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SUMMARY

Aging is characterized by progressive decline in tissue function and represents
the greatest risk factor for many diseases. Nevertheless, many fundamental
mechanisms driving human aging remain poorly understood. Aging studies using
model organisms are often limited in their applicability to humans. Mechanistic
studies of human aging rely on relatively simple cell culture models that fail to
replicate mature tissue function, making them poor surrogates for aged tissues.
These culture systems generally lack well-controlled cellular microenvironments
that capture the changes in tissuemechanics andmicrostructure that occur during
aging. Biomaterial platforms presenting dynamic, physiologically relevant me-
chanical, structural, and biochemical cues can capture the complex changes in
the cellular microenvironment in a well-defined manner, accelerating the process
of cellular aging inmodel laboratory systems. By enabling selective tuning of rele-
vant microenvironmental parameters, these biomaterials systems may enable
identification of new therapeutic approaches to slow or reverse the detrimental
effects of aging.

BACKGROUND

Aging is characterized by progressive decline in function of cells and tissues, and is a significant risk fac-

tor for a poor prognosis in many diseases.1 Manifestations of this functional decline include impaired

mobility, decreased cognitive function, diminished immune response, and dysfunctional tissue regener-

ation, among many others. Understanding the mechanisms by which aging gives rise to this loss in tissue

function is necessary to develop approaches to counteract the effects of aging and increase the length of

life with good health or ‘‘healthspan.’’ Such therapeutic approaches will prove transformational as the

proportion of the world’s population living to advanced age continues to increase.2 Extending the

healthspan for aged individuals not only will improve the quality of life for a large proportion of the pop-

ulation but it will also reduce the burden on the healthcare system in terms of cost and human resources

that are currently required to care for the aged. Despite the correlation between advanced age and poor

clinical outcomes, many of the underlying causes of reduced tissue function in aging remain poorly

understood.

Aging is a multifactorial process that results in significant heterogeneity, even in model organisms that

are otherwise genetically identical.1 The potential mechanistic drivers of aging largely arise spontane-

ously over time, resulting in diverse aged phenotypes despite identical genetic makeup (Figure 1).

Some of the causes of tissue dysfunction are systemic in nature, occurring throughout the organism.

For instance, a chronic overactivated inflammatory state, known as ‘‘inflammaging,’’ has been observed

in both humans and model organisms.3,4 This aberrant immune response is thought to be a cause of car-

diovascular disease in aging and may play a role in numerous other conditions ranging from increased

incidence of cancer to age-associated muscle wasting, known as sarcopenia.3 Inflammaging is closely

related to another contributor of systemic dysregulation in aging: cellular senescence. Senescent cells

are characterized by growth arrest, resistance to apoptosis, and altered gene expression compared

to healthy cells of the same type.5,6 Senescence arises during aging for a variety of reasons, including

cells reaching their proliferative limit due to telomere shortening from successive rounds of DNA

replication or the activation of oncogenes due to accumulation of DNA mutations that trigger an anti-

proliferative response to prevent cancer growth.5 Senescent cells secrete a collection of factors known
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Figure 1. Aging-related changes that influence cellular function can be grouped into three categories

These categories include: (1) systemic factors, such as inflammaging and secretion of SASPs by senescent cells, (2) cell-

intrinsic factors, such as accumulated DNA mutations from replication or oxidative damage and aberrant activation of

cellular signaling pathways, and (3) local factors, such as changes in the cellular composition of tissues or alterations in the

extracellular environment.
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as senescence-associated secretory phenotypes (SASPs) that can have a detrimental effect on tissue

function systemically, similar to inflammaging.5,6

Other causes of aging-related dysfunction are more specific to a given tissue or organ. Intrinsic changes

to individual cells are well known to cause tissue dysfunction.7 For instance, accumulated genetic muta-

tions can give rise to undesirable cellular behavior, ranging from disrupted tissue function to malignant

cancers.8 Intrinsic changes can also include aberrant signaling pathway activation, such as the overacti-

vation of the p38 MAP kinase pathway that impairs the regenerative function of aged skeletal muscle

stem cells.9,10 Aged tissues additionally often exhibit altered cellular composition compared to healthy,

young tissues. Perhaps, the most famous example is the myeloid bias that occurs during hematopoiesis,

wherein aged organisms produce more myeloid cells, such as red blood cells, macrophages, and

neutrophils, at the expense of lymphoid cells, such as B and T cells.11 Beyond cellular changes, aging

is associated with significant changes to the non-cellular microenvironment, such as the extracellular

matrix (ECM).12,13 The composition and microstructure of the ECM are altered by changes in the type

of ECM deposited (e.g., in tissue fibrosis), altered patterns of proteolysis (e.g., due to SASP-associated

proteases), and changes in glycosylation patterns (e.g., from advanced glycation end products, or

