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Abstract: DJ-1, also called Parkinson’s protein 7 (PARK7), is ubiquitously expressed and plays
multiple actions in different physiological and, especially, pathophysiological processes, as evidenced
by its identification in neurodegenerative diseases and its high expression in different types of cancer.
To date, the exact activity of DJ-1 in carcinogenesis has not been fully elucidated, however several
recent studies disclosed its involvement in regulating fundamental pathways involved in cancer onset,
development, and metastatization. At this purpose, we have dissected the role of DJ-1 in maintaining
the transformed phenotype, survival, drug resistance, metastasis formation, and differentiation in
cancer cells. Moreover, we have discussed the role of DJ-1 in controlling the redox status in cancer
cells, along with the ability to attenuate reactive oxygen species (ROS)-dependent cell death, as well
as to mediate ferropotosis. Finally, a mention to the development of therapeutic strategies targeting
DJ-1 has been done. We have reported the most recent studies, aiming to shed light on the role played
by DJ-1 in different cancer aspects and create the foundation for moving beyond the tip of the iceberg.

Keywords: DJ-1; PARK7; cancer metabolism; ferroptosis

1. DJ-1: General Overview

The protein/nucleic acid deglycase DJ-1 (DJ-1, also called PARK7, Parkinson’s protein
7) is a highly conserved protein of 20 kDa, belonging to the DJ-1/ThiJ/Pfp protein super-
family [1], whose gene is located in the distal part of chromosome 1 (1p36.12–1p36.33) [2].

DJ-1 is a multifunctional protein that is ubiquitously expressed and acts primarily as
a cysteine protease, although its functions range from a redox-regulating chaperone to a
transcriptional co-activator, switching to a deglycase enzyme in a peculiar cancer context.
Therefore, this protein appears to be involved in numerous physiological and pathophys-
iological processes, such as apoptosis, gene transcription, oxidative stress response, cell
proliferation, and growth [3,4].

DJ-1 is predominantly a chaperone protein involved in redox homeostasis. The protein
owns three cysteines (Cys) residues (Cys46, Cys53, and Cys106) essential for antioxidant
proprieties. Among these residues, Cys106 is the most critical in maintaining the activity of
redox sensor. Under hyper oxidative conditions, Cys106 might undergo oxidation eliciting
the loss of antioxidant activity [5]. High levels of oxidized Cys106-DJ-1 have been associated
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with several pathologies, whose oxidative stress is the driving force in the physiopathology
onset [3,4,6].

The conserved Cys106 region in the DJ-1 can be oxidized, inducing DJ-1 translocation
into the mitochondria and repression of p53-dependent gene transcription. This region,
necessary for DJ-1 homodimerization, has been reported to be the target of a recent series
of bis-isatin derivatives that possess anticancer properties [6].

Mutations of the DJ-1 gene lead to a protein’s instability and loss of function, which
is ultimately responsible for the death of dopaminergic neurons and the early onset of
Parkinson’s disease [7].

Interestingly some of these mutations occur also on the region codifying for cysteine
residue, especially Cys106, highlighting the crucial role of this residue in protein function
and stability [8,9].

2. DJ-1 Status in Human Cancers

In addition to the widely known evidence for the role of DJ-1 in neurodegenerative
diseases, several studies point to DJ-1 as a master regulator of neoplastic transformation [10].
This notion is supported by different studies. DJ-1 gene maps in a chromosomal locus,
in which several chromosome abnormalities in cancer cells have been reported [2]. DJ-1
over-expression promotes, alone or in combination with other oncogenes (i.e., Ras and
Myc), NIH3T3 cell transformation [11]. DJ-1 is highly expressed in many cancers with
poorer prognosis, including breast, lung, pancreatic, thyroid, brain, and endometrial as
well as different types of leukaemia [1,12–15].

From a mechanistic point of view, although the exact activity of DJ-1 in carcinogenesis
has not been yet fully elucidated, it seems to be tightly associated with its ability to prevent
oxidative damage and modulate peculiar cellular processes, such as signal transduction,
apoptosis, invasion, and chemoresistance through the regulation of some key proteins
such as tensin homolog (PTEN), mitogen-activated protein kinase (MAPK), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB), Hypoxia-inducible factor 1-alpha
(HIF-1α), androgen receptor (AR), and NF-E2–related factor 2 (NRF2) [16,17].

3. DJ-1 in Cancer Signaling

As previously anticipated, DJ-1 is considered an oncogene, mostly in association with
other oncogenes such as c-Myc or H-Ras, and it can act, for instance, as a PTEN repressor,
causing cell proliferation in both primary breast cancer cells as well as non-small cell
lung cancer cells [18,19]. The ameliorated understanding of cancer onset and progression,
thanks to the advances in genomic and proteomic technologies, have allowed for the genetic
determination of the individual cancer risk. Moreover, in-depth genetic analysis disclosed
an increasing number of known oncogenes and tumor suppressors in humans, whose
combinations account for a million different cancer genotypes, together with the different
single nucleotide variants in tumor cells compared to the normal ones [20,21].

