and
discrete traits. GESAT assumes the G�E effect to be random and
employs a variance component score test in a linear mixed model
framework. Chen et al. (2014) proposed two G�E tests for rare
variants: INT-FIX, which treats main genetic effects as fixed
effects, and INT-RAN, which treats main genetic effects as ran-
dom. Lin et al. (2016) proposed the interaction sequence kernel as-
sociation test (iSKAT) for assessing rare variants by
environmental interactions, which is robust to the proportion of
causal variants in a gene and the directions of the variants’
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interaction effects. Liu et al. (2016) developed a unified gene-based
G�E test, which filters out variants with little evidence of interac-
tion effects. This method was shown to improve the power of in-
teraction analysis by means of an optimal filtering threshold.

All these methods are designed for the analysis of interactions
in a single study, which is often underpowered due to limited
sample size. A very large number of samples are indeed neces-
sary for identifying genetic variants, especially for finding G�Es
(Smith and Day 1984; McCarthy et al. 2008). To overcome this lim-
itation, the sharing of results among consortia on the same dis-
ease or trait and meta-analyses that combine the results of
multiple studies are routine practices (Panagiotou et al. 2013). A
meta-analysis that combines summary results rather than
individual-level raw data from multiple independent studies
offers an increased effective sample size and boosted statistical
power (Evangelou and Ioannidis 2013; Hu et al. 2013; Shi and
Nehorai 2017; Jin and Shi 2019a, b). However, little work has been
done on the meta-analysis of G� Es with rare variants. Wang
et al. (2018) suggested a gene-based meta-analysis with filtering
to detect G�E effects in case-control studies. In this approach, a
variant-level “meta-filtering” test is first conducted, and meta-
analysis techniques are then applied to test gene-based G�E
effects on the retained variants.

INT-FIX and INT-RAN are gene-based G�E tests for rare var-
iants in a single study, which were proposed by Chen et al. (2014)
and are implemented in the rareGE package. In this study, we de-
velop corresponding meta-analysis methods based on INT-FIX
and INT-RAN, which are two powerful and accessible methods
for testing G�Es at the study level. Our meta-analysis methods
combine gene-level summary statistics from studies via INT-FIX
or INT-RAN tests and consider the G�E effect to be either homo-
geneous or heterogeneous across studies. In simulation studies,
we have evaluated our methods by examining their null distribu-
tions and statistical power. Our methods have been further ap-
plied in testing 12 candidate gene–age interactions in blood
pressure (BP) regulation (Simino et al. 2014) using whole-exome
sequencing data from UK Biobank (Zhao et al. 2020).

Methods
INT-FIX and INT-RAN in individual studies
Suppose that there are K studies in a meta-analysis for testing
gene-based G�E effects of rare variants in a region. For the k-th
study, nk individuals have been sequenced in the region, which
has mk variants, and yki and Gki¼ ðgki1; gki2; � � � ; gkimk

Þ denote the
phenotype and genotypes of individual i ð1˚i˚nkÞ. Under the addi-
tive genetic model, gkij¼ 0, 1, or 2 are the numbers of minor
alleles. The first element of the covariate vector
Xki¼ ðXki1;Xki2; � � � ;Xki;ðpkþ1ÞÞ is the intercept, with a value of 1, and
the other pk elements are covariates. The environmental factor
Eki is included as one of the covariates for adjusting its main ef-
fect.

Under the assumption of independent observations, consider
the following linear mixed model for testing the gene by Eki inter-
action as follows:

yki¼XkiakþGkiWk1bkþEkiGkiWk2ckþeki; (1)

where eki � Nð0;r2
kÞ is an error term and ak ¼ ðak1; ak2; � � � ; akðpkþ1ÞÞT

represents the effects of the intercept and covariates.
bk ¼ ðbk1; bk2; . . . ; bkmk

ÞT and ck ¼ ðck1; ck2; . . . ; ckmk
ÞT are the main

genetic effects and G�E effects, respectively. Assume that ck has a
mean of 0 and a covariance matrix sImk , where Imk denotes the mk �
mk identity matrix. Wk1 and Wk2 denote the mk �mk diagonal
weight matrices with elements wkj1 and wkj2 (1˚j˚mk), which are the
weights of the main genetic effects and G�E effects, respectively.

Let yk ¼ ðyk1; yk2; . . . ; yknk
ÞT be the phenotype vector, let Ek ¼

diagfEkig be an nk � nk diagonal matrix, and let
ek ¼ ðek1;ek2; � � � ;eknk

ÞT be the error vector. The linear mixed model
is written in matrix form as

yk ¼ Xkak þ GkWk1bk þ EkGkWk2ck þ ek: (2)

The null hypothesis with no interaction effect for any variant
in the gene is H0: s ¼ 0, and the alternative hypothesis of at least
one variant having a nonzero interaction effect is H1 : s > 0.

In the INT-FIX method (Chen et al. 2014), the main genetic
effects are assumed to be fixed effects, and the bk are the regres-
sion coefficients of the main genetic effects. Under the null hy-
pothesis,

yk ¼ Xkak þ GkWk1bk þ ek; (3)

where VarðekÞ ¼ V ¼ diagfr2
kg. By means of maximum likelihood

or restricted maximum likelihood functions, ak and bk can be es-
timated; the corresponding estimates are denoted by a^

kF and b^
kF,

respectively. Then, the estimated mean and covariance matrix of
yk are

l^
kF ¼ Xka

^
kF þ GkWk1b

^
kF;

and

V̂F¼ diag r̂kF 2;

where l^
kF ¼ ðl̂k1F;l̂k2F; � � � ;l̂knkFÞ

T.
The INT-FIX statistics of testing the G�E interaction is

Qk;INT�FIX¼
Xmk

j¼1

w2
kj2S2

kj;INT�FIX; (4)

where

Skj;INT�FIX¼
Xnk

i¼1

Ekigkijðyki�l̂kiFÞ
r̂kF 2

(5)

is the G�E score statistic for the j-th variant. The asymptotic dis-
tribution of Qk;INT�FIX is a mixture of chi-square distributions, and
the P-value can be calculated via Kuonen’s saddlepoint method
(Kuonen 1999; Chen et al. 2014).