AGEs).14 These alterations in the ECM in turn impact cellular mechanotransduction, potentially resulting

in aberrant cellular behavior.14 In addition to changes in the ECM, protein misfolding and aggregation

contribute to microenvironmental changes with age, particularly in the context of neurodegenerative

diseases.15

Despite the inherent heterogeneity of whole organism aging, various animal models are the current gold

standard for investigating the cellular and molecular mechanisms underlying aging.16 The model organ-

isms chosen for aging studies are most often those with relatively short lifespans, ranging from �20 days

in worms to 2–3 years in mice.16 Each model organism has unique limitations in its applicability to

longer-lived organisms such as humans.1,16 Studies of human aging have been limited to observation of

human subjects or simplistic cell culture models.16 The advent of human cellular reprogramming has

opened the door to improve in vitromodels of relevant human cell types to study ‘‘aging in a dish.’’17 How-

ever, these models fail to adequately capture most aging-related effects on biological systems. Simple 2D

cell culture on plastic dishes is a poor representation of the in vivomicroenvironment, and 3D organotypic
2 iScience 26, 106825, June 16, 2023



Figure 2. The extracellular environment exhibits multiple aging-related changes that impact both the mechanical

and structural properties of the microenvironment

While these simplified schematics use collagen triple helices and glycans to represent ECM polymers and crosslinks,

respectively, other ECM proteins and crosslinking chemistries may be implicated, depending on the tissue of interest.
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cultures are often arrested at an immature phenotype not reminiscent of adult, let alone aged, tissue.18 A

major limitation of these systems is the lack of a dynamic, physiologically relevant mechanical, chemical,

and structural microenvironment that mimics the progression of aging.

Themajority ofmechanistic studies of aging have focused on identifying biochemical changes in tissues and

whole organisms that can be targeted to arrest or reverse the progression of aging. Some of the most

famous examples are experiments using heterochronic parabiosis, in which the blood supplies of young

and aged animals are joined, to identify ‘‘Fountain of Youth’’ factors in young animals that can restore the

function of aged tissues.19 These approaches have had limited success, likely due in large part to the fact

that the physical microenvironment in which aged cells reside is markedly different from the young cellular

microenvironment.14 Young biochemical factors may not be sufficient to rejuvenate the physical features of

aged tissues. Recent studies have highlighted the importance of biophysical properties on restoring func-

tion to aged cells, as both aged skeletal muscle stem cells and aged oligodendrocyte progenitor cells

require culture on relatively compliant substrates with elastic moduli comparable to the measured stiffness

of young tissue, as opposed to more rigid aged tissue, to restore their stem cell function.9,20

This Perspective highlights the opportunities presented by recent innovations in dynamic biomaterials

platforms to recapitulate key features of human aging in model systems. While the cumulative changes

to the cellular microenvironment that constitutes the aging phenotype take years to decades to accumu-

late, engineered systems can accelerate this aging process, allowing observation of altered cellular

behaviors over days to weeks. By reducing experimental lengths to laboratory-relevant timescales, these

engineered systems may enable identification of previously unrecognized therapeutic targets to combat

the detrimental effects of aging and increase healthspan.
MECHANICAL AND STRUCTURAL CHANGES IN THE AGED MICROENVIRONMENT

The extracellular microenvironment is a structurally and compositionally diverse collection of macromole-

cules, predominantly proteins and polysaccharides, that provides a complicated combination of biophys-

ical and biochemical cues that act in concert to regulate cell fate.21 The ECM is comprised of fibrillar (e.g.,

collagens I and III), networked (e.g., collagen IV and laminin), and intrinsically disordered (e.g., elastin) pro-

teins and glycosaminoglycans (e.g., hyaluronic acid).21 In addition to providing structural and mechanical

stability, the ECM serves as a scaffold that regulates biochemical signaling arising from morphogen and

cytokine binding.21 In aging, the mechanics, microstructure, and composition of the ECM become dysre-

gulated (Figure 2),12 thereby impacting a myriad of biological processes that may give rise to tissue

dysfunction. Because of the interconnected nature of microenvironmental cues, well-controlled
iScience 26, 106825, June 16, 2023 3
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systems in which the contributions of individual parameters to cell fate can be assessed will be required to

deconvolve the web of signaling changes that result in detrimental aging phenotypes.

