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Purpose: We developed a 11C-Methionine positron emission tomography/computed

tomography (11C-MET PET/CT)-based nomogram model that uses easy-accessible

imaging and clinical features to achieve reliable non-invasive isocitrate dehydrogenase

(IDH)-mutant prediction with strong clinical translational capability.

Methods: One hundred and ten patients with pathologically proven glioma who

underwent pretreatment 11C-MET PET/CT were retrospectively reviewed. IDH genotype

was determined by IDH1 R132H immunohistochemistry staining. Maximum, mean and

peak tumor-to-normal brain tissue (TNRmax, TNRmean, TNRpeak), metabolic tumor

volume (MTV), total lesion methionine uptake (TLMU), and standard deviation of SUV

(SUVSD) of the lesions on MET PET images were obtained via a dedicated workstation

(Siemens. syngo.via). Univariate and multivariate logistic regression models were used

to identify the predictive factors for IDH mutation. Nomogram and calibration plots were

further performed.

Results: In the entire population, TNRmean, TNRmax, TNRpeak, and SUVSD of

IDH-mutant glioma patients were significantly lower than these values of IDH wildtype.

Receiver operating characteristic (ROC) analysis suggested SUVSD had the best

performance for IDH-mutant discrimination (AUC = 0.731, cut-off ≤0.29, p < 0.001).

All pairs of the 11C-MET PET metrics showed linear associations by Pearson correlation

coefficients between 0.228 and 0.986. Multivariate analyses demonstrated that SUVSD
(>0.29 vs. ≤0.29 OR: 0.053, p = 0.010), dichotomized brain midline structure

involvement (no vs. yes OR: 26.52, p = 0.000) and age (≤45 vs. >45 years OR:

3.23, p = 0.023), were associated with a higher incidence of IDH mutation. The

nomogram modeling showed good discrimination, with a C-statistics of 0.866 (95% CI:

0.796–0.937) and was well-calibrated.

Conclusions: 11C-Methionine PET/CT imaging features (SUVSD and the involvement of

brain midline structure) can be conveniently used to facilitate the pre-operative prediction

of IDH genotype. The nomogram model based on 11C-Methionine PET/CT and clinical

age features might be clinically useful in non-invasive IDH mutation status prediction for

untreated glioma patients.
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INTRODUCTION

Gliomas are the most prevalent malignant primary tumors
of the brain. Over the past years, isocitrate dehydrogenase
enzyme (IDH) mutations have been proven to be an inciting
event in gliomagenesis, which made a great difference in the
molecular and genetic route of oncogenic progression and
clinical outcome (1). IDH mutations were identified in low
grade glioma (LGG) and secondary glioblastoma multiforme
(GBM) with a high percentage but in primary GBM with a
much lower percentage (2). Glioma patients with IDH mutation
had been prone to significantly better progression-free survival
than those IDH wildtype counterparts, irrespective of grade or
received treatments (3). Thereafter, some IDH wildtype LGGs
can be as aggressive and have prognoses that are quite similar
to GBMs (4). The gold standard of IDH mutations detection
relies on immunohistochemistry or genetic sequencing of the
surgical specimens. Given the inherent risk of surgery or biopsy,
substantial research efforts have focused on the pre-operative
non-invasive prediction of IDH mutational status in gliomas.

In 2016, the World Health Organization (WHO) updated
the classification criteria for central nervous system tumors,
in which IDH mutation and 1p/19q codeletion made a
significant difference in the latest classification of glioma (5).
The amino acid PET imaging has become increasingly important
in evaluating the atypical non-enhancing gliomas as well as
the differentiating tumor progression from treatment-related
changes (6). Response Assessment in Neuro-Oncology (RANO)
working group proposed that amino acid positron emission
tomography (PET) imaging should be used in all aspects of
gliomamanagement combined withmagnetic resonance imaging
(MRI). L-[methyl-11C]methionine (11C-MET) PET imaging has
been widely used in glioma grading, differential diagnosis, tumor
scope definition, brain biopsy site determination, radiotherapy
planning, prognostication, and treatment monitoring (7–12).