However, there is disagreement about the role of DJ-1 in cancerogenesis, mainly
because of the pleiotropic functions it exerts. For instance, DJ-1 is involved in transcrip-
tional regulation [22–24], oxidative stress response [10], mitochondrial regulation [25],
inflammation [26], and glycation damage prevention [27].

Several studies reported the requirement of DJ-1 for the maintenance of the trans-
formed phenotype (e.g., uncontrolled proliferation, contact inhibition loss, anchorage-
independent growth, extracellular matrix invasion) in cancer cells, as well as for the
regulation of transformed growth, survival, chemoresistance, and metastasis formation and
differentiation [28–32]. For instance, in the context of transcriptional activity, even though
DJ-1 does not bind the DNA, it works as a transcription activator by sequestering inhibitory
factors of crucial genes involved in cancer progression including p53, the AR, Nrf2, and
PSF [33]. In addition, DJ-1 silencing by small interfering RNA (siRNA) inhibits cell transfor-
mation, cancer cell growth, and increases sensitivity to various chemotherapeutics [34–37].
Conversely, high DJ-1 activity induces the resistance of cancer cells to chemotherapy [28].
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Such effect is due to its redox-sensitive chaperone activity, which participates in protect-
ing cancer cells from oxidative agents, including some anticancer drugs [38,39]. Under
oxidative conditions, indeed, oxidized DJ-1 is mainly localized into mitochondria, where
it is able to protect cells from ROS-dependent damage [40], most likely by increasing the
expression of antioxidant proteins, including glutamate cysteine ligase, and glutathione
synthesis [41]. Altogether, these data suggest a relevant role of DJ-1 in cell transformation
and chemoresistance, both most likely due to its function in maintaining mitochondrial
integrity and in mediating protection from chemotherapy-induced oxidative stress.

4. DJ-1 Interplay with PI3K Signaling

DJ-1 modulates a classical survival pathway in some cancer cells, namely phos-
phatidylinositol 3-kinase/protein kinase B (PI3K)/(AKT), by suppressing the activity of the
tumor suppressor gene phosphatase (PP2A) and PTEN, in turn promoting higher phospho-
rylation of PKB/Akt, a downstream target of PTEN, thereby supporting the transformation
process and cancer cell proliferation and survival [42]. Several studies supported the idea
that DJ-1 plays a negative regulation of PTEN, since when DJ-1 is overexpressed, as in
urothelial carcinoma, lung cancer and melanoma, the expression of PTEN is reduced [43–45].
Conversely, DJ-1 silencing, for instance in human melanoma cells G361, causes upregulation
of PTEN and some pro-apoptotic proteins, inhibition of AKT activity and anti-apoptotic
proteins and thereby regulating their proliferation and invasion ability [46]. A similar
effect has been reported in two models of papillary thyroid carcinoma, K1 and TPC-1 cells,
where the knockdown of DJ-1 blocks proliferation, invasion, and migration through an
increased PTEN expression and a decreased AKT phosphorylation. DJ-1 knock-down also
reduces NF-κB activity and ERK1/2 phosphorylation, causing cell proliferation, migration,
and invasion inhibition [17]. In NIH3T3 cells, DJ-1 hampers PTEN-induced apoptosis
through activation of the PI3K/AKT pathway, glycogen synthase kinase 3 beta (GSK3β)
phosphorylation, and cyclin D1 expression [42]. Similarly, in patients with high grade
and poor prognosis glioma, DJ-1 expression has been associated with a higher level of
protein catenin beta 1 (CTNNB1) [47]. Silencing DJ-1 in human hepatocellular carcinoma
cells (HCCs) induces PTEN expression as well as inhibition of interleukin (IL)-6/Signal
Transducer and Activator of Transcription 3 (STAT3), MAPK and AKT, resulting in reduced
cell proliferation [48,49]. In leukemia cells, the DJ-1 knock out regulates the cell cycle via
Cdk2, cyclin D1, c-Myc, NF-kB, Bcl-2, and PTEN, causing cell apoptosis [37]. Thus, it is
clear that the survival of cancer cells is granted by the regulation of the activation status of
different targets, triggered by DJ-1.