One of the major changes in the aged ECM is altered stiffness. As cells are well known to respond to

changes in their mechanical microenvironment,22 aging-associated changes in ECM stiffness may play a

causative role in cellular dysfunction. Changes in ECM stiffness with aging are often heterogeneous,

even within a given tissue, but can generally be attributed to three different causes: (1) increased crosslink-

ing, (2) increased proteolysis, and (3) excessive deposition of new ECM material (fibrosis).14 A major cause

of increased crosslinking is due to reactions between ECM proteins like collagen and elastin with AGEs.23

AGEs arise from chemical reactions of sugars and tend to accumulate by reacting with long-lived ECM

proteins. Crosslinks formed between these proteins lead to increased ECM stiffness. A second cause of

altered tissue elasticity in aging is enzymatic dysregulation, which plays a two-pronged role in altering

ECM stiffness. In some cases, crosslinking enzymes, such as lysyl oxidase, are upregulated, resulting in

increased crosslinking and stiffness.14 In other cases, upregulation of ECM-degrading enzymes such as

matrix metalloproteinases (MMPs; or equivalently, downregulation of their inhibitors, TIMPs) leads to

increased fragmentation of the ECM.14 Both of these changes have been observed in skin aging.13 Fibrosis

is the third major cause of altered tissue stiffness with aging. Fibrosis is a scarring response arising from

improper tissue repair and resulting in the aberrant and excess deposition of new ECMmaterial. The prev-

alence of fibrosis in various tissues increases with aging, especially in the lungs and cardiovascular system.24

These mechanisms for increasing tissue stiffness result in increases in measured elastic moduli on the order

of 2- to 5-fold, depending on the tissue of interest.25–28

In addition to time-independent (elastic) mechanical properties such as stiffness, the time-dependent

(viscoelastic) properties of the ECM are increasingly being recognized as important determinants of cell

fate.29 While changes in tissue viscoelasticity with aging remain largely unexplored, several studies have

demonstrated that the viscoelasticity of the brain is altered with aging.30–32 However, such studies have

not reached a consensus for how viscoelasticity changes in the aging brain, likely due to the differences

in techniques used to measure viscoelastic properties (e.g., oscillatory rheology on dissected brain slices

versus in situ techniques like magnetic resonance elastography (MRE)). Direct mechanical measurements

using indentation or bulk rheology report an increase in both storage and loss moduli as a function of

increasing age,30,32 while MRE studies have converged on a decrease in the elastic component with

increasing age and diverged on the relative viscous component.31,33 Some MRE studies considering the

damping ratio as a metric for viscous vs. elastic behavior report an increase in the damping ratio, and

thus increased viscous nature, as a function of aging.33,34 Such studies have suggested a link between

increased damping ratio in aged brain tissue and decreased cognitive function in human subjects.33 There-

fore, identifying mechanistic links between altered brain viscoelasticity and neuronal function may provide

new insights into aging-associated cognitive decline.

Beyond changes in bulk mechanical properties like stiffness and viscoelasticity, aging-related changes in

the extracellular microenvironment also impact the microstructural properties of tissues. As mentioned

above, increased proteolysis with aging leads to fragmentation of collagen fibrils, for example, in aged

skin.13 This not only locally decreases tissue stiffness but also results in shorter overall fiber length. Despite

this increased fragmentation, the alignment of collagen fibers in aged skin is increased relative to young

skin,35 altering long-distance force transduction through the tissue and impacting directional processes

such as cell migration. These changes in turn may alter immune cell recruitment and enhance cancer metas-

tasis.35 Similar alignment of collagen fibrils is seen in aged tendon,36 which may impair both bulk tissue

mechanics (e.g., lower strain until failure) and have similar deleterious effects on immune cell migration

as described above. Non-ECM proteins also substantially contribute to microstructural changes in aging.

Increased incidence of protein misfolding and aggregation are correlated with aging. This is particularly

evident in multiple neurodegenerative diseases that are characterized by the appearance of insoluble

extracellular plaques of aggregated proteins.15 Understanding how the biophysical changes caused by

these aggregates impact cellular function has gained increased importance as new clinical trials targeting

the aggregates themselves have not yet resulted in dramatic improvement in patients.37

If mechanical and microstructural changes are found to be causative for aging-related tissue dysfunction,

treatments that reverse the microenvironmental changes may not be sufficient to restore a youthful cellular

phenotype. Recent studies have demonstrated that cells can possess a ‘‘mechanical memory’’ wherein
4 iScience 26, 106825, June 16, 2023



Figure 3. Biomaterials with dynamic properties can be used to recapitulate the temporal nature of aging in engineered systems

These dynamic properties can be either inherent to the material, enabling a direct response to cellular behavior, or user-controlled, enabling on-demand

tuning of mechanics and biochemical composition to mimic the aging process.
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exposure to a particular mechanical microenvironment results in persistent alteration of cellular behavior,

even after the cell has been moved to a different microenvironment.38 This memory phenomenon was first

described in the context of persistent changes in regulatory molecules, such as transcriptional regulatory

proteins and micro RNAs, upon exposure of cells to an excessively stiff environment.39,40 More recent ap-

proaches have sought to link the apparent memory to changes in chromatin organization.41,42 Because this

memory may persist even after the microenvironment is restored to a healthy state, therapies targeting

microenvironmental-related dysfunction in aging may also need to ‘‘erase’’ the cellular mechanical mem-

ory. Engineered biomaterials platforms will also play a substantial role in elucidating the underlying mech-

anisms of the memory phenomenon.
LEVERAGING DYNAMIC BIOMATERIALS SYSTEMS TO RECAPITULATE THE AGED

