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Abstract

Background Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally. COPD pa-
tients with cachexia or weight loss have increased risk of death independent of body mass index (BMI) and lung func-
tion. We tested the hypothesis genetic variation is associated with weight loss in COPD using a genome-wide
association study approach.

Methods Participants with COPD (N = 4308) from three studies (COPDGene, ECLIPSE, and SPIROMICS) were
analysed. Discovery analyses were performed in COPDGene with replication in SPIROMICS and ECLIPSE. In
COPDGene, weight loss was defined as self-reported unintentional weight loss > 5% in the past year or low BMI
(BMI < 20 kg/m?). In ECLIPSE and SPIROMICS, weight loss was calculated using available longitudinal visits. Strati-
fied analyses were performed among African American (AA) and Non-Hispanic White (NHW) participants with COPD.
Single variant and gene-based analyses were performed adjusting for confounders. Fine mapping was performed using
a Bayesian approach integrating genetic association results with linkage disequilibrium and functional annotation. Sig-
nificant gene networks were identified by integrating genetic regions associated with weight loss with skeletal muscle
protein—protein interaction (PPI) data.

Results At the single variant level, only the rs35368512 variant, intergenic to GRXCR1 and LINC02383, was associated
with weight loss (odds ratio = 3.6, 95% confidence interval = 2.3-5.6, P = 3.2 x 10~%) among AA COPD participants
in COPDGene. At the gene level in COPDGene, EFNA2 and BAIAP2 were significantly associated with weight loss in AA
and NHW COPD participants, respectively. The EFNA2 association replicated among AA from SPIROMICS (P = 0.0014),
whereas the BAIAP2 association replicated in NHW from ECLIPSE (P = 0.025). The EFNA2 gene encodes the
membrane-bound protein ephrin-A2 involved in the regulation of developmental processes and adult tissue homeosta-
sis such as skeletal muscle. The BAIAP2 gene encodes the insulin-responsive protein of mass 53 kD (IRSp53), a negative
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regulator of myogenic differentiation. Integration of the gene-based findings participants with PPI data revealed net-
works of genes involved in pathways such as Rho and synapse signalling.

Conclusions

The EFNA2 and BAIAP2 genes were significantly associated with weight loss in COPD participants. Collec-

tively, the integrative network analyses indicated genetic variation associated with weight loss in COPD may influence

skeletal muscle regeneration and tissue remodelling.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the third
leading cause of death internationally with associated mortal-
ity continuing to rise.™? Although COPD is primarily diagnosed
using lung function, traits not directly related to lung function
such as cachexia greatly reduce quality of life and increase risk
of mortality.>* Cachexia is a debilitating comorbidity increas-
ing risk of death® and healthcare expenditure.”> Most often
thought of with respect to cancer, it has been estimated that
there are 1.4 times as many patients with COPD cachexia than
cancer cachexia by population prevalence.®

Cachexia is defined as weight loss, primarily caused by loss
of muscle with or without loss of fat, in individuals suffering
from a chronic illness. The consensus definition for cachexia
diagnosis includes weight loss > 5% in the last 12 months or
low body mass index (BMI) (BMI < 20 kg/mg?) in addition to
three out of five of decreased muscle strength; fatigue;
anorexia; low fat-free mass index; and any indication of in-
creased inflammatory markers (C-reactive protein, IL6, etc.),
anaemia, or low serum albumin.® We recently demonstrated
participants with COPD with cachexia and/or weight loss
greater than 5% in the past year had a greater than
three-fold increased mortality independent of BMI and lung
function.* Monitoring cachexia using weight loss criteria is
relatively simple and predictive of mortality among individ-
uals with COPD.