5. DJ-1 Modulates the MAPK Signaling

DJ-1 prevents cell death and induces cancer cell invasion/migration by modulating
the MAPK signaling pathway, which transmits signals from the cell membrane to the
nucleus and regulates several cellular processes involved in oncogenesis [50]. Specifically,
DJ-1 was found to be able to sequester the death protein Daxx in the nucleus causing
the inactivation of the cytoplasmic stress-responsive effector apoptosis signal-regulating
kinase 1 (ASK1), whose role is to activate JNK and p38, both promoting cell death [51,52].
Again, DJ-1 protects cells from UV-induced death through the mitogen-activated protein
kinase/extracellular signal-regulated kinase 1 (MEKK1)-SEK1-JNK1 pathway. Indeed, DJ-1,
by physically binding MEKK1, sequesters this kinase into the cytoplasm, and suppresses
the downstream activation of SEK1 and JNK1 [53].

DJ-1 also plays a crucial role in cancer cell migration and invasion, as observed in
pancreatic cancer cells, where it can activate the ERK/SRC phosphorylation cascade [54,55].
Several data report that DJ-1 is also physically associated with p53, a tumor suppressor
that is mutated in almost half of human tumors and able to induce cell cycle arrest and
apoptosis through the regulation of IGF-BP3 and/or PTEN gene expression, both involved
in IGF-1/AKT pathway down-regulation [22,24]. Thus, the anti-apoptotic function of
DJ-1 is explained by the suppression of the transcriptional activity of p53 through direct
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binding to the C-terminus of p53; consequently, p53 cannot activate the transcription
of the pro-apoptotic factor Bcl-2 associated X (Bax), inhibiting the downstream caspase
activation [23]. Finally, the association of DJ-1 expression with p53 appears to play a
central role in determining the cell fate by regulating apoptosis [56]. Again, the regulation
mediated by DJ-1 is pivotal in protecting cancer cells from death.

6. DJ-1 Implications in Hypoxia

Regulation of the PI3K/Akt/mTOR pathway by DJ-1 is also responsible for stabilizing
the subunits of another important transcription factor, HIF-1, under hypoxia, which is essen-
tial for tumor progression [57]. The activation of insulin-like growth factor receptor (IGFR)
or epidermal growth factor receptor (EGFR), promotes PI3K)/AKT signal transduction
pathway, leading to an increased HIF-1α expression that, under non-hypoxic conditions, is
rapidly ubiquitinated and degraded by proteasome [50]. Therefore, the total HIF-1 activity
relies on HIF-1α protein levels [58].

In addition, DJ-1 expression, during hypoxia, protects cells from apoptosis by inhibit-
ing caspase-3 cleavage activity [59]. Caspase-3 is normally activated during apoptosis,
regardless of the death initiating stimulus, and is responsible of the cleavage of a wide
array of substrates [60]. These events are associated with DJ-1 and contribute to cancer cell
survival under hypoxic stress.

Zeng et al. showed that DJ-1 promotes cell survival through the PI3K/AKT pathway
and HIF-1α in human colorectal cancer (CRC) [61]. DJ-1 was found in 68.5% of these sam-
ples, with a higher nuclear localization compared to normal epithelial cells and associated
with the tumor size and higher clinical stage. Importantly, DJ-1 levels were significantly
associated with a high HIF-1α expression, which was identified in 74.0% of CRC samples.
The authors suggest that DJ-1 regulates the PI3K/Akt/HIF-1α cell survival pathway and
increases the expression of HIF-1α and other hypoxic genes. Worth mentioning is that
HIF-1α is also activated by DJ-1 under non-hypoxic conditions [61]. These studies con-
firm that DJ-1 plays an important role in allowing cancer cells to escape from the hypoxic
condition limitations.

7. DJ-1 Regulates the Metastatic Process

Longhao et al. [62], using RNA sequencing and bioinformatics analyses, demonstrated
that DJ-1 promotes epithelial to mesenchymal transition (EMT) in CRC cells through the
Wnt signaling pathway. The DJ-1/Wnt pathway regulates the expression of fibroblast
growth factor 9 (FGF9), which more highly expressed in CRC human samples, associated
with tumor differentiation, poorer overall survival, and is closely correlated with other EMT
markers such as E-cadherin and vimentin expression. Higher expression of DJ-1 associated
with dysregulated levels of EMT biomarkers, particularly E-cadherin and vimentin, in
esophageal squamous cell carcinoma (ESCC) tissue samples has been also reported [16] In
human ECA-109 cells in vitro and in the in vivo nude mouse abdominal transplant model,
DJ-1 overexpression is strongly associated with proliferation, migration, invasion, and
EMT, mainly through the Wnt/β-catenin pathway [16]. These aspects should be taken into
account for the development of drugs interfering with the metastatization process induced
by DJ-1.