MICROENVIRONMENT

Aging is an inherently time-dependentprogress.Microenvironmental changes that contribute to agingpheno-

types accumulate over timescales ranging fromweeks to decades. Thus, in order to adequately capture aging

phenotypes in model systems, biomaterials systems with time-dependent properties are required. There are

opportunities to apply two different types of dynamic materials to the study of aging biology: (1) inherently dy-

namic materials that can alter their properties in response to cell-initiated or other naturally occurring stimuli

and (2) dynamic materials with on-demand tuning of properties in response to user-directed stimuli (Figure 3).
Inherently dynamic materials

One aspect of the native ECM’s inherent dynamism arises from its cell responsiveness. The protein and poly-

saccharide components of the ECMare susceptible to degradation and remodelingby cell-secreted enzymes,

such as MMPs. In engineered biomaterials, proteolysis and remodeling of the material has been shown to be

required for cell spreading andmigration,43maintenance of cell-cell contacts,44 and force transduction in 3D.45

Biomaterials derived from natural proteins generally retain their proteolytic remodelability, making such sys-

tems the most straightforward method for integrating cell responsiveness into engineered culture systems.

A significant limitation of fully natural systems, including collagen, fibrin, and reconstituted basement mem-

brane mixtures like Matrigel, to studying the impact of changing ECM mechanics during aging is the narrow

window of accessiblemechanical properties and a general inability to decouple mechanics from the total con-

tent of protein and thus of cell adhesive ligands.46 Chemically modified, naturally occurring protein materials,

such asmethacrylatedgelatin47 ormethacrylated tropoelastin,48 canovercome this limitationbypermitting the

crosslink density to be tuned independent of protein content, while still permitting cell-mediated degradation.
iScience 26, 106825, June 16, 2023 5
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The use of fully synthetic materials is often preferred over natural materials for mechanobiology studies, as

such materials are inherently non-cell-interactive, so all adhesive and degradation interactions are directly

programmed into the material. The most common way for introducing proteolytic degradability into fully

synthetic biomaterials is by introducing crosslinkers comprised of short peptide sequences that can be

cleaved by specific proteases. Such peptides can be readily incorporated into step-growth hydrogel

networks formed using cytocompatible crosslinking chemistries, such as thiol-vinyl sulfone reactions,43

strain-promoted azide-alkyne cycloaddition,49 or photocatalyzed thiol-ene reactions.50 By altering the

peptide sequence used, the specificity for particular enzymes and the kinetics of bond cleavage can be

controlled.51,52

An intermediate class of materials combining many of the benefits of naturally occurring proteins and fully

synthetic materials is recombinantly expressed engineered proteins.53 Such proteins are often based on

naturally occurring amino acid sequences, such as from elastin, silk, and resilin, with added domains con-

taining cell adhesive and proteolytically degradable sequences.53 These materials allow for native

biochemical functionality like naturally derived proteins while providing precise control over network

architecture, similar to synthetic systems like multi-arm poly(ethylene glycol), by genetically encoding spe-

cific crosslinking sites into the protein sequence. This level of control enables both the degradation kinetics

and the maximal extent of network remodeling to be tuned simultaneously.54

Materials with precise control over proteolytic remodelability will be required to study the effects of altered

proteolysis occurring with aging. Increased degradation and turnover of the ECMwith aging is impacted by

several of the general mechanisms implicated in aging. For instance, cell-intrinsic changes can result in up-

regulation of ECM-degrading proteins. Activation of the AP-1 family of transcription factors was shown to

upregulate expression of MMP-1, which led to fragmentation of collagen fibrils, reduced cell spreading,

and increased AP-1 activity in a detrimental positive feedback loop.55 MMPs are also a classic component

of SASPs,6 so an increased proportion of senescent cells in aged tissues will contribute to degradation and

remodeling of the aged ECM. Finally, persistent inflammation and tissue damage can recruit immune cells

that degrade the ECM.

A second aspect of the dynamic nature of the native ECM arises from its viscoelastic character. The supra-

molecular assemblies that comprise the ECM consist in part of physical crosslinks that can be broken and

reformed by applied force. As a result, native tissues exhibit a spectrum of stress relaxation behavior in

response to applied forces.29 As the crosslinks are rearranged to dissipate stresses, the material can be

physically remodeled by cells. Such physical remodeling of engineered systems has been shown to regu-

late stem cell differentiation,56 neuronal protrusion and cell-cell contact,44,57 and growth of organoids.58

The crosslinking kinetics of polymeric networks have recently been shown to regulate the self-assembly

of collagen interpenetrating networks,59 suggesting that changes in ECM viscoelasticity and remodeling

with aging may further contribute to the progression of dysfunctional ECM phenotypes by impacting

the organization of newly deposited ECM molecules.