Loss of muscle mass underlying weight loss in cachexia can
be influenced by dysregulation of a number of mechanisms
involved in the balance between protein synthesis and
degradation.” Further, impaired ability to regenerate skeletal
muscle tissue can contribute to muscle loss in COPD
cachexia.” COPD patients with advanced disease are more
likely to exhibit weight loss* in addition to skeletal muscle re-
modelling from a slow twitch (Type I) to a fast twitch (Type 1l)
myofibre shift.® Skeletal muscle remodelling occurs in re-
sponse to external stimuli leading to activation of intracellu-
lar signalling pathways and muscle fibre transition.’

Although the major risk factor for COPD is smoking, COPD is
a heritable disease with multiple genetic loci reproducibly
associated.’®*3 The prevalence of cachexia in COPD is corre-
lated with increasing disease severity.* Genetic variation may

also contribute to the development of cachexia and weight
loss in COPD. By performing genome-wide association study
(GWAS) analyses, we previously identified genetic variants as-
sociated with longitudinal BMI in a small number of partici-
pants with COPD (N = 237) in the Framingham Heart Study.™*
As analyses were performed in a small size, investigation in a
larger sample of participants with COPD with more precise
phenotyping is merited. The genetics of cachexia have been
more thoroughly investigated in cancer with several genes re-
producibly associated using primarily candidate gene associa-
tion approaches.*>® Cancer cachexia genes identified in
association studies are known to be involved with inflamma-
tory response regulation, pathways directing muscle and fat
metabolism and appetite regulation among others.*>*’

We hypothesized genetic variation may be associated with
weight loss contributing to cachexia in COPD. To test this hy-
pothesis, we performed GWAS testing in 4308 participants
with COPD from 3 cohorts: COPD Genetic Epidemiology
(COPDGene), Evaluation of COPD Longitudinally to Identify
Predictive Surrogate Endpoints (ECLIPSE), and Subpopula-
tions and Intermediate Outcome Measures in COPD Study
(SPIROMICS). Replication was assessed in remaining cohorts.
GWAS findings were further explored by integrating
gene-based findings with publicly available transcriptomics
and protein—protein interaction (PPI) databases to gain addi-
tional insight to underlying biological mechanisms which may
be influencing cachexia.

Materials and methods
Ethics statement

Institutional Review Board approval for all analyses was ob-
tained from the University of Alabama at Birmingham and
performed in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki and its later amend-
ments. Manuscript complies with the Ethical guidelines for
authorship manuscript that they comply with the Ethical
guidelines for authorshipand publishing in the Journal of Ca-
chexia, Sarcopenia and Muscle.®
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Study participants

The current analyses utilized COPD participants recruited
as part of three studies: COPDGene,® ECLIPSE,*° and
SPIROMICS? (Supporting Information, Figure S1). In all stud-
ies, COPD was classified using post-bronchodilator lung func-
tion testing (FEV;: forced expiratory volume in 1 s and FEV,/
FVC: FEV1 expressed as a fraction of forced vital capacity) at
baseline enrolment. All participants with COPD had moderate
to severe disease defined by a GOLD?*? stage of 2 (FEV1/
FVC < 0.7 and 50% < FEV, < 80% predicted) or higher (GOLD
3 and 4). In the current analyses, COPDGene COPD partici-
pants had at least a 10 pack-year smoking history, were aged
45 to 80 years at baseline and followed longitudinally with
two visits 5 years apart. In ECLIPSE, COPD participants had
at least a 10 pack-year smoking history and were aged 45
to 75 years at baseline and followed longitudinally. Visits in
ECLIPSE occurred at baseline, 3 months, 6 months, and then
every 6 months for 3 years. In SPIROMICS, COPD participants
had at least a 20 pack-year smoking history, were aged 41 to
80 years at baseline, and were followed with annual visits for
3 years.

Weight loss in chronic obstructive pulmonary
disease

As diagrammed in Figure S1, COPDGene weight loss was de-
fined as either self-reported, unintentional weight loss
greater than 5% in the past year, or as had low BMI
(<20 kg/m?). We performed additional cleaning of the
self-reported unintentional weight loss variable in COPDGene
by confirming weight loss based on the weight measure-
ments collected at Visits 1 and 2. This led to the exclusion
of two participants (Figure S1). In ECLIPSE and SPIROMICS,
weight loss greater than 5% was defined if present at any
of the longitudinal visits.