8. DJ-1 Regulates the Non-Canonical NF-κB Pathway

Recently, Shu et al. reported that DJ-1 is abnormally expressed in an endometrial
cancer sample and is closely associated with the degree of differentiation, metastasis, and
invasion [63]. Silencing of DJ-1 in Ishikawa cells causes cell viability inhibition and pro-
motes apoptosis. As suggested by Zhu et al. [64], these events are associated with inhibition
of the cellular zinc finger anti-NF-κB (Cezanne or OTUD7B) and subsequent activation of
the non-canonical NF-κB pathway. Inhibition of Cezanne enables tumor survival through
increased expression of IL-8 and ICAM-1 [65]. The authors demonstrated that Cezanne
silencing reverts DJ-1 knockdown-induced proliferation inhibition. On the contrary, in-
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hibition of the non-canonical NF-κB pathway by knocking down NF-κB-inducing kinase
(NIK) abrogated the positive and negative DJ-1 effects on proliferation and apoptosis,
respectively. Moreover, the authors showed that DJ-1 regulates NF-kB nuclear localization
by directly inhibiting Cezanne. Altogether, these data suggest that Cezanne inhibition and
non-canonical NF-κB signaling activation are involved in the ability of DJ-1 to regulate
proliferation of endometrial cancer cells.

9. DJ-1 Interactions with the Androgen Receptor

Several findings regarding DJ-1 activity have highlighted that the regulation of the
AR signaling pathway is another important DJ-1 role, and a useful biomarker for sev-
eral cancer types, including prostate cancer [66]. In this context, the expression of AR is
greatly increased and its mutation, especially under treatment with AR antagonists, causes
constitutive AR transactivation [67]. Importantly, treatments with androgens, such as dihy-
drotestosterone (DHT), or antiandrogens, such as OH-flutamide and bicalutamide, induce
the translocation of DJ-1 into the nucleus. Meanwhile DJ-1 function in prostate cancer has
not yet been fully elucidated, as other data indicated that DJ-1 expression increases the
growth of the prostate cancer in patients treated with the androgen deprivation therapy [68].
DJ-1 can transcriptionally activate AR by forming a complex with the EF-hand calcium
binding domain 6 (EFCAB6) and interfering with the association of EFCAB6 with histone
deacetylase (HDAC) [69].

Moreover, DJ-1 interacts with the AR-binding region of the Protein Inhibitor of
Activated STAT 2 (PIAS2), hampering the formation of the PIAS2/AR complex [70].
Qin et al. [71] suggested that DJ-1 overexpression induces survival of prostate cancer.
In particular, they show that in LNCap prostate cancer cells, DJ-1, by inhibiting JNK
and Bcl2 phosphorylation as well as Beclin1 and Bcl2 dissociation, causes a reduction of
microtubule-associated proteins 1A/1B light chain 3B, namely LC3 (MAP1LC3B) and of
auto-phagosome formation. Thus, the inhibition of autophagy due to both the DJ-1 and AR
expression, in association with the growth of prostatic cancer cells, further strengthen the
notion of a strict inter-regulation between DJ-1 and AR.

An association between DJ-1 expression and chemotherapy resistance has been ob-
served in two gastric cancer cell lines. In particular, Liu et al. revealed that vincristine
(VCR)-induced gastric cancer multi drug resistant (MDR) cells, SGC7901/VCR, as com-
pared to a sensitive one, SGC7901, showed a higher level of DJ-1 associated with an
increased survival and resistance to several other chemotherapeutics such as Adriamycin,
5-Fluorouracil, and Cisplatin, a phenomenon that was ascribed to the upregulation of P-gp
and Bcl-2 [3].

10. DJ-1 and the Redox Homeostasis

DJ-1 is principally an antioxidant protein, controlling the redox balance in cancer
cells, and is capable of protecting them from a ROS-induced cell death [51] through the
transcriptional regulation of detoxification enzymes, including NAD (P)H-quinone oxi-
doreductase 1 (NQO1) [10]. However, further studies are needed to shed light on this
aspect, as this deregulation appears to be cell type specific. Cao et al. reported that DJ-1
can block lipid peroxidation, protecting cancer cells from oxidative damage, and that its
silencing reduces the intracellular reduced glutathione (GSH) levels. In addition, DJ-1
silencing or overexpression decreases or increases respectively the activity of SAHH (S-
adenosyl-homocysteine hydrolase), the enzyme responsible for the catalytic production of
homocysteine (Hcy) from SAH (S-adenosyl-L-homocysteine). The latter enzyme is involved
in DJ-1-mediated ferroptosis, as its overexpression can reverse this effect [72]. Ferroptosis
is a form of structured cell death characterised by a lethal increase of lipid hydroperoxides
in response to iron high levels and increased intracellular ROS [73].