In the INT-RAN method (Chen et al. 2014), the main genetic
effects are assumed to be random, and the elements of bk follow
a normal distribution with zero mean and covariance matrix dImk .
Under the null hypothesis, the working model is written as (3),
with VarðykÞ ¼ dGkWk1Wk1GT

k þ r2
kInk , and a^

kR, d̂R, and r̂kR 2 can be
numerically estimated by means of maximum likelihood or re-
stricted maximum likelihood functions (Chen et al. 2014). The es-
timated mean and covariance matrix of yk are

l^
kR ¼ Xka

^
kR þ GkWk1b

^
kR
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V̂kR ¼ d̂RGkWk1Wk1GT
k þ r̂kR 2Ink

where l^
kR ¼ ðl̂k1R;l̂k2R; � � � ;l̂knkRÞ

T and
b^

kR ¼ d̂RWk1GT
k V̂�1

kR ðyk � Xka
^
kRÞ.

The INT-RAN test statistic is

Qk;INT�RAN¼
Xmk

j¼1

w2
kj2S2

kj;INT�RAN; (6)

where

Skj;INT�RAN¼
Xnk

i¼1

Ekigkijðyki�l̂kiRÞ
r̂kR 2

(7)

is the G�E score statistic for the j-th variant. The Qk;INT�RAN sta-
tistic asymptotically follows a mixture of chi-square distribu-
tions, and the corresponding P-value can again be computed via
Kuonen’s saddlepoint method (Kuonen 1999; Chen et al. 2014).

Meta-analysis of summary statistics from INT-
FIX and INT-RAN
The meta-analysis of G�E effects is performed based on sum-
mary statistics from each study. The required summary statistics
for each study include the MAFs of all variants, the G�E score
statistic (5) or (7) for each variant and the regional G�E relation-
ship matrix (Zhang and Lin 2003; Wu et al. 2011).

For the meta-analysis results of INT-FIX, the regional G�E re-
lationship matrix of the k-th study is

UkF ¼Wk2GT
k Ekð V̂�1

kF � V̂�1
kF ZkðZT

k V̂�1
kF ZkÞ�1ZT

k V̂�1
kF ÞEkGkWk2; (8)

where Zk ¼ ðZk1;Zk2; . . . ;Zknk
ÞT and Zki ¼ ðXki;GkiWk1Þ.

For INT-RAN, the regional G�E relationship matrix of the k-th
study is

UkR ¼Wk2GT
k EkðV̂�1

kR � V̂�1
kR XkðXT

k V̂�1
kR XkÞ�1XT

k V̂�1
kR ÞEkGkWk2: (9)

For convenience, we assume that all variants can be observed
in each of the K studies, that is, m1¼m2¼ � � � ¼mK¼m. When some
variant is monomorphic in a study, its G�E score statistic and
corresponding elements in the relationship matrices can be sim-
ply set to zero.

We consider two types of meta-analyses, under scenarios in
which the G�E effects are homogeneous and heterogeneous
across different studies. For the scenario in which the G�E
effects are homogeneous across the different studies, we propose
the following G�E test statistics for the meta-analysis of sum-
mary statistics from INT-FIX and INT-RAN:

QHOM�INT�FIX¼
Xm

j¼1

ð
XK

k¼1

wkj2Skj;INT�FIXÞ2; (10)

QHOM�INT�RAN¼
Xm

j¼1

ð
XK

k¼1

wkj2Skj;INT�RANÞ2: (11)

Similar to the meta-analysis of homogeneous main genetic
effects presented in Lee et al. (2013), these two statistics first com-
bine the weighted G�E score statistics across different studies
for each variant and then aggregate the squared score statistics
of all variants in a gene. Here, the weights are based on the MAFs

of the variants estimated across all studies. Under the null hy-

pothesis, QHOM�INT�FIX asymptotically follows a mixed 1-df chi-

square distribution (Lee et al. 2013; Chen et al. 2014), namely,

QHOM�INT�FIX�
Pm

j¼1
kjv

2
j;1, where k1;k2; � � � ;km are the nonzero eigen-

values of

WINT�FIX ¼
XK

k¼1

Wk2UkFWk2; (12)

and the P-value can be calculated via Kuonen’s saddlepoint

method (Kuonen 1999). Similarly, we have the test statistic

QHOM�INT�RAN�
Pm

j¼1
kjv

2
j;1, where k1;k2; � � � ;km are the nonzero eigen-

values of

WINT�RAN ¼
XK

k¼1

Wk2UkRWk2: (13)

For the scenario in which the G�E effects are assumed to be

heterogeneous across the different studies, we propose the fol-

lowing G�E test statistics for the meta-analysis of the summary

statistics from INT-FIX and INT-RAN:

QHET�INT�FIX¼
Xm

j¼1

XK

k¼1

w2
kj2S2

kj;INT�FIX; (14)

QHET�INT�RAN¼
Xm

j¼1

XK

k¼1

w2
kj2S2

kj;INT�RAN: (15)

As in the meta-analysis of heterogeneous main genetic effects

presented in Lee et al. (2013), these test statistics aggregate the

squared and weighted score statistics across all studies and all

variants. In HET-INT-FIX and HET-INT-RAN, the weights are

based on the study-specific MAFs. Here, QHET�INT�FIX�
Pm

j¼1
kjv

2
j;1,

where k1;k2; � � � ;km are the nonzero eigenvalues of WINT�FIX, and

QHET�INT�RAN�
Pm

j¼1
kjv

2
j;1, where k1;k2; � � � ;km are the nonzero

eigenvalues of WINT�RAN. The P-values of the mixed v2s can also

be calculated via Kuonen’s saddlepoint method (Kuonen 1999).
For trans-ethnic meta-analyses, we assume that the G�E

effects in studies of the same ancestry are homogeneous, and

heterogeneous for studies of different ancestries. Suppose that

there are K studies from B ancestries. In the b-th ancestry, there

are kb studies, b ¼ 1; 2; . . . ;B. Denote K~
b ¼ k1 þ k2 þ � � � þ kb as the

number of studies from ancestry 1 to b, in particular, K~
0 ¼ 0. We

propose the following G�E test statistics for the trans-ethnic

meta-analysis of the summary statistics from INT-FIX and INT-

RAN:

QHET�INT�FIX¼
Xm

j¼1

XB

b¼1

ð
XK~

b

k¼K~
b�1
þ1

wkj2Skj;INT�FIXÞ2; (16)

QHET�INT�RAN¼
Xm

j¼1

XB

b¼1

ð
XK~

b

k¼K~
b�1
þ1

wkj2Skj;INT�RANÞ2: (17)

The test statistics combine the weighted score statistic of the

j-th variant from studies of the same ancestry, then aggregate

the squared scores across all ancestries and all variants. Here,

the weights are based on ancestry-specific MAFs. When all stud-

ies in the meta-analysis are of the same ancestry, Equations (16)

and (17) reduce to Equations (10) and (11), respectively. When all
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studies have different ancestries, Equations (16) and (17) reduce
to Equations (14) and (15), respectively.

Data availability
This research has been conducted using the UK Biobank
Resource under Application Number 44080. Corresponding R
codes for meta-analysis methods of testing G�E effects in this
article are available at GitHub: https://github.com/jlyx53/Codes-
for-Meta-analyses-of-G-E-effects.

Results
Numerical simulations
We conducted simulation studies to evaluate the null distribu-
tions and statistical power of our four meta-statistics for a con-
tinuous phenotype. We considered three scenarios as
summarized in Table 1. Each has three studies with sample sizes
of 1600, 2200, and 3200, referred to study 1, study 2, and study 3,
respectively. For scenario 1, all studies are European (EUR) sam-
ples and have the same set of covariates; For scenario 2, three
studies are all EUR samples but have different set of covariates;
For scenario 3, three studies have different set of covariates and
have different ancestries: the first two studies are EUR samples
and the third study is African-American (AA) samples. In the
power analysis, for each scenario, we considered cases with ho-
mogeneous and heterogeneous G�E effects across studies, and
also five different levels of main and interaction effects.

Using the calibrated coalescent model implemented in COSI
(Schaffner et al. 2005), we first simulated 10,000 EUR haplotypes
and 10,000 AA haplotypes over a 200 kb region. The simulation
parameters were set to mimic the linkage disequilibrium struc-
ture, local recombination rate and population history of the EUR
and AA populations (Lee et al. 2013). Then, for scenarios 1 and 2,
we randomly paired the EUR haplotypes to obtain diploid geno-
type data of 10,000 EUR individuals and randomly selected 7000
out of the 10,000 individuals. For scenario 3, we randomly paired
the EUR haplotypes to obtain diploid genotype data of 10,000
individuals and randomly selected 3800 out of them. Similarly,
we obtained diploid genotype data of 10,000 AA individuals, out
of which we randomly selected 3200 individuals. Since the aver-
age exon length of a gene is approximately 3 kb (Pruitt et al. 2012),
we randomly selected a 3 kb subregion within the 200 kb region
for each replicate of the genotype data and retained variants with
MAFs less than 0.03. We repeated this process 1000 times and
generated 1000 replicates of genotype data sets for the three sce-
narios. On average, there were 54 rare variants in the 3 kb region
under scenarios 1 and 2 and 87 under scenario 3. For scenarios 1
and 2, out of the genotype data of the 7000 EUR individuals, we
randomly selected 1600, 2200, and 3200 for the samples of study

1, study 2, and study 3, respectively. For scenario 3, out of the ge-
notype data of the 3800 EUR individuals, we randomly selected
1600 and 2200 for the samples of study 1 and study 2, respec-
tively.

To evaluate the null distributions of the proposed meta-
analysis statistics, we generated phenotype data sets under the
null model. To reduce the computational burden, we simulated
20 replicates of covariates and phenotype for each of the 1000 ge-
notype sets, which yielded 20,000 genotype-phenotype data sets.
For scenario 1, the continuous phenotypes for the k-th (k¼ 1; 2; 3)
study were generated by means of the following linear model:

yk¼ 0:5sexkþ0:05agekþ0:1bmikþek; (18)

where sexk¼ ðsexk1; � � � ;sexknk
ÞT is a binary covariate vector in

which each element sexki is drawn from a Bernoulli distribution
with probability 0.5; agek¼ ðagek1; � � � ;ageknk

ÞT and
bmik¼ ðbmik1; � � � ;bmiknk

ÞT are continuous covariate vectors in
which each element is normally distributed, ageki� Nð50;52Þ and
bmiki� Nð25;42Þ, for 1˚i˚nk; and ek¼ ðek1; � � � ;eknk

ÞT represents the
random errors, with each element following a standard normal
distribution. For scenarios 2 and 3, we generated the phenotypes
of study 1 according to Equation (18) by removing the age and
gender effects, and generated the phenotypes of study 2 by re-
moving the gender effect. The phenotypes of study 3 were gener-
ated with the full covariates. Under the null hypothesis, the
genotypes are not associated with the phenotype.