Genome-wide association study analyses

Genotyping in COPDGene was performed using the lllumina
Human Omni 1-Quad (lllumina, San Diego, CA), in ECLIPSE
using the Illumina HumanHap 550v3 chips and in SPIROMICS
using the Illlumina HumanOmniExpressExome BeadChip
(IlMumina, Inc., San Diego, CA). Standard quality control steps
were performed on DNA samples and single-nucleotide poly-
morphism (SNP) data as previously described.?>™> For all
three studies, genotypes were imputed using the Haplotype
Reference Consortium reference panel.?® Only SNPs with an
imputation quality score of 0.5 or greater were included in
the analysis. SNP positions were reported based on the hu-
man genome 19 build. SNPs were annotated to genes or clos-
est genes using the NCBI human genome 19 RefGene

database (version 2017-06-01) as implemented using
ANNOVAR.?” In COPDGene, a total of 5,405,435 and
7,629 ,332 variants were imputed and passed quality control
in the Non-Hispanic White (NHW) and African American (AA)
COPD participants, respectively. In ECLIPSE, a total of
5 370 356 variants were imputed and passed quality control.
In SPIROMICS, a total of 5,421,262 variants were imputed and
passed quality control in NHW and AA participants. Statistical
analyses were performed in PLINK v1.90b3.45% and R vfoss/
2016b.%° Discovery analyses were performed using data from
AA COPD and NHW COPD participants from COPDGene, and
results were assessed in the remaining cohorts for replica-
tion. Association with weight loss for each SNP with a minor
allele frequency of 5% or greater was tested assuming an
additive model adjusting for age, sex, and principal compo-
nents of genetic ancestry controlling for genetic ancestry.
The level of genome-wide significance (GWS) for SNPs associ-
ation tests was defined as P < 5.0 x 108, This level of GWS is
a value traditionally used in GWAS to account for the large
number of variants in linkage disequilibrium.3° It approxi-
mates a Bonferroni-corrected P = 0.05 for one million inde-
pendent tests in the genome. Regional association plots
were generated using LocusZoom>! and linkage disequilib-
rium information from the 1000 Genomes African Ancestry
and 1000 Genomes European Ancestry reference panels®?
were used. Meta-analyses were performed using the
METAL®® software. Gene-based analyses were performed
using the MAGMA3* software that integrates both single
SNP tests with linkage disequilibrium patterns within gene
regions. MAGMA assigns SNPs to genes based on physical
position (x50 kb) of known genes in the NCBI site. Statistical
significance (GWS) for gene-based tests was defined as
P < 2.5 x 10~®, which corresponds to Bonferroni-corrected
P value threshold for P = 0.05 for the approximate 20 000
genes in the genome.

Fine-mapping analysis

To prioritize biological causality of the genotyped variants,
fine mapping was performed using PAINTOR.3> PAINTOR im-
plements a Bayesian approach incorporating genetic associa-
tion results, linkage disequilibrium, and functional annotation
to generate the posterior probability (PP) of causality for each
variant. Fine-mapping regions were prioritized based on ex-
amination of the regional association plots as well as includ-
ing variants +25 kb from the lead variant. Single SNP test
statistic (Z score) information from the gene regions for the
variants in the partitioned gene regions was used as input
and was functionally annotated to the regions in skeletal
muscle, lung, brain, adipose, and liver. Top 5 regions function-
ally annotated to the variants based on highest likelihood ra-
tio were included for the analysis.
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Defining modules by integrating genome-wide
association study findings with protein—protein
interaction data