The viscoelastic character of the ECM can be recapitulated in engineered systems by incorporating adapt-

able crosslinks into polymer networks.60 These adaptable crosslinks can arise from physical interactions or

covalent bonds between adjacent polymer chains. One of the most common examples of physically cross-

linked adaptable materials is calcium-crosslinked alginate gels. The viscoelastic stress relaxation in these

materials can be tuned by varying the molecular weight of the alginate chains or adding poly(ethylene

glycol) spacers while keeping the overall crosslink density constant.56 Other physically crosslinked

materials make use of molecular recognition between peptide or protein domains that can dock and

undock with different affinities to enable tunable stress relaxation.61 Host-guest chemistry employs a

similar molecular docking mechanism whereby a hydrophobic ‘‘guest’’ molecule inserts itself into a cavity

within a ‘‘host’’ molecule.62,63 Similar to protein-based molecular recognition, the binding affinities of the

host-guest pair dictate the viscoelastic properties and stability of the hydrogel networks.

Adaptable covalent bonds provide an alternative approach to regulate hydrogel viscoelasticity.64 The pri-

mary requirement for covalent systems tomaintain adaptability under physiologically relevant conditions is

for the two separate reactive partners and their resulting adduct to exist in dynamic equilibrium, with for-

ward and reverse reaction rates over biologically relevant timescales (seconds to hours).64 The most widely

used adaptable covalent crosslinks are hydrazone linkages formed by the reaction of organic hydrazines
6 iScience 26, 106825, June 16, 2023
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and aldehydes.64 These systems exhibit stress relaxation over minutes to hours, and the relaxation rate can

be tuned by varying the chemical structure of the aldehydes, with aromatic aldehydes relaxing more slowly

than aliphatic aldehydes.65 These materials have been used with a variety of cell culture systems, including

neural stem cells,57 mesenchymal stromal cells,66 and intestinal organoids.67 More recently, boronic esters

have emerged as another class of adaptable covalent crosslinks with tunable stress relaxation.68,69
On-demand tunable dynamic systems

The inherently dynamic materials described above will predominantly find applications in mimicking fixed

time points in the aging process (e.g., young vs. middle-aged vs. geriatric). These materials are preprog-

rammed with specific time-evolving properties that can be tailored to particular tissues at particular ages.

However, these systems cannot capture the long timescale dynamics of aging in a single sample. To suf-

ficiently accelerate the decades-long aging process to occur over laboratory timescales (days to weeks),

materials with on-demand tuning of key properties are required. Such systems can enable researchers

to trigger substantial changes in the properties of the extracellular matrix over short timescales and enable

real-time evaluation of cellular responses to these properties.

As described above, one of the hallmarks of aging in many tissues is increased tissue stiffness. In some in-

stances, this is caused by aberrant and excess deposition of extracellular matrix during fibrosis. In other

cases, increased crosslinking of existing ECM proteins by AGEs or increased expression of crosslinking en-

zymes like lysyl oxidase leads to increased stiffness. To capture these progressive changes in ECM stiffness,

hydrogel biomaterials with user-controlled stiffening can be used.

One of the most common strategies for introducing user-directed stimuli responsiveness into

biomaterials platforms is the incorporation of light-sensitive chemistries. Light is generally a cytocompat-

ible stimulus that can be added to most biological experimental workflows without substantial changes

needing to be made.70 To cover the broad range of tissue stiffness that is observed in aged tissue,

spanning up to 5-fold compared to young tissues,25–28 the addition of new crosslinks to the polymeric

network is likely required. Approaches that use light to tune material stiffness by changing molecular

conformation to alter crosslink spacing are generally unable to span such a broad range of stiffness.71–74

To increase material stiffness multi-fold, one of the most successful approaches is to introduce secondary

crosslinks into an existing polymeric network by photoinitiated radical chain growth polymerization.

Methacrylate groups in the hydrogel network are polymerized using UV-sensitive photoinitiators,

resulting in the formation of a secondary polymer network that reinforces and stiffens the existing

material.75,76 One potential drawback of this approach is the use of free radical polymerization,

which may cause damage to sensitive cell types and provide a confounding variable during the

accelerated aging process. More recent studies have added covalent crosslinks to existing networks by

light-triggered [4 + 2] or [2 + 2] cycloaddition reactions that do not rely on radical-based chemistries.77,78