To evaluate the statistical power of our proposed meta-
analysis methods, we generated phenotypes under the alterna-
tive model based on the 1000 genotype data sets described previ-
ously. For each of the three scenarios, we considered five
different levels of genetic main and interaction effects: level 1
refers to the existence of only genetic main effects but without
interaction effects, level 2 refers to the existence of genetic main
effects and weak interaction effects, level 3 refers to the existence
of both genetic main effects and interaction effects, level 4 refers
to the existence of interaction effects and weak genetic main
effects, level 5 refers to the existence of only interaction effects
but without genetic main effects. For each of the five levels, we
assumed that 20, 40, or 60% of the rare variants were causal var-
iants. We simulated one replicate of phenotype and covariates
for each genotype data set. The covariates followed the same dis-
tributions described previously. For scenario 1, the phenotypes
for the k-th study were generated by means of the following lin-
ear model:

yk¼ 0:5sexkþ0:05agekþ0:1bmikþGkW1kbkþEkGkW2kckþek; (19)

where Gk is the genotype matrix of the causal variants in study k

Table 1 Simulation study settings for three scenarios

Scenario Pop Sample sizes Covariates

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3

1 EUR 1,600 2,200 3,200 (BMI, age, gender) (BMI, age, gender) (BMI, age, gender)
2 EUR 1,600 2,200 3,200 (BMI) (BMI, age) (BMI, age, gender)
3 EURþAA 1,600 2,200 3,200 (BMI) (BMI, age) (BMI, age, gender)

Pop, the populations of three studies. EUR, refers to all three studies are European samples. EURþAA, refers to study 1 and study 2 are European samples and study
3 are African-American samples.
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and bk has elements bkj� Nð0;d2
1Þ. We used body mass index (BMI)

as the environmental factor Ek¼ diagEki, which was centered to
have a mean of 0. ck represents the effects of gene–BMI interac-
tion, with elements ckj� Nð0;s2

1Þ. For scenarios 2 and 3, partial
covariates were used as described in Table 1. The values of d1 and
s1 for the five levels of genetic main and interaction effects were:
level 1 with d1 ¼ 0:2; s1 ¼ 0, level 2 with d1 ¼ 0:2; s1 ¼ 0:005, level 3
with d1 ¼ 0:2; s1 ¼ 0:05, level 4 with d1 ¼ 0:002; s1 ¼ 0:05, level 5
with d1 ¼ 0; s1 ¼ 0:05.

For the case of homogeneous variant and interaction effects
across studies, under all the three scenarios, we simulated the
same variant effects and gene-BMI interaction effects across all
studies, that is, b1¼b2¼ � � � ¼bK¼b and c1¼c2¼ � � � ¼cK¼c. For the
case of heterogeneous variant and interaction effects across
studies, under scenarios 1 and 2, we simulated the variant effects
and gene-BMI interaction effects for each study independently.
Under scenario 3, we simulated the same variant effects and
gene-BMI interaction effects for study 1 and study 2 that have the
EUR ancestry, and simulated the variant effects and gene-BMI in-
teraction effects for study 3 with AA ancestry separately.

In all simulations, the variant weights followed Beta distribu-
tions, wj� BetaðMAFj; 1; 25Þ, as suggested by Wu et al. (2011),
where j denotes the MAF of variant j. For scenarios 1 and 2, MAFj

was estimated based on all studies in HOM-INT-FIX and HOM-
INT-RAN and was specific to each study in HET-INT-FIX and
HET-INT-RAN. For scenario 3, MAFj was estimated based on all
studies in HOM-INT-FIX and HOM-INT-RAN and was estimated
based on ancestry-specific studies in HET-INT-FIX and HET-INT-
RAN. The gene-BMI interaction was considered significant if its P-
value was less than the significance level of 2:5� 10�6, and em-
pirical power was calculated as the proportion of significant
results among 1000 replicates.

Null distributions of the meta-statistics
We examined the distributions of our proposed HOM-INT-FIX,
HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN meta-statistics
using the data sets simulated under the null hypothesis. We first
computed the G�E score statistics of each study according to
formulas (5) and (7) and the regional G�E relationship matrix of
each study according to formulas (8) and (9). Then, for scenarios
1 and 2, we combined the study-level G�E score statistics using
formulas (10)–(11) and (14)–(15) to obtain the four meta-statistics.
For scenario 3, we combined the study-level G�E score statistics
using formulas (10)–(11) and (16)–(17). We computed the regional
G�E relationship matrices for the meta-analysis by combining
the regional relationship matrices from each study according to
Equations (12) and (13). The P-values of the four meta-statistics
were calculated according to their theoretical distributions and
Kuonen’s saddlepoint method. The distributions of the empirical
P-values under the null hypothesis were compared with the
expected uniform distribution between 0 and 1.

Quantile–quantile (Q–Q) plots of the meta-analysis statistics
for testing G�E effects under the three scenarios are shown in
Figures 1–3, respectively. It can be observed that under all of the
three scenarios, the empirical distributions of our four proposed
statistics match well with their expected theoretical distribu-
tions.

Statistical power of the meta-statistics
The results for the statistical power under three scenarios are
shown in Figures 4–6, respectively, which include results from
five levels of main and interaction effects and three proportions
of causal variants. In each figure, the power values on the left are

computed based on the simulated data sets in which the variant
and gene–BMI interaction effects were the same across studies.
The results on the right are based on the data sets with heteroge-
neous variant and gene–BMI interaction effects across studies.

As can be seen that the statistical powers of the four proposed
meta-statistics are close to 0 for interaction effects of levels 1 and
2 where there are no or weak interaction effects. For the interac-
tion effects of levels 3–5, the powers are approximately the same
while keeping meta statistics, simulation scenarios and propor-
tions of causal variants fixed. Power results under scenario 1 are
almost the same as scenario 2, which suggests that meta-
analyses of studies with different covariates distributions had lit-
tle influence on the power. This is because that the INT-FIX and
INT-RAN statistics at study level are essentially based on the
phenotypic residuals after adjusting the covariates. Statistical
powers under scenario 3 are in general greater than those under
scenario 1 or 2, which is due to that AA samples are included and
average number of causal variants is larger than that under sce-
nario 1 or 2.