R library dmMGWAS Version 2.4 was used to integrate GWAS
findings with PPI data.>® The dmGWAS algorithm is applied
to integrate GWAS results with PPI data by using the PPI data
as a search space to examine gene networks also termed
modules. Nodes in the network represent gene-based results
with edges representing PPl between proteins encoded by
two genes. Every gene in the GWAS results is considered as
an initial seed gene by the dmGWAS algorithm with a starting
test statistic corresponding to the gene-based result. Using
the search space defined by the PPl network additional genes
are considered for inclusion in the module. A gene is included
in the module if it increases the module test statistic by a
factor of r. PPl data were downloaded from PINA,3” which
includes collected and annotated data from six public data-
bases: MINT, IntAct, DIP, BioGRID, HPRD, and MIPS/IMPact,
on 16 December 2019. We further subset the PPl network
data based on proteins in the Compiled Skeletal Muscle
Proteome.?® In the current analyses, gene-based meta-analy-
sis in the AA and NHW COPD participants was used as an in-
put to dMGWAS. A distance constraint of d = 2 and r = 0.1
were used. A normalized module score accounting for the
number of genes in the modules was generated. dmGWAS
function simpleChoose was used to choose the top 10 ranked
modules based on the normalized module score. Subnet-
works created for each ethnicity-based PPl network was visu-
alized using Cytoscape 3.6.1.3°

Pathway and tissue enrichment analyses

Gene-set enrichment analysis (GSEA)*® and tissue enrichment
analyses was performed using the Functional Mapping and
Annotation*? software to examine known biology of the

network modules that were generated by dmGWAS. Tissue
enrichment was assessed by testing whether collections of
genes exhibit tissue specific expression patterns based on
the Genotype-Tissue Expression project Version 8 data*? im-
plemented in Functional Mapping and Annotation.

Results

Chronic obstructive pulmonary disease population
characteristics

We contrasted descriptive characteristics of COPD partici-
pants in the discovery cohort, COPDGene, with the replication
cohorts, SPIROMICS and ECLIPSE (Table 1). When comparing
SPIROMICS and COPDGene, SPIROMICS AA COPD partici-
pants, on average, were more likely to be older, have lower
BMI, have better lung function, and to have unintentional
weight loss (Table 1). On average, among NHW COPD partici-
pants, those in ECLIPSE were more likely to be male partici-
pants, have lower BMI, have less smoking exposure, have
worse lung function, and have higher unintentional weight
loss than those in COPDGene and SPIROMICS (Table 1),
whereas NHW SPIROMICS subjects tended to be older, on av-
erage, compared with COPDGene and ECLIPSE (Table 1). The
prevalence of weight loss was 17% and 14.6% in COPDGene
AA and NHW participants with COPD, respectively, whereas
the prevalence of the weight loss trait ranged from 30.7% to
38.6% in SPIROMICS and ECLIPSE COPD participants.

Examining association of single SNPs with weight
loss in participants with COPD

Among AA COPD participants, the rs35368512 variant was
significantly associated with weight loss in the discovery

Table 1 Characteristics of COPD participants included in GWAS of weight loss

e —— African Americans

Non-Hispanic Whites

N (%) COPDGene SPIROMICS P value* COPDGene ECLIPSE SPIROMICS P value®
N 401 138 — 1380 1569 820 —

Sex (% male) 197 (49.1) 71 (51.4) 0.82 758 (54.9) 1054 (67.2) 466 (56.8) 0.48

Age 58.1+7.5 61.4 8.2 <0.0001 64.1 =79 63.7 = 7.0 659 +7.4 <0.0001
BMI 28.4 + 6.6 26.7 = 5.8 0.0076 28.6 5.9 26.8 = 5.6 275+ 5.2 <0.0001
Pack years 41.6 = 22.4 42.8 +19.5 0.56 53.7 £ 26.1 50.0 + 27.1 57.2 £ 51.0 <0.0001
FEV1pp 56.4 = 15.2 53.3 =+ 16.6 0.046 54.2 £ 16.2 48.3 + 15.6' 54.1 £ 16.7 <0.0001
Weight loss® 68 (17.0) 50 (36.2) 0.0082 201 (14.6) 605 (38.6)" 252 (30.7) 0.0047

Continuous variables (age, BMI, FEV1pp, and pack-years of smoking) are represented by means and standard deviations.