Ferroptosis is implicated in a variety of pathological contexts (e.g., Alzheimer’s, Hunt-
ington’s and Parkinson’s diseases, carcinogenesis, and stroke). It is known that certain
degenerative diseases are triggered by an impaired ability to fight lipid peroxidation,
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leading to cell death. In addition, several authors propose ferroptosis as a scavenging mech-
anism for damaged cells that have been compromised by infection or environmental stress.

Iron homeostasis and ROS metabolism are key players in the activation and regulation
of ferroptosis [74,75]. Indeed, during oxidative stress, high levels of iron can promote
ferroptosis through the Fenton reaction [76–79].

Ferroptosis might be essentially targeted by three classes of drugs: (i) iron chelators
that influence the levels of iron; (ii) antioxidant agents, as lipophilic antioxidants and
inhibitors of lipid peroxidation, that preserve cellular redox status; and (iii) molecule inter-
fering with GSH metabolism [76,80–94]. All these molecules are categorized as “ferroptosis
modulators” [95,96].

In this context, it is very tempting to dissect the role of DJ-1 as a peculiar ferroptosis
inducer with the intent to shed light on a promising therapeutic target for cancer therapy.
As previously discussed, DJ-1 directly counteracts oxidative stress undergoing oxidization
at the Cys106 residue. In addition, it transcriptionally prevents ferroptosis modulating the
expression of genes involved in lipid, ROS and iron metabolism. Furthermore, DJ-1 can
stabilize Nrf2, the crucial transcriptional regulator of the antioxidant response [10,72,97].
Nrf2 is involved in the regulation of ferroptosis, cancer progression, invasion [98], and into
resistance to therapy [99]. After stabilization, Nrf2 promotes iron storage, reduces cellular
iron uptake, and limits ROS production.

Cellular redox status, resulting from the activity of endogenous catalytic activities,
exogenous ROS inducer, and intracellular ROS scavengers, are essential for correct prolifer-
ation and differentiation [100–103].

In healthy conditions, Nrf2 has a pivotal role in cells survival, when oxidative stress
is moderate, as it induces the expression of ROS scavengers and preserves cellular in-
tegrity [104]; conversely, when ROS levels are markedly increased, Nrf2 might trigger
a plethora of programmed cell death types, including ferroptosis [91,105,106]. During
cancer transformation, Nrf2 gains a pro-survival role, becoming a key factor in inflamma-
tion and resistance to therapy, and, accordingly, it is highly expressed in several types of
cancers [107].

Recent findings suggest that NRF2 elicits cancerogenesis and tumour progression
by inducing metabolic rewiring pathways and counteracting, also in tumour cells, the
oxidative stress. This activity antagonizes the efficiency of chemotherapy and radiotherapy
and fuels an ideal surrounding microenvironment for tumour cell growth [108].

In this scenario, establishing the ability of DJ-1 to direct Nrf2 activities might represent
a valuable opportunity in cancer therapy.

The role of DJ-1 in modulating Nrf2 activity and consequently ferroptosis is dual:
directly, it promotes Nrf2 expression by preventing its ubiquitination and degradation [101];
indirectly, it acts as a reservoir of reduced groups for GSH biosynthesis by maintaining
cysteine in the reduced thiol/thiolate state in the trans-sulfuration pathway. This evidence
is remarkably supported by the finding that the sensitivity of various cancer cells to
Erastin or analogues is greatly increased by DJ-1 suppression both in vitro and in vivo
(Figure 1) [72,79,97,109]. Finally, in non-small cell lung cancer (NSCLC) cells, DJ-1 promotes
cell proliferation. Remarkably, through its binding to the BH1-3 domain of Bcl-2-like
protein 1 (BCL2L1), it is able to increase BCL2L1 mitochondrial stability, counteracting the
antiproliferative effects of some oxidative agents such as ultraviolet B (UVB) radiation [110].
From these results it is evident that, under the ferroptotic stress, the DJ-1 levels play a major
role in the survival of cancer cells.
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Figure 1. Role of DJ-1 in ferroptotic cells. In basal conditions, the intake of cystine is the driving force
for GSH generation. During ferroptotic stress, DJ-1 level is a determining factor in the survival of
the cells. In Erastin treated cells, the high levels of DJ-1 preserves the survival of cells by inducing
the transsulfuration pathway. Conversely, low levels of DJ-1 inhibit the transsulfuration pathway,
decrease the generation of GSH, and induce ferroptosis.

11. DJ-1 Deglycase Activity

Increasing evidence suggests that DJ-1 and ROS are also associated with molecular
pathways leading the formation of advanced glycation end products (AGEs). Under dicar-
bonylic stress, proteins and lipids undergo glycation, a non-enzymatic reaction that leads
to the formation of methylglyoxal (MGO) and glyoxal (GO) products. The adducts formed
through the Maillard reaction under oxidative conditions might be rearranged by producing
AGEs [111], a damaging condition related to aging and senescence processes [112].