An alternative approach is to use ionically crosslinked systems with triggered ion release to cause

stiffening. By co-encapsulating calcium ions and near-infrared absorbing gold nanorods within lipid

nanoparticles suspended within an alginate network, exposure to near-IR light can trigger release of

the calcium ions, which add crosslinks to and stiffen the alginate network.79 While extracellular

calcium release can provide a confounding variable due to crosstalk with calcium-sensitive cell

signaling pathways, the use of near-IR light has several advantages. It is lower energy and thus less likely

to be cytotoxic than UV light, and near-IR light is less scattered by cells and tissues than UV and visible

light, making near-IR light an attractive stimulus for use in the 3D organotypic culture systems described

below.80

In addition to light, other cytocompatible stimuli, such as enzymes or magnetic fields, have been used to

change the stiffness of biomaterial cell culture platforms on demand. The enzyme-mediated approaches

are similar to the light-mediated approaches described above, in that stiffening is accomplished by addi-

tion of crosslinks to a hydrogel network. To limit the potential off-target reactivity of the enzyme-mediated

approach with cellular biochemical processes, the enzymes used should not be natively present in the cells

of interest and should have low degrees of reactivity with cell-produced proteins. The bacterial enzyme,

sortase A, meets these criteria and has been previously used to catalyze transpeptidation reactions to

stiffen hydrogels in the presence of live cells.81 One drawback of this approach is that the timescale of

the stiffening reaction is limited by the diffusion of the enzyme into the hydrogel network; although for ag-

ing studies designed to mimic years or decades of accumulated matrix changes, the slightly longer time
iScience 26, 106825, June 16, 2023 7
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taken by the enzymatic approach compared to the light-mediated approach still substantially accelerates

the process.

A third approach utilizes magnetic nanoparticles embedded within the hydrogels to change the stiffness of

the material in response to an applied magnetic field. When a magnetic field is applied, the nanoparticles

align along the field lines and limit motion of the polymer chains comprising the hydrogel, thereby

stiffening the gel network.82 More recent optimizations have extended this approach to synthetic fibrous

materials that are reminiscent of the native ECM.83 Advantages of magnetically tunable systems include

mild magnetic stimuli and inherent reversibility of the stiffness increase by removing the magnetic field.

One limitation is that the inclusion of the magnetic nanoparticles often renders the hydrogels opaque,

so imaging real-time changes in cells in response to changes in mechanics can be challenging.

As mentioned previously, cells have been shown to exhibit a mechanical memory, wherein previously

experiencing a stiff microenvironment can continue to impact cellular behavior even after the microenvi-

ronment is rendered soft. A key technology enabling these studies is hydrogels that can soften, rather

than stiffen, on demand. The first studies demonstrating mechanical memory used hydrogels with photo-

cleavable crosslinking groups that would break apart when exposed to UV light.40,84 More recently, this

general strategy was expanded to new photocleavable groups that respond to more cytocompatible

visible light.85 While this initial class of materials only enabled softening, other approaches have combined

the free radical-mediated stiffening reactions described previously with the photocleavable crosslinking

groups to prepare materials that can be softened and then subsequently stiffened on demand.86 Such

materials with reversible stiffening will provide greater insight into the extent mechanical memory is

reversible, potentially identifying targets to help aged cells ‘‘forget’’ that they were in a stiffened tissue

environment. The [2 + 2] photocycloaddition chemistry referenced previously results in stiffening by trig-

gering cycloaddition reactions with 400–500 nm light that can be reversed by exposure to 340 nm UV

light.78 Other strategies to prepare reversibly stiffening and softening materials leverage photoswitchable

moieties, including both small molecules72 and proteins,73,74 although the range of stiffness tuning

accessible in these materials is limited and does not span the multi-fold changes in stiffness observed in

many aged tissues.

The emerging interest in the role of viscoelastic properties on cell fate has heralded the development of

new biomaterials systems that exhibit on-demand tuning of viscoelasticity, and not only stiffness. For

instance, the stress relaxation rates of hydrogels crosslinked by thioesters were able to be controlled by

the amount of excess thiol present, enabling force dissipation in the material through thioester

exchange.87 By consuming the excess thiols in the hydrogel networks through phototriggered thiol-ene

reactions, thioester exchange could be blocked, rendering thematerials unable to relax applied stresses.87

Another strategy employs soluble small-molecule competitors that can be added to hydrogels to simulta-

neously and reversibly change stiffness and stress relaxation in a cytocompatible manner by varying

crosslink density.88 Future approaches will likely build on this work by accessing a broader range of stress

relaxation timescales without changing stiffness for on-demand tuning. For instance, DNA-based

crosslinkers have begun to show promise as an alternative chemical approach to regulating viscoelasticity

on demand.89 One outstanding challenge is the timescale over which the stress relaxation rate of the

hydrogel networks is varied. Aging-related changes in ECM mechanics occur gradually, rather than as

an abrupt transition. Thus, it will be important to developmaterials systems in which the triggering stimulus

(e.g., light or small molecules) can be titrated to provide more gradual changes in stress relaxation rates.