BMI, body mass index; COPD, chronic obstructive pulmonary disease; FEV1pp, forced expiratory volume in 1 s expressed as percentage of
predicted; GOLD, Global Initiative for Chronic Obstructive Lung Disease; WL, weight loss.

‘Weight loss is defined as WL > 5% and/or low BMI at any time point in the study.

“P value generated from 4 test statistic for categorical variables and paired test statistic for continuous variables comparing African

Americans between COPDGene and SPIROMICS.

'P value generated from y° test statistic for categorical variables and one-way ANOVA test statistic for continuous variables comparing

Non-Hispanic Whites between COPDGene, ECLIPSE, and SPIROMICS.
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analysis [odds ratio (OR) = 3.6, 95% confidence interval
(Cl) = 2.3-5.6, P = 3.2 x 10" &, Table S1] but did not replicate
in the AA COPD participants from SPIROMICS. The
rs35368512 variant is intergenic with the closest gene,
GRXCR1, located within 200 kb (Figure 1A). When the
meta-analysis results of weight loss in AA COPD participants
were examined, no additional variant was associated at a
level of GWS (Table S2). The top variant associated with
weight loss in AA COPD participants in the meta-analysis
was intronic to the TBXZ5 gene (Table S2). Among the NHW
COPD participants in COPDGene, no single variant was signif-
icantly associated with weight loss (Table S3) nor reached
GWS in the meta-analysis of all the populations (Table S4).
The top single variant (rs62015138, OR = 2.1, 95% C| = 1.6—
2.8, P = 6.4 x 107) associated with weight loss among
NHW COPD participants in COPDGene was within the
RBFOX1 gene (Table S3). The top single variant associated
with weight loss in the meta-analysis of NHW COPD partici-
pants (rs35017521, OR = 14, 95% ClI = 1.2-1.6,
P = 7.7 x 107, Table S4) is intergenic between a microRNA
gene (MIR6072) and a long intergenic non-protein coding
RNA gene (LINC00701).

EFNAZ and BAIAPZ2 gene-based regions associated
with weight loss in participants with COPD

At the gene level, EFNA2 was associated at level of GWS with
weight loss among AA COPD participants (Table 2). This find-
ing replicated (P < 0.05) among AA COPD participants from
SPIROMICS contributing to a meta-analysis P = 1.4 x 108
(Table 2). The lead EFNAZ2 variant, chr19:1304013, was
associated with an increased risk of weight loss (OR = 3.6,
95% Cl = 1.9-6.7, P = 6.2 x 10 >) in discovery analyses, which
was not GWS. In the meta-analysis, an additional two genes,
C19orf24 and CIRBP, were associated with weight loss at a
level of GWS among AA COPD participants (Table 2). The
EFNAZ2 and CIRBP genes are located in the same region on
chromosome 19 (Figure 1B). Fine mapping of 109 variants in-
dicated 41% were needed to obtain a credible set with modest
PP. Fine-mapping analyses indicated several variants within
EFNAZ2 had modest PP of being causal (PP > 0.15, Figure 2)
with the combined region accounting for 99% of the PP.
Among NHW COPD participants, the BAIAP2 gene was sig-
nificantly associated with weight loss (Table 3) with the finding
replicating in ECLIPSE. Among NHW COPD participants from
SPIROMICS, the BAIAP2 gene was also associated with weight
loss at a level near nominal significance (P = 0.055) contribut-
ing to the significant meta-analysis result (P = 5.20 x 10~7). In
the discovery analyses, NHW COPD participants in COPDGene
the top BAIAPZ2 variant, chr17:79084367, was associated with
decreased risk of weight loss in COPD (OR = 0.60, 95%
Cl = 0.48-0.76, P = 1.5 x 10°) but not a level of GWS. The
BAIAP2 gene, on chromosome 17, is near (5 kb) to the AATK