It can be observed that HOM-INT-FIX and HOM-INT-RAN have
similar power, and the power of HOM-INT-RAN is slightly greater
than that of HOM-INT-FIX. Similar observations can be made for
HET-INT-FIX and HET-INT-RAN. This is because INT-FIX and
INT-RAN have almost the same power at the study level, which
was demonstrated by Chen et al. (2014). When the simulated data
sets are of homogeneous interaction effects, we can see from the
left panels of Figures 4 and 5 that HOM-INT-FIX and HOM-INT-
RAN have larger power than those of HET-INT-FIX and HET-INT-
RAN. For instance, under scenario 1 with interaction effects of
level 3, the power of HOM-INT-RAN is 0.401, 0.671, and 0.834 for
20, 40, and 60% of causal variants, respectively, which are 0.375,
0.637, and 0.811 for HET-INT-RAN. Therefore, HOM-INT-FIX and
HOM-INT-RAN are preferable to HET-INT-FIX and HET-INT-RAN
for meta-analyses of studies that are highly comparable, for
which the underlying interaction effects are likely to be homoge-
neous.

Under scenario 3, we can see from the left panels of Figure 6
that HET-INT-FIX and HET-INT-RAN have slightly greater or
nearly the same power as HOM-INT-FIX and HOM-INT-RAN be-
cause of the heterogeneous effects between EUR and AA samples.
When the simulated data sets are based on heterogeneous vari-
ant and gene–BMI interaction effects across studies, as can be
depicted from the right panels of Figures 4–6 that HET-INT-FIX
and HET-INT-RAN have larger power than those of HOM-INT-FIX
and HOM-INT-RAN for the same proportion of causal variants
under all scenarios. For instance, under scenario 1 with interac-
tion effects of level 3, HOM-INT-RAN has power values of 0.304,
0.526, and 0.705 for three proportions of causal variants, respec-
tively, while HET-INT-RAN has corresponding power values of
0.523, 0.797, and 0.925. Not surprisingly, HET-INT-FIX and
HET-INT-RAN are superior to HOM-INT-FIX and HOM-INT-RAN
in this case, since the interaction effects are heterogeneous
across studies in the simulated data sets and the former two
approaches appropriately account for such heterogeneity.

To evaluate the statistical efficiency of the proposed
meta-analysis methods, we compared the statistical power of
HOM-INT-FIX and HOM-INT-RAN with that of pooled analyses
conducted based on interaction tests with individual-level data
from all studies under scenario 1. The results with 40% causal
variants, interaction effects of level 3 and homogeneous interac-
tion effects across studies are shown in Figure 7. The P-values of
the HOM-INT-FIX meta-analysis and the pooled analysis with the
INT-FIX test are compared in Figure 7A. As we can see, almost all
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points lie on a diagonal line, indicating that the HOM-INT-FIX
meta-analysis is equally as powerful as the single pooled interac-
tion test based on INT-FIX. Similarly, Figure 7B shows that the
HOM-INT-RAN meta-analysis is equally as powerful as the
pooled INT-RAN analysis. Because the pooled INT-FIX and INT-
RAN analyses implicitly assume the same interaction effect
across studies, these results demonstrate that there is no power
loss with the HOM-INT-FIX and HOM-INT-RAN meta-analyses
when this assumption is satisfied.

We also compared the statistical power of the HET-INT-FIX
and HET-INT-RAN meta-analyses with that of the pooled INT-FIX

and INT-RAN analyses, respectively. For scenario 1 with 40%
causal variants, interaction effects of level 3 and heterogeneous
interaction effects across studies, the results are shown in Figure
8. As we can see, the P-values of the HET-INT-FIX and HET-INT-
RAN meta-analyses are smaller than those of the pooled INT-FIX
and INT-RAN analyses. Therefore, HET-INT-FIX and HET-INT-
RAN are more powerful than the pooled analyses when heteroge-
neity of the interaction effect exists. This is because the HET-
INT-FIX and HET-INT-RAN meta-analyses treat genetic heteroge-
neity appropriately when synthesizing the summary results from
multiple studies. By contrast, the pooled individual-level data

Figure 1 Q–Q plots of the null distributions of the meta-statistics under scenario 1. The horizontal axis represents the negative log10 of the expected P-
values, and the vertical axis represents the negative log10 of the observed P-values. (A) HOM-INT-FIX; (B) HOM-INT-RAN; (C) HET-INT-FIX; (D) HET-INT-
RAN.
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contain mixed interaction effects for the same variants, thus vio-
lating the underlying assumptions of INT-FIX and INT-RAN.

Gene–age interactions in blood pressure traits
with UK Biobank data
UK Biobank is a prospective cohort study involving approximately
500,000 volunteers in the United Kingdom aged between 40 and
69 years, from whom extensive genetic and phenotypic data have
been collected (Sudlow et al. 2015; Bycroft et al. 2018). The latest
release of whole-exome sequencing data contains data from
200,643 participants. We extracted participants with European,
African or Asian ancestry and excluded participants who had

withdrawn and one member of each pair of first- or second-
degree relatives. The average SBP and diastolic blood pressure
(DBP) measurements at the first visit were used. For participants
taking antihypertensive medications at the time of the visit, 10
and 5 mm Hg were added to their SBP and DBP measurements, re-
spectively (Cui et al. 2003). Mean arterial pressure (MAP) and
pulse pressure (PP) were calculated as MAP ¼ SBP=3þ 2DBP=3
and PP ¼ SBP� DBP, respectively, and the latter was then loga-
rithmically transformed. Participants with missing BP pheno-
types or covariates, including age, BMI and sex, were excluded.
Phenotype and covariate outliers were also excluded, where these
were defined as data points lying at least 5 standard deviations

Figure 2 Q–Q plots of the null distributions of the meta-statistics under scenario 2. The horizontal axis represents the negative log10 of the expected P-
values, and the vertical axis represents the negative log10 of the observed P-values. (A) HOM-INT-FIX; (B) HOM-INT-RAN; (C) HET-INT-FIX; (D) HET-INT-
RAN.
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away from the corresponding means. In summary, a total of
162,148 European samples, 3113 African samples and 4745 Asian
samples with complete phenotype, covariates, and exome geno-
type data were included in our analyses.