The predominant method by which cells sense the mechanical properties of the ECM is through engage-

ment between cell surface receptors, such as integrin proteins, and cell adhesive peptide motifs on ECM

proteins. Because the composition of the ECM changes during aging, the identity and concentration of cell

adhesive ligands presented to cells also changes.14 For example, in aged skeletal muscle, the laminin-rich

basal lamina has been shown to exhibit increased levels of collagen IV90,91 and decreased levels of collagen

VI92 and fibronectin.93 Thus, materials that mimic changes in the ECM of skeletal muscle with aging should

be designed to allow tuning the balance of collagen- vs. fibronectin-engaging integrin ligands, indepen-

dent of changes in overall mechanical properties.

Stimuli-responsive chemistries similar to those described above used to change the stiffness of engineered

ECM materials can also be used to regulate the presentation of adhesive cues on demand. For instance,
8 iScience 26, 106825, June 16, 2023



Figure 4. Organotypic cultures capture much of the in vivo complexity of tissues, including heterogeneous cell

populations and native-like cellular organization

By combing organotypic culture models with dynamic biomaterials, progressive changes in the tissue microenvironment

can be recapitulated, potentially enabling accelerated aging of tissue-like structures to gain mechanistic insight into the

determinants of aging.
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photocleavable groups can be used to ‘‘cage’’ adhesive ligands, making them initially inaccessible to cell

surface receptors.94 Upon light exposure and photocleavage, the ligands are uncaged and available for cell

adhesion.94 In addition to directly uncaging the adhesive cues, photocaging approaches have been used

to selectively make available reactive sites within the material to which newly added adhesive cues can

chemically couple.95,96 Sortase-mediated transpeptidation has also been applied to alter the presentation

of cell adhesive cues within hydrogel materials on demand.97 In contrast to the light-mediated approaches,

the sortase reaction is reversible, so the number and type of adhesive sequences present can be changed

multiple times using the same stimulus. Another reversible approach to tuning ligand presentation on de-

mand makes use of host-guest supramolecular assembly whereby addition of guests with different binding

affinities can trigger exchange of tethered adhesive ligands.98 Such reversible systems may be more

amenable to mimicking the changes in multiple ECM components seen during aging.

Themicrostructure of the extracellular environment also changes extensively during aging.While cell-com-

patible techniques to manipulate ECM microstructure on demand are not broadly studied, such systems

will be key to understanding how cells alter their behavior in response to aberrant structural cues in aging.

As discussed previously, the organization of fibrillar ECM components is often altered in aged tissues, for

instance, becoming more aligned in aged skin and tendon. Cytocompatible magnetic stimuli have recently

been used to generate composite hydrogel biomaterials with aligned fibers.99 Combining physically

adaptable interfiber crosslinking chemistries with these magnetic approaches may allow for reorganization

of the fibrous network structure on demand. Beyond changes in ECM architecture, aberrant extracellular

protein aggregation significantly alters the microstructure of the tissue environment in several organs,

notably the brain. Prior efforts have largely focused on engineered cell lines or patient-derived stem cells

that produce these protein aggregates in culture to study their effects,100,101 but little has been done in

terms of biomaterial engineering to generate cell-independent mechanisms of protein aggregation to

study the biophysical effects of these aggregates on cells. As intrinsically disordered protein sequences

that can undergo this aggregation phenomenon have been extensively studied,102 there is an opportunity

for protein-engineered materials to be employed to generate materials with spatiotemporal control over

protein aggregation behavior.

INTEGRATING DYNAMIC BIOMATERIALS WITH ORGANOTYPIC CULTURES

While the focus of this Perspective has been howmaterials systems can be engineered to capture mechan-

ical, structural, and biochemical changes that occur in aging, it is important to remember that these micro-

environmental changes do not occur in isolation for a single cell type. Interactions between multiple cell

types and physiologically relevant spatial configurations of these cell types will undoubtedly play an impor-

tant role in capturing the complexities of aging in engineered systems (Figure 4). The advent of organotypic

3D cultures, or organoids, has made it possible to recapitulate many key cell-cell interactions in vitro.103 By

definition, organoids must capture the cellular composition and organization that gives rise to key tissue

functions.
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Organoids have been generated for most mature tissue types, although more work is required to make en-

gineered biomaterials systems compatible with organoid growth. The most extensively studied organoids

in the biomaterials context are intestinal in origin.104–106 These initial studies serve as a powerful proof of

principle that dynamic material properties play causal roles in regulating multicellular behavior. For

instance, materials that are inherently remodelable through hydrolysis or viscoelastic force dissipation

are required to enable self-organization and proper differentiation of intestinal organoids.58,105 Further-

more, materials with user-directed spatiotemporal control over network degradation enabled detailed

studies of intestinal crypt development in organoids.107

Organotypic cultures are uniquely positioned to study aging-related phenomena, as their multiple constit-

uent cell types are better able to capture the complexity of cell-cell interactions that go awry during aging.