gene (Figure 3). The AATK gene is physically close but tran-
scribed in the opposite direction with the two genes having
overlapping 3/ non-coding regions.*® The AATK gene was sig-
nificantly associated with weight loss in COPD participants
from COPDGene but did not replicate in ECLIPSE or SPIROMICS
(Table 3). Fine mapping of 477 variants indicated 41% were
needed to obtain a credible set with modest posterior proba-
bility. Fine-mapping analysis indicated only one variant within
BAIAP2 had a modest PP of being causal with the remaining
variants having low likelihood of being causal (PP < 5%, Figure
3). However, the collective set which included variants within
AATK increased the combined likelihood to 99%.

Integrating GWAS findings with PPl data to identify
networks of COPD weight loss genes

Chronic obstructive pulmonary disease weight loss consensus
networks were generated using unsupervised integration of
gene-based meta-analysis results with PPl data of proteins
expressed in skeletal muscle. Integration of the
meta-analysis weight loss gene-based results from AA COPD
participants identified 12,135 modules. A consensus module
was generated from the top 10 most significant modules in-
cluded 29 genes (Figure 4, Table S5). Several of these genes
(EFNA2, CIRBP, WDR&8, and KCNK1) in the consensus module
were among the top 10 most associated with weight loss in
AA COPD participants (Table 2). GSEA indicated the consensus
module genes associated with weight loss in the AA COPD par-
ticipants were enriched in pathways involved in NRFZ signal-
ling, adipogenesis, synapse, and RNA metabolism among
others (Table S6). Integration of the meta-analysis weight loss
gene-based results from NHW COPD participants with PPl net-
work data identified 12,168 modules. A consensus network
was created from the top 10 most significant modules and
was comprised of 36 genes (Figure 5, Table S7). Of which, sev-
eral genes (BAIAP2, AATK, ZZEF1, and RHOB) were among the
top 10 most significantly associated with weight loss in NHW
COPD participants (Table 3). GSEA results indicated the con-
sensus module genes were enriched in pathways involved in
adipogenesis, synapse signalling, Rho GTPase signalling as well
as genes in other known other pathways (Table S8). Despite
having only one gene, UBC, common to both the AA and
NHW weight loss consensus networks, there were six
known gene-sets in common. These were comprised of genes
(i) involved in synapse signalling; (ii) involved in formation of
the incision complex; (ii) with sites recognized by miR-520D;
(iv) involved in protein tagging for modification, sequestra-
tion, transport, or degradation; (v) involved in adipocyte dif-
ferentiation; and (vi) involved in subdivision of chromosomal
regions.

The EFNAZ gene is a member of the set of 16 synapse sig-
nalling genes represented in consensus weight loss networks
in both AA and NHW COPD participants (combined GO
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Table 2 Based on meta-analysis, top 10 genes associated with weight loss in participants with COPD in African American cohorts (COPDGene and

SPIROMICS)
Meta-analysis COPDGene AA SPIROMICS AA

Gene CHR START STOP NSNPS ZSTAT Pvalue NSNPS ZSTAT Pvalue NSNPS ZSTAT P value
EFNA2® 19 1236153 1351430 252 5.6 1.40E-08 270 4.7 1.34E-06 233 3.0 1.42E-03
C19o0rf24 19 1225520 1329243 220 5.2 1.20E-07 237 4.5 4.00E-06 202 2.6  4.59E-03
CIRBP? 19 1219267 1324809 221 4.6 2.10E-06 235 4.1 1.74E-05 206 2.0 2.10E-02
Wi2-237311.2 7 280136 384388 100 3.9 4.80E-05 81 4.6 2.16E-06 119 —0.1 5.49E-01
WDR88&® 19 33572949 33717830 434 3.8 6.10E-05 435 2.2 1.43E-02 432 3.9 5.74E-05
KCNKT1® 1 233699750 233858258 505 3.8 6.30E-05 515 3.3 5.50E-04 495 2.0 2.19E-02
TET2 4 106017032 106250960 477 3.7 1.30E-04 481 2.8 2.55E-03 473 2.5 7.01E-03
OR13C8 9 107281449 107382411 390 3.5 1.90E-04 391 4.4 5.86E-06 388 —-0.5 6.77E-01
BTNL3 5 180365845 180483727 258 35 2.60E-04 239 33 4.40E-04 276 1.2 1.18E-01
MAGI2 7 77596374 79133121 5017 3.5 2.70E-04 5142 3.4 3.26E-04 4892 1.0 1.53E-01