To conduct meta-analyses of multiple studies of the same an-
cestry, we divided the European samples into five groups based
on the geographic locations of their assessment centers: group 1
included participants from assessment centers in Edinburgh,
Glasgow, Middlesbrough, and Newcastle; group 2 was from Barts,
Croydon, Hounslow, Oxford, and Reading; group 3 was from
Bristol, Cardiff, and Swansea; group 4 was from Leeds, Sheffield,
Nottingham, and Birmingham; and group 5 was from Bury,
Cheadle, Liverpool, Manchester, Stockport, Stoke, and Wrexham.

For trans-ethnic meta-analyses, group 6 of African samples and
group 7 of Asian samples were included. The characteristics of
samples in the seven groups are presented in Table 2.

We selected nine loci that showed nominal evidence (P < 0.05)
of SNP–age interaction in a genome-wide search of common var-
iants with age-dependent effects in BP regulation (Simino et al.
2014). For the reported leading SNPs that are in gene regions, the
corresponding genes were selected for analyzing gene–age inter-
action with rare variants; otherwise, the nearest up- and down-
stream genes were chosen. In total, 12 candidate genes were
selected from the nine loci. The variants of the 12 genes were an-
notated with VEP (McLaren et al. 2016), and those annotated as
stop_loss, missense_variant, start_lose, splice_

Figure 3 Q–Q plots of the null distributions of the meta-statistics under scenario 3. The horizontal axis represents the negative log10 of the expected P-
values, and the vertical axis represents the negative log10 of the observed P-values. (A) HOM-INT-FIX; (B) HOM-INT-RAN; (C) HET-INT-FIX; (D) HET-INT-
RAN.
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Figure 4 Statistical power of meta-analyses with five levels of genetic main and interaction effects and three proportions of causal rare variants under
scenario 1. The horizontal axis represents the level of genetic main and interaction effects, and the vertical axis represents the statistical power. (A)
Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous interaction effects across studies and 20% causal rare
variants. (B) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with heterogeneous interaction effects across studies and 20%
causal rare variants. (C) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous interaction effects across studies
and 40% causal rare variants. (D) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with heterogeneous interaction effects
across studies and 40% causal rare variants. (E) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous
interaction effects across studies and 60% causal rare variants. (F) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with
heterogeneous interaction effects across studies and 60% causal rare variants.
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Figure 5 Statistical power of meta-analyses with five different levels of genetic main and interaction effects and three proportions of causal rare
variants under scenario 2. The horizontal axis represents the level of genetic main and interaction effects, and the vertical axis represents the
statistical power. (A) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous interaction effects across studies and
20% causal rare variants. (B) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with heterogeneous interaction effects across
studies and 20% causal rare variants. (C) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous interaction
effects across studies and 40% causal rare variants. (D) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with heterogeneous
interaction effects across studies and 40% causal rare variants. (E) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with
homogeneous interaction effects across studies and 60% causal rare variants. (F) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-
RAN with heterogeneous interaction effects across studies and 60% causal rare variants.
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Figure 6 Statistical power of meta-analyses with five levels of genetic main and interaction effects and three proportions of causal rare variants under
scenario 3. The horizontal axis represents the level of genetic main and interaction effects, and the vertical axis represents the statistical power. (A)
Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous interaction effects across studies and 20% causal rare
variants. (B) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with heterogeneous interaction effects across studies and 20%
causal rare variants. (C) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous interaction effects across studies
and 40% causal rare variants. (D) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with heterogeneous interaction effects
across studies and 40% causal rare variants. (E) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with homogeneous
interaction effects across studies and 60% causal rare variants. (F) Power of HOM-INT-FIX, HOM-INT-RAN, HET-INT-FIX, and HET-INT-RAN with
heterogeneous interaction effects across studies and 60% causal rare variants.
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donor_variant, inframe_deletion, frameshift_variant, splice_
acceptor_variant, stop_gained, or inframe_insertion were used
for analysis. In addition, variants that were PolyPhen or SIFT
benign, defined as variants with PolyPhen scores smaller than
0.15 or SIFT scores larger than 0.05 (Cirulli et al. 2020), were
excluded. PLINK (Chang et al. 2015) was used to extract rare
variants with MAFs smaller than 0.03, and fcGENE (Roshyara and
Scholz 2014) was used to convert genotypes into numeric values.
The numbers of variants in the genes used for the single and
multiple ancestries meta-analyses are shown in Tables 3 and 4,
respectively.

For each of the 12 genes, we first conducted INT-FIX and INT-
RAN analyses on each of the seven groups with the primary BP
traits reported in Simino et al. (2014) and obtained summary
results. Age, sex, BMI, and the first 10 principal components were

used as covariates, and age was used as the “environmental” vari-
able. The summary results from the five groups of European an-
cestry were then combined by means of HOM-INT-FIX, HOM-
INT-RAN, HET-INT-FIX, and HET-INT-RAN. For comparison, we
performed INT-FIX and INT-RAN analyses on all samples of the
five groups, denoted by Pooled-INT-FIX and Pooled-INT-RAN. The
P-values of the four meta-analyses and the two pooled analyses
are displayed in Table 3. For the trans-ethnic meta-analyses
based on summary results from the seven groups, we also con-
ducted the four meta-analyses: HOM-INT-FIX, HOM-INT-RAN,
HET-INT-FIX, and HET-INT-RAN, and the Pooled-INT-FIX and
Pooled-INT-RAN, whose P-values are displayed in Table 4.