As discussed previously, immune dysfunction is a key hallmark of aging that may play a causative role in

aging-related phenotypes. For instance, an improper immune response is thought to detrimentally impact

normal tissue regeneration during aging, and a recent study demonstrated in a skeletal muscle microtissue

model that immune cells were essential for proper regeneration,108 recapitulating in vivo findings. A 3D

organotypic culture system has also been used to model neuroinflammation in Alzheimer’s disease.109

Dynamic biomaterials systems will not only be useful for studying the effects of matrix properties on

individual cell types but also may enable carefully controlled studies in organotypic systems that capture

the complicated effects of aging on multiple cell types. As seen in the case of intestinal organoids,58,105

inherently dynamic materials will likely be required to enable self-organization of cells into tissue-like struc-

tures. The three-dimensional andmulticellular nature of these culture systems will also necessitate the judi-

cious choice of materials to enable reliable readouts of cellular phenotypes. Single-cell RNA sequencing

has become the gold standard for quantitatively studying transcriptional changes in heterogeneous cell

populations, so any materials system used must enable facile recovery of single cells or nuclei. Live cell im-

aging with fluorescent reporters will also be crucial for tracking cell fate changes as the cultures are ‘‘aged,’’

making compatibility with fluorescence microscopy a key design criterion for new dynamic biomaterials.

Finally, while a major promise of employing well-defined biomaterial systems to study aging is decreased

sample-to-sample heterogeneity that can obscure causal relationships, heterogeneous phenotypes are

inherent to the aging process. Thus, therapeutic strategies targeting molecular pathways identified using

engineered systems may not be one-size-fits-all solutions. It will therefore be important to design these

engineered materials to account for not only a variety of cell types that would be represented in organo-

typic cultures but also to be scalable to allow for testing and validation using patient-derived samples from

diverse genetic backgrounds and overall health status.
CONCLUSION

Aging is amultifactorial process that results in both systemic and local changes that lead to diminished cell and

tissue function. This inherent complexity, alongwith limitations ofmodel organisms, hasmadedetermining the

underlyingmechanisms of human aging a daunting challenge. The use of engineered platforms to study aging

usinghumancells is an attractive approach to surmount these challenges, as such systems can enable selective,

independent tuning of multiple parameters to allow causal relationships to be assigned. Biomaterials with dy-

namic properties are uniquely positioned to recapitulate the inherently time-dependent nature of aging. Ma-

terials that respond to both cell-mediated and user-directed stimuli will likely be required to enable native-like

cell-matrix interactions and to allow the agingprocess to be accelerated to occur over an observable timescale

in the lab.Ultimately, thesebiomaterialswill likely need tobeoptimized for usewithorganotypic culturemodels

that additionally capture the heterogeneous cell populations and the cellular organization in living tissues to

achieve a sufficiently representativemodel of humanaging. If theproper balance between engineering control

and biological complexity can be obtained, in vitromodels of agingmay identify new therapeutic approaches

to mitigate the effects of aging and increase healthspan.
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92. Scimè, A., Desrosiers, J., Trensz, F.,
Palidwor, G.A., Caron, A.Z., Andrade-
Navarro, M.A., and Grenier, G. (2010).
Transcriptional profiling of skeletal muscle
reveals factors that are necessary to
maintain satellite cell integrity during
ageing. Mech. Ageing Dev. 131, 9–20.

93. Lukjanenko, L., Jung, M.J., Hegde, N.,
Perruisseau-Carrier, C., Migliavacca, E.,
Rozo, M., Karaz, S., Jacot, G., Schmidt, M.,
Li, L., et al. (2016). Loss of fibronectin from
the aged stem cell niche affects the
regenerative capacity of skeletal muscle in
mice. Nat. Med. 22, 897–905.

94. Lee, T.T., Garcı́a, J.R., Paez, J.I., Singh, A.,
Phelps, E.A., Weis, S., Shafiq, Z., Shekaran,
A., del Campo, A., and Garcı́a, A.J. (2015).
Light-triggered in vivo activation of
adhesive peptides regulates cell adhesion,
inflammation and vascularization of
biomaterials. Nat. Mater. 14, 352–360.

95. Luo, Y., and Shoichet, M.S. (2004). A
photolabile hydrogel for guided three-
dimensional cell growth and migration. Nat.
Mater. 3, 249–253.

96. DeForest, C.A., and Tirrell, D.A. (2015). A
photoreversible protein-patterning
approach for guiding stem cell fate in three-
dimensional gels. Nat. Mater. 14, 523–531.

97. Cambria, E., Renggli, K., Ahrens, C.C.,
Cook, C.D., Kroll, C., Krueger, A.T.,
Imperiali, B., and Griffith, L.G. (2015).
Covalent modification of synthetic
hydrogels with bioactive proteins via
sortase-mediated ligation.
Biomacromolecules 16, 2316–2326.

98. Boekhoven, J., Rubert Pérez, C.M., Sur, S.,
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