COPD, chronic obstructive pulmonary disease.

‘Denotes genes that appear in the consensus network.
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Figure 3 Fine mapping of BAIAPZ region associated with weight loss among non-Hispanic White COPD participants. (A) Scatterplot of location vs. pos-
terior probabilities with credible set, (B) physical position of genes including BAIAPZ in region, and (C) functional annotation tracks.

muscle regeneration is one mechanism contributing to skele-
tal muscle loss in cachexia.>® IRSp53 can act as a negative reg-
ulator of myogenic differentiation influencing the
development of skeletal muscle as well skeletal muscle
regeneration.>® Previous research demonstrated COPD pa-
tients may exhibit heterogeneous and distinct skeletal muscle
molecular biomarker patterns in response to pulmonary
rehabilitation.”® However, IRSp53 was not among the bio-
markers investigated in the previous research.®! It is possible
dysregulation of IRSp53 may be one mechanism contributing
to impaired ability to regenerate skeletal muscle in cachexia;
however, this requires further research. Also, GSEA analyses

highlighted BAIAPZ2 involvement in Rho signalling. Activation
of the Rho signalling pathway is required for the maintenance
of myotubes.>? Interestingly, ephrins such as ephrin-B whose
gene were associated with weight loss among AA COPD par-
ticipants activate eph receptors who exert downstream by
regulating Rho GTPase signalling.**

Our study has many strengths but also limitations.
Strengths of the study include a large sample size of COPD
participants in multiple cohorts followed longitudinally with
weight loss and genotype data available. We also used inno-
vative network methods, going beyond generating a list of
genes associated with weight loss in COPD, providing
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Figure 4 COPD weight loss consensus network generated from African American participant analyses. Node size is proportional to P value significance
where the bigger the node size the smaller the P value from the gene-based meta-analysis result. Nodes (circles) represent genes that are among the
top genes in the consensus network. Edges (lines) are known protein—protein (PPI) interactions. Nodes filled in black represent genes robust to exclu-

sion of UBC from the PPI network.

rationales for further mechanistic research. Limitations of the
study include heterogeneity in number of visits used to de-
fine weight loss in the discovery and replication cohorts. In
COPDGeneg, a self-reported unintentional weight loss greater
than 5% in the past year or low BMI collected at a single visit
was used. Whereas in ECLIPSE and SPIROMICS, weight loss
and BMI were measured at several annual visits. The preva-
lence of weight loss was higher in ECLIPSE and SPIROMICS
which may be due to increased opportunities for observing
weight loss over the course of the study. In COPDGene,
weight loss was also unintentional whereas in the other
two studies participants may have been intentionally trying
to lose weight which could inflate the prevalence of weight
loss. Self-reported, unintentional weight loss is likely a more
conservative measure, however, may also be subject to recall
bias. Discovery analyses were performed using more strict
criteria to code the weight loss trait which would have biased
findings towards the null. However, the lower number of
visits over larger time intervals in COPDGene likely led to mis-
classification and loss of follow-up of participants with COPD
who passed away before weight loss could be recorded by
the study. This would have limited our ability to identify some

true associations with weight loss in COPD using COPDGene
as discovery. Future studies of weight loss in COPD should
aim to collect weight measurements more frequently such
as the intervals employed in ECLIPSE and SPIROMICS. Further,
we also employed a Bonferroni-corrected level of significance
to gene-based findings which may have been overly
conservative.