Although it is well established that ROS are the driving force leading to AGEs forma-
tion, it is also clear that AGEs are themselves a source of oxidative stress able to impair
antioxidant scavengers. AGEs formation is thus a “self-feeding” mechanism correlated
with ageing, cancer, neurodegeneration, and auto-immune diseases [113].

In the context of AGEs formation, DJ-1 is likely to have a leading role, being a gly-
oxalase able to revert the Maillard reaction [114]. In healthy conditions, the removal of
dicarbonylic adducts is critical to avoid severe diseases [112,113] but, on the other hand,
in cancer cells, this glyoxalase activity is crucial for preserving the replicative potential of
cancers cell.

The latest studies report that the aggressive malignancy unveils a hyper-glycolytic
phenotype. This high glycolytic flux accounts for the formation of waste carbonylic species
able to bypass nuclear membranes and react with the ε-amino groups of lysine and arginine,
very represented in histone tails. This reaction, being non-enzymatic, is influenced only by
the levels of reagents and is thus dependent on glycolytic flux.

Glycation might induce the deconstruction of histone codes impairing the replicative
cellular potential. Based on these observations, high glycolytic cancer cells should be
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more susceptible to senescence but, paradoxically, this type of malignancy exhibits a more
aggressive phenotype. The reason lies in the overexpression of DJ-1 that counteracts AGEs
formation both by reverting glycation reaction and by reducing oxidative stress.

In this context, two key papers concomitantly highlighted the role of DJ-1 in preserving
nucleosome stability and chromatin architecture, by removing MGO and GO adducts from
histone tails [115,116]. The authors depicted a novel molecular mechanism, connecting the
cellular metabolic alteration with the epigenetic perturbation. Notably, they emphasized
that high levels of glycation correlate with DJ-1 overexpression, enforcing the notion that
DJ-1 has a strategic role in preserving the malignant replicative potential of breast cancer
cells. On the other hand, our research group deepened this topic, adding a further order
of complexity to the molecular mechanism. We proposed that DJ-1 might undergo Akt-
dependent phosphorylation on the catalytic site, providing the basis to demonstrate that the
peculiar mitogenic signal, as the activation of PI3K pathway, might direct DJ-1 deglycase
activity (Figure 2). Our work suggests that in cancer cells, the peculiar DJ-1 proteoform
accounts for its role in epigenetic misregulation preserving the histone code and promoting
survival [117].
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Figure 2. Role of DJ-1 during dicarbonyl stress. In senescent cells, the hyper-glycolitic phenotype
induces dicarbonyl stress. Left side: In cells treated with Akt inhibitor, DJ-1 does not undergo
phosphorylation. Unphosphorylated DJ-1 loses its glyoxalase activity and is unable to counteract the
formation of MGO adducts, accounting for chromatin destructuration. Right side: In proliferating
cell, under the activation of the Akt pathway, DJ-1 undergoes phosphorylation and translocates into
the nucleus where it acts as glyoxalase. This activity preserves the histones code and the malignant
proliferative potential.

12. The Interplay between DJ-1 and miRNAs in Cancer and Oxidative Stress
Related Conditions

A number of recent studies have functionally linked DJ-1 to some microRNAs, which
are crucial post-transcriptional regulators. This interplay seems to be involved in the devel-
opment and progression of several unhealthy conditions, including cancer and Parkinson’s
disease. Concerning cancer, several DJ1-miRNAs interactions have been described. In par-
ticular, miR-216b inhibits gastric cancer proliferation and migration by targeting DJ-1, latter
promoting gastric cancer peritoneal metastasis through PI3K/Akt signalling pathway [118].
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Interestingly, modulation of DJ-1 levels by miRNAs has also a crucial role in overcoming
chemoresistance. For instance, in pancreatic cancer cells and in HCC, MiR-203 affects
cisplatin resistance by inducing apoptosis [119]. Furthermore, MiR-128-3p overexpression
sensitizes cancer cells to sorafenib-induced apoptosis [120].