Similar to the simulation results, HOM-INT-FIX and HOM-
INT-RAN show approximately the same P-values, and the P-val-
ues of HET-INT-FIX and HET-INT-RAN are close in Tables 3 and

Figure 7 P-values of HOM-INT-FIX, HOM-INT-RAN, Pooled-INT-FIX and Pooled-INT-RAN with homogeneous interaction effects across studies,
interaction effects of level 3 and 40% causal rare variants under scenario 1. (A) P-values of HOM-INT-FIX and Pooled-INT-FIX. The horizontal axis
represents the negative log10 P-values of Pooled-INT-FIX, and the vertical axis represents the negative log10 P-values of HOM-INT-FIX. (B) P-values of
HOM-INT-RAN and Pooled-INT-RAN. The horizontal axis represents the negative log10 P-values of Pooled-INT-RAN, and the vertical axis represents the
negative log10 P-values of HOM-INT-RAN.

Figure 8 P-values of HET-INT-FIX, HET-INT-RAN, Pooled-INT-FIX, and Pooled-INT-RAN with heterogeneous interaction effects across studies,
interaction effects of level 3 and 40% causal rare variants under scenario 1. (A) P-values of HET-INT-FIX and Pooled-INT-FIX. The horizontal axis
represents the negative log10 P-values of Pooled-INT-FIX, and the vertical axis represents the negative log10 P-values of HET-INT-FIX. (B) P-values of HET-
INT-RAN and Pooled-INT-RAN. The horizontal axis represents the negative log10 P-values of Pooled-INT-RAN, and the vertical axis represents the
negative log10 P-values of HET-INT-RAN.
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4. HOM-INT-FIX yields P-values approximately equal to those of
Pooled-INT-FIX, and HOM-INT-RAN has roughly the same P-val-
ues as Pooled-INT-RAN in Table 3. Moreover, HOM-INT-FIX and
HOM-INT-RAN have smaller P-values than HET-INT-FIX and
HET-INT-RAN for most of the 12 genes. This suggests that the in-
teraction effects, if they are genuine, are homogeneous across
the five groups of European ancestry in UK Biobank. Two genes
show nominal evidence of interaction with age in the meta-
analyses. CDC25A and C10orf107 have P-values of 0.03 and 0.04 in

HOM-INT-FIX and HET-INT-FIX, respectively. After correction for
multiple testing, these results are no longer significant.

In Table 4, the P-values of HOM-INT-FIX are larger than those
of HET-INT-FIX, and the P-values of HOM-INT-RAN are larger
than those of HET-INT-RAN, which suggests that the interaction
effects, if they exist, are heterogeneous across ancestry groups in
the UK Biobank data. Besides, the P-values of Pooled-INT-FIX are
larger than those of HET-INT-FIX, which also indicates that the
interaction effects are heterogeneous. CDC25A has P-value of

Table 2 Characteristics of UK Biobank samples in seven groups

Group N Male (%) HTx (%) Age (years) BMI (kg/m2) SBP (mmHg) DBP (mmHg)

Mean SD Mean SD Mean SD Mean SD

1 27,154 44.0 21.4 56.8 8.0 27.5 4.7 139.7 18.8 83.2 10.1
2 31,282 44.5 18.4 57.0 8.0 26.7 4.6 135.3 18.0 81.1 10.0
3 18,932 43.5 18.9 56.1 8.2 27.3 4.7 139.3 18.5 83.1 10.0
4 52,721 46.0 20.7 57.1 7.9 27.5 4.7 138.3 18.4 82.2 10.0
5 32,059 47.0 21.5 56.9 7.9 27.6 4.7 138.4 18.4 82.0 10.0
6 3,113 41.5 31.9 52.0 8.0 29.5 5.3 138.0 18.6 84.9 10.7
7 4,745 50.0 22.9 53.0 8.4 26.7 4.3 134.3 18.6 82.5 10.3

N, number of participants; HTx, percentage of individuals on antihypertensive medications at the time of clinic visit; BMI, body mass index; DBP, diastolic blood
pressure; SBP, systolic blood pressure; SD, standard deviation.

Table 3 P-values of meta-analyses and pooled analyses of gene–age interaction in BP traits for the five geographic groups of European
ancestry in the UK Biobank data

Loci SNP Up/down
stream
gene

RV Num Trait P-value

HOM-INT-FIX HOM-INT-RAN HET-INT-FIX HET-INT-RAN Pooled-INT-FIX Pooled-INT-RAN

1 rs880315 CASZ1 145 SBP 0.95 0.96 0.63 0.67 0.94 0.93
2 rs6797587 CDC25A 25 MAP 0.03 0.06 0.08 0.10 0.04 0.05
3 rs11099098 PRDM8 59 SBP 0.82 0.92 0.93 0.96 0.88 0.92

FGF5 7 SBP 0.41 0.52 0.24 0.30 0.50 0.46
4 rs198846 HIST1H1T 71 DBP 0.18 0.19 0.27 0.25 0.17 0.19
5 rs12705390 CCDC71L 7 PP 0.70 0.95 0.85 0.96 0.60 0.94

PIK3CG 65 PP 0.82 0.79 0.40 0.48 0.76 0.73
6 rs7070797 C10orf107 19 MAP 0.07 0.06 0.04 0.13 0.06 0.10

ARID5B 60 MAP 0.94 0.95 0.74 0.94 0.89 0.91
7 rs4601790 EHBP1L1 74 MAP 0.05 0.06 0.11 0.10 0.07 0.06
8 rs11072518 COX5A 16 MAP 0.54 0.55 0.65 0.66 0.56 0.57
9 rs17608766 GOSR2 12 PP 0.22 0.20 0.69 0.71 0.20 0.15

RV Num, number of rare variants; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure.