Furthermore, the UBC gene encoding Ubiquitin C was the
only gene in common between the AA and NHW COPD
weight loss consensus networks. The ubiquitin-proteasome
system is fundamental to muscle atrophy in cachexia.>® How-
ever, we previously demonstrated the network analysis
method, dmGWAS, was sensitive to hub genes such as UBC,
encoding Ubiquitin C.>* For these reasons, we also performed
the network analyses excluding UBC and found EFNAZ and
BAIPA2 were robustly included in each consensus module
whether UBC was included in the PPI search space or not. Fi-
nally, we analysed genotyped and imputed SNP data, which
led to the identification of two gene regions associated with
weight loss in COPD rather than specific genetic variants.
We maximized the information in the regions through our
fine-mapping approach. Although we analysed a combined
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Figure 5 COPD weight loss consensus network generated from non-Hispanic White participant analyses. Node size is proportional to P value signifi-
cance where the bigger the node size the smaller the P value from the gene-based meta-analysis result. Nodes (circles) represent genes that are among
the top genes in the consensus network. Edges (lines) are known protein—protein (PPI) interactions. Nodes filled in black represent genes robust to

exclusion of UBC from the PPI network.

set of 4308 subject with COPD in the three studies combined,
the samples sizes became small when stratified by study and
ancestry group likely limiting the power to replicate findings
in the discovery. For example, the top variant associated with
weight loss in the meta-analysis of AA COPD subjects is
intronic to the TBXZ5 gene. TBX15 is a member of the T-box
family of transcription factors and has been previously associ-
ated with waist to hip to ratio.>® Nonetheless, we were able
to maximize information using our integrative approach to
discover new aetiology for weight loss in COPD. However,
an expanded analysis in these populations of COPD partici-
pants using whole-genome sequence with integration with
other omics data may lead to data identifying specific genetic
variants, which may guide personalize medicine approaches.

To summarize, BAIAP2 and EFNAZ2 genes were significantly
associated with weight loss in COPD among NHW and AA par-
ticipants. Our integrative network analyses identified COPD
weight loss genes enriched with genes involved in skeletal
muscle regeneration and tissue remodelling as well as provid-
ing rationales for further mechanistic research. ldentification
of genetic variation contributing to weight loss in COPD due
to impaired skeletal muscle regeneration and tissue

remodelling may enable discovery of therapies that could en-
hance response to pulmonary rehabilitation.
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Figure S1. COPD GOLD Stage> = 2 participants with pheno-
type and genotype data included in analyses. A) COPD partic-
ipants included from the COPDGene study; B) COPD
participants included from SPIROMICS study; C) COPD partic-
ipants included from ECLIPSE study. GWAS — Genome Wide
Association Study. In COPDGene, 2 subjects with Visit 2
self-reported weight loss data were excluded for being incon-
gruent with Visit 1 weight.

Table S1. SNPs associated with COPD weight loss among
African American COPD participants from COPDGene
(N = 401) with P < 1E-5.

Table S2. Top 10 SNPs associated with weight loss among Af-
rican American COPD participants based on meta-analysis
COPDGene and SPIROMICS.

Table S3. SNPs associated with COPD weight loss among
Non-Hispanic White COPD participants from COPDGene with
P < 1E-5.

Table S4. Top 10 SNPs associated with weight loss among
Non-Hispanic White COPD participants based on meta-
analysis of three studies (ECLIPSE, COPDGene and
SPIROMICS).
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Table S5. Genes represented in the COPD weight loss consen-
sus network from African American participants with corre-

sponding gene-based results provided.

Table S6. Gene Set Enrichment Analysis of Consensus Net-
work Genes associated with weight loss among AA COPD par-
ticipants from COPDGene and SPIROMICS.
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