Similarly in glioma, MiR-544 inhibits cells proliferation, invasion, and migration by
targeting the DJ-1 gene [121]. The interplay between DJ-1 and miRNAs has also been
described in several neurological diseases. For instance, in Parkinson’s, DJ-1 seems to
modulate the expression of miR-221 promoting neuronal survival and hampering ox-
idative stress. Specifically, DJ-1 increases miR-221 expression through the MAPK/ERK
pathway, leading to the repression of apoptotic effectors [122]. Conversely, two miRNAs,
Hsa-miR-4639-5p and miRNA-494, down-regulating DJ-1, elicit severe oxidative stress
and neurodegeneration [123,124]. In the context of degenerative disease, Xue and col-
leagues described how the overexpression of miR-122, leading to DJ-1′s downregulation,
counteracts the ischemia-reperfusion damage after cerebral infarction [125]. Additionally,
an interesting study reported that MiR-181a, regulating the expression of p62/SQSTM1,
parkin, and DJ-1, promotes mitochondrial dynamics in skeletal muscle ageing. The study
underlies that the age-related downregulation of MiR-181a is associated with the accu-
mulation of autophagy-related proteins and abnormal mitochondria while the restoring
of miRNA levels in old mice, prevents the accumulation of p62, DJ-1, and PARK2, and
improves mitochondrial quality and muscle function [126]. Finally, it is reported that
the downregulation of miR-4485-3p is associated with asthenozoospermia through the
interaction with DNAH1, KIT, and PARK7 genes [127]. Overall, these studies highlight
that DJ-1 exerts a dual role based on pathophysiological context. In cancer cells it exhibits
a prosurvival role by directing proliferation, migration, invasion and chemoresistance
through the modulation of mitogenic pathways; on the other hand, in neurological diseases,
where it acts principally as an antioxidant agent, its downregulation might induce serious
cellular damage by hampering redox homeostasis.

13. DJ-1 as a Potential Therapeutic Target

Taking into account the widespread functions of DJ-1, it is obvious that several research
groups pointed out the development of therapeutic strategies aiming to target DJ-1.

Some strategies blocking the biological functions of DJ-1 in cancer are based, for
instance, on DJ-1 gene silencing or interference with the controlled pathways, but few
studies regarding compounds able to bind directly DJ-1 have been published and the
description of their precise mechanism of action is not yet detailed in depth [128]. The
major reason is the lack of a potent and well-characterized chemical inhibitor, however
some interesting studies, based on crystal structure and computational studies, have been
conducted on compounds that bind the Cys106 region [129]. Bilsland et al. reported the
identification and characterization of a pyrazolopyrimidine compound series (particularly,
CRT0063465 and its analogue CRT0105481), even though the inhibition mechanism was
not really clarified [129].

In the DJ-1 structure, the conserved Cys106 is the main residue that influences many
known functions. The Cys106 region serves as a sensor of redox homeostasis and can be
oxidized to both the sulfinate (-SO2

−) and sulfonate (-SO3
−) forms [130]. Oxidation of

Cys106 seems to be crucial for DJ-1 translocation into the mitochondria, interaction with
p53, and repression of p53-dependent gene transcription [11]. Thus, considering that this
residue seems to play a key role in the modulation of DJ-1 activities, the docking of small
molecular compounds able to target this region represents an exciting therapeutic strategy.

Tashiro and colleagues applied a fragment-based methodology to identify novel in-
hibitors of DJ-1, focusing on molecules capable of binding the Cys106 region. These promis-
ing compounds exhibit significant inhibitory properties in a cell-based assays, targeting
both the redox sensor function and the DJ-1 deglycase activity [128].
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Yanagida and co-workers identified a molecule (UCP0054278) capable of binding
to the SO2H-oxidized Cys106 region. The molecule enhances DJ-1′s anti-oxidative and
anti-apoptotic activity, preventing both ROS production and neuronal cell death [131].

Although oxidation of Cys106 residue is essential for the DJ-1 catalytic activity, it is
extensively demonstrated that an excessive oxidation induces protein inactivation and
is the driving force for Parkinson disease onset. In this context, two emblematic papers
described a subset of molecules that exhibit the ability to specifically bind the DJ-1 Cys106
region maintaining its active forms. These molecules share the capability to prevent the
excessive oxidation of DJ-1, inhibiting the oxidative induced cell death [132,133].

A recent work discusses the synthesis and the analysis of a series of bis-isatin deriva-
tives able to specifically target the DJ-1 homodimerization unveiling remarkable anti-cancer
properties [6]. Intriguingly, the authors describe a molecule (DM10) that significantly
induces apoptosis and erastin-based ferroptosis in several human cancer cell lines and,
much more interestingly, also in xenograft mice generated from H1299 cells. Finally, in the
brilliant work by Maksimovic and colleagues, they developed a fluorescence-based assay
to screen DJ-1 inhibitor exploring its esterase activity by DiFMUAc substrate. Using this
approach, the authors enlarge the parterre of reversible and irreversible inhibitors of DJ-1
providing novel promising isatin-analog molecule able to impair DJ-1 activity [134].