Table 4 P-values of meta-analyses and pooled analyses of gene–age interaction in BP traits for the seven groups of African, Asian, and
European ancestries in the UK Biobank data

Loci SNP Up/down
stream
gene

RV Num Trait P-value

HOM-INT-FIX HOM-INT-RAN HET-INT-FIX HET-INT-RAN Pooled-INT-FIX Pooled-INT-RAN

1 rs880315 CASZ1 164 SBP 0.96 0.97 0.95 0.96 0.93 0.93
2 rs6797587 CDC25A 28 MAP 0.03 0.06 0.03 0.06 0.05 0.05
3 rs11099098 PRDM8 66 SBP 0.83 0.88 0.83 0.94 0.84 0.88

FGF5 7 SBP 0.41 0.52 0.41 0.52 0.52 0.47
4 rs198846 HIST1H1T 85 DBP 0.24 0.26 0.19 0.21 0.19 0.13
5 rs12705390 CCDC71L 7 PP 0.95 0.99 0.95 0.98 0.87 0.99

PIK3CG 73 PP 0.82 0.79 0.86 0.83 0.82 0.75
6 rs7070797 C10orf107 24 MAP 0.15 0.13 0.10 0.09 0.24 0.35

ARID5B 64 MAP 0.87 0.94 0.88 0.94 0.75 0.95
7 rs4601790 EHBP1L1 91 MAP 0.05 0.05 0.06 0.06 0.02 0.03
8 rs11072518 COX5A 16 MAP 0.54 0.58 0.54 0.56 0.64 0.54
9 rs17608766 GOSR2 13 PP 0.43 0.44 0.39 0.37 0.45 0.45

RV Num, number of rare variants; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure.
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0.03 in both HOM-INT-FIX and HET-INT-FIX, which are no longer
significant after the correction for multiple testing.

Discussion
In this study, we propose four meta-analysis methods for testing
G�E effects with rare variants while treating main genetic
effects as either fixed or random and considering homogeneous
or heterogeneous G�E effects across studies. Simulations as well
as an analysis of UK Biobank data demonstrate that treating vari-
ant main effects as either fixed or random provides approxi-
mately the same statistical power. The results are consistent
with the conclusion in Chen et al. (2014) that INT-FIX has almost
the same power as INT-RAN when analyzing interaction in a sin-
gle study. It has been suggested that when the number of genetic
variants is large, INT-FIX will lead to unstable estimates of the
main genetic effects and, thus, INT-RAN is recommended (Chen
et al. 2014). Therefore, our HOM-INT-FIX and HET-INT-FIX meta-
analyses are valid only if INT-FIX is applicable for the study-level
analysis. Otherwise, INT-RAN should be used in the studies, and
HOM-INT-RAN or HET-INT-RAN should be used for the meta-
analysis.

We developed meta-analyses for testing G�E effects by com-
bining summary results from INT-FIX and INT-RAN (Chen et al.
2014) at study level based on the analysis framework proposed by
Lee et al. (2013). The methods offer much larger sample size for
testing the interaction which is impossible for a single study.
They were shown to be statistical efficient in our simulation
studies as well as the analyses of UK Biobank data. It is well
established that for the meta-analysis of association statistics
with common variants, the power loss is minimal (Lin and Zeng
2010). However, the power loss of meta-analysis for rare variants
is largely unexamined and has been suspected to be possibly
more sizable (Panagiotou et al. 2013). In this study, we have com-
pared the HOM-INT-FIX and HOM-INT-RAN meta-analyses with
pooled analyses based on INT-FIX and INT-RAN, respectively.
Our results show that they have approximately the same power.
In gene–age interaction analyses of UK Biobank data, the results
from the meta-analyses and the pooled analyses are close.
Therefore, the power loss of meta-analysis for rare variants is
concluded to be minimal as well.

In the gene–age interaction analysis of UK Biobank data, none
of the 12 genes from the nine candidate loci shows experiment-
wide significant results. There are many possible reasons. First,
most GWAS SNPs are from noncoding regions, and some of them
may play regulatory roles by changing the expression levels of
the modulated genes (Edwards et al. 2013). Nevertheless, the rare
variants selected in our analyses likely alter the protein sequen-
ces that the genes express, which are not necessarily correlated
with the regulatory SNPs. Second, it has been estimated that only
approximately one-third of causal genes are the nearest genes to
the GWAS loci (Gusev et al. 2016; Zhu et al. 2016). Thus, we may
have missed the majority of the causal genes, which are located
farther away from the candidate loci. Finally, the nine loci identi-
fied in the genome-wide analysis show only nominal evidence of
interactions, which are not genome-wide significant. Therefore,
some of the loci considered in the analyses may represent spuri-
ous interaction effects.

In this study, we have demonstrated the proposed
meta-analyses for continuous traits. The methods can be readily
generalized to the case of binary traits. For binary traits, logistic
versions of INT-FIX and INT-RAN can be applied at the study
level, and the G�E score statistics for single variants and the

relationship matrices can be computed based on (5) and (7)–(9),

the same formulas as for continuous traits. There is no difference

in how the meta-statistics are computed for binary and continu-

ous traits. However, when studies have unbalanced case-control

ratios and minor allele counts in a gene are very low, using sad-

dlepoint approximation can result in inaccurate P-values for bi-

nary traits, and efficient resampling can be used instead (Lee

et al. 2016).
Our proposed meta-analyses are limited to testing G�E

effects only. Joint testing of main genetic effects and interaction

effects has long been suggested for the interaction analysis of

common variants (Kraft et al. 2007; Manning et al. 2011). Joint test-

ing offers better power than the analysis of main genetic effects

only and the analysis of interaction effects only when both types

of effects exist. In future work, we will further extend our meta-

analyses to allow the joint testing of main genetic effects and

G�E effects.

Conclusions
In this study, we proposed four powerful meta-analysis methods

for testing G�E effects with rare variants. We considered both

homogeneous G�E effects and heterogeneous G�E effects

across studies and efficiently combined the summary statistics

of INT-FIX and INT-RAN from multiple studies. Through simula-

tions and real data analysis, we demonstrated that our

approaches provide power comparable to that of pooled analysis

when the interaction effects are homogeneous across studies.

When heterogeneity exists across studies, our approaches can

treat heterogeneity appropriately and achieve greater statistical

power than a pooled analysis. Our meta-analysis methods of

testing G� E effects can be applied to synthesize results from

multiple diverse studies to increase the effective sample size and

improve the chance of identifying genes whose effects are modi-

fied by an environmental factor.
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