14. Conclusions and Future Perspectives

Here we propose an analysis of DJ-1 function, pointing out that this mitochondrial
protein exerts a crucial role in several physiological and pathological pathways (Figure 3).
Closely, we dissect the activity of DJ-1 as a master regulator of cellular redox homeostasis,
highlighting that this function is, in turn, strategic for the modulation of ferroptosis as well
as glycation. Therefore, we propose a synopsis of the current strategies aiming to clarify
the role of this protein in cancer (Table 1).
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stress. For each signaling pathways, the main effectors are reported. We reported the effects of
DJ-1 on phosphatidylinositol-3 kinase (PI3K), protein kinase B (AKT), phosphatase and tensin
homolog (PTEN), insulin-like growth factor receptor (IGFR), hypoxia-inducible factor 1-alpha (HIF-
1α), extracellular signal-regulated kinase 1/2 (ERK1/2), tyrosine-protein kinase (SRC), nuclear factor
kappa-light-chain-enhancer of activated B cells (NFKB), cellular zinc finger anti-NF-κB (CEZANNE),
Bcl-2-associated X protein (BAX), (P53), caspase 3 (CASP3), advanced glycation end-products (AGEs),
S-adenosyl-homocysteine hydrolase (SAHH), homocysteine (Hcy), nuclear factor erythroid 2-related
factor 2 (NRF2), NAD(P)H-quinone oxidoreductase 1 (NQO1), glutathione (GSH), and reactive
oxygen species (ROS).

Table 1. Correlating the expression and the regulation of DJ-1 with different types of cancers.

DJ-1 Expression Regulation Type of Cancer Ref.

Overexpression Reduction of PTEN expression Urothelial carcinoma
lung cancer [43–45]

Silencing

Upregulation of PTEN and other
pro-apoptotic proteins; inhibition of

the activation of AKT and
anti-apoptotic proteins

Human melanoma
cells G361 [46]

Knock-down Increased PTEN expression and
decreased AKT phosphorylation

Papillary thyroid carcinoma,
K1 and TPC-1 cells [17]

Knock-down NF-κB activity reduction and
ERK1/2 phosphorylation

Papillary thyroid carcinoma,
K1 and TPC-1 cells [17]

Overexpression
Activation of the PI3K/AKT

pathway, GSK3β phosphorylation
and cyclin D1 expression

Transformed
NIH-3T3 cells [42]

Expression Increasing CTNNB1 level
Patients with high

grade and poor
prognosis glioma

[47]

Silencing

Increased PTEN expression,
inhibition of interleukin (IL)-6/

Signal Transducer and Activator
of STAT3, MAPK and AKT

Human hepatocellular
carcinoma cells (HCCs) [48,49]

Knock out Regulation of Cdk2, cyclin D1,
c-Myc, NF-kB, Bcl-2 and PTEN Leukaemia cells [37]

Expression Activation of the ERK/SRC
phosphorylation cascade Pancreatic cancer cells [54,55]

Expression Regulation of PI3K/AKT pathway
and HIF-1α

Human colorectal
cancer (CRC) [61]

Expression Regulation of Wnt
signaling pathway CRC cells [62]

Overexpression Increased EMT process
Esophageal squamous
cell carcinoma (ESCC)

tissue samples
[16]

Overexpression Wnt/β-catenin pathway,
increased EMT process

Human ECA-109 cells
in vitro and in the in vivo
nude mouse abdominal

transplant model
[16]

Silencing Inhibition of the cellular zinc finger
anti-NF-κB (Cezanne or OTUD7B) Ishikawa cells [64]

Overexpression Inhibition of JNK, Bcl2
phosphorylation/dissociation, Beclin1

LNCap prostate
cancer cells [71]

Expression Increased BCL2L1
mitochondrial stability

Non-small cell lung
cancer (NSCLC) cells [110]

Some effective approaches for regulating DJ-1 function in cancer have been published,
mostly reporting the interference with its gene expression or pathways modulated by DJ-1.
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However, studies on the direct blockade of DJ-1 at the protein level are still controversial
and need to go more in-depth. One of the major issues is represented by the lack of a
potent and ascertained DJ-1 inhibitor. Some studies reported the interaction of a few
compounds with the region responsible of DJ-1 homodimerization, demonstrating that
its blockade induces cancer cells death. Unfortunately, these outcomes still have many
unanswered questions regarding the ability of DJ-1 to form many complexes, its subcellular
localization, and the adopted cell context. Thus, it is desirable to enlarge these results in
other cancer types and under different experimental conditions, and, most importantly, the
current research should focus on the individuation of the DJ-1 complexes and its subcellular
interactions, the exact role under oxidative stress, and in chemoresistance.

Overall, our review aims to underlie that DJ-1 is functionally required for several
aspects of the transformed phenotype and suggests that disrupting its protective activity
may be a promising therapeutic approach in the fight against cancer.
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