Radiomics analysis from multimodality MRI or FDG PET
images have been reported to be sufficient for IDH prediction
(13). A recent study (14) by Maldjian et al. evaluated the
usefulness of a non-invasive, only T2 weighted MRI based deep-
learning method for the determination of IDH status. The
results are inspiring since T2-weighted MR imaging is widely
available and routinely performed in the assessment of gliomas.
Some studies have explored the relationship between amino acid
uptake characteristics of gliomas and IDH mutation status (15–
19). We aimed to develop a novel and convenient statistical
model that combines PET features and clinical factors for an
IDH-predictive signature. Nomogram is a prediction tool that
creates a simple pictorial representation of a statistical prediction
model that generates a probability of a clinical event and aid
in clinical decision-making (20, 21). It is “a form of line chart
showing scales of the variables involved in a particular formula
in a way that corresponding values for each variable lie in a
straight line intersecting all the scales.”(22) Therefore we tried to
establish a MET PET/CT-based nomogrammodel that uses easy-
accessible imaging metrics and clinical features to add reliable
predictive information for IDH mutational status in patients
with gliomas.

MATERIALS AND METHODS

Study Population
We conducted a retrospective study of patients with histologically
proven diffuse glioma who underwent 11C-MET PET/CT
between February 2012 and November 2017 at a single
center. Inclusion criteria: (1) all patients were confirmed
to have glioma histological diagnosis and IDH1 R132H
immunohistochemistrical staining results. (2) PET images for
every patient were of good quality with no obvious artifacts.
Exclusion criteria: (i) patients who received treatment by
radiotherapy, chemotherapy, or chemoradiotherapy before PET
imaging. (ii) glioma patients with no precise histological grading
or IDH1R132H staining results. (iii) poor image quality with
artifacts affecting the semi-quantitative analysis. (iv) hypo- or
iso-metabolism of 11C-MET compared to the background which
is not applicable for threshold-based tumor volume delineation
procedures. Moreover, the interval between PET imaging and
subsequent tumor resection or biopsy was no more than 100 days
for grade II or III gliomas and no more than 30 days for grade IV
glioblastomas. A total of 110 cases were eligible for inclusion.

11C-MET PET/CT Imaging Protocol
11C-MET was synthesized by the GE Healthcare-Tracerlab-FXc
11C radiolabelling module semi-automatically. 11C-CO2 was
produced by SIEMENS RDS III cyclotron, and homo-cysteine
was used as the precursor. The radiochemical purity of the
obtained sterile product was higher than 95%. All patients had
fasted for at least 4 h before imaging. At 10–15min after an
intravenous bonus injection of 11C-MET (370–550MBq), a static
PET scan was subsequently collected for 20min with a Siemens
Biograph 64 HD PET/CT (Siemens, Erlangen, Germany) in
3-dimensional (3D) mode. PET images were reconstructed
using the filter back projection (FBP) with Gaussian filter
(FWHM3.5mm) and a 256∗256matrix, providing 64 contiguous
transaxial slices of 5 mm-thick spacing. Attenuation correction
was performed using a low-dose CT (150 mAs, 120 kV, Acq.
64∗0.6mm) before the emission scan.

11C-MET PET/CT Data Analysis
All PET/CT images were analyzed using a dedicated workstation
(Siemens.syngo.via). Semi-quantitative analysis of tumor
metabolic activity was obtained using SUV normalized to body
weight. All parameters were assessed in 3-dimensional volumes.
Mean standardized uptake values (SUVmean) of the normal
contralateral frontal cortex were calculated as references. A
predefined threshold method at 1.3-times of the corresponding
reference SUVmean (23, 24) was applied. The brain MRI of
patients were reviewed initially to locate the possible tumor
region. A VOI isocontour of the tumor region were applied,
semi-quantitative PET imaging analysis were carried out
after the lesion delineation procedures. The above-mentioned
procedures were carried out by two experienced nuclear
medicine physicians separately to double confirm the correct
inclusion and reproducible parameters measurements of the
glioma lesion. For those multifocal glioma patients in our group,
the specific surgical resected or biopsied lesion for pathological

Frontiers in Oncology | www.frontiersin.org 2 July 2020 | Volume 10 | Article 1200

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. PET-Based Nomogram Predict IDH Mutation

examination were included in our research in order to avoid bias.
Each VOI generated a maximum of SUV (SUVmax), a mean
SUV (SUVmean), a peak SUV (SUVpeak), a standard deviation
of SUVmean (SUVSD), a metabolic tumor volume (MTV) and
a total lesion methionine uptake (TLMU). The total lesion
methionine uptake (TLMU) was defined as the MTV multiplied
by the SUVmean within the tumor boundary. SUVpeak was
the highest mean SUV from a fixed 1-cm3 spherical volume
centered over the highest metabolic part of the tumor. The lesion
SUV/normal contralateral cortical SUVmean was defined as the
tumor-to-normal brain tissue ratio (TNR) of 11C-MET uptake.

Physicians would examine the interested glioma lesions to
decide whether brain midline structure were involved or not,
mainly taking MET PET images for reference. The brain
midline structures included corpus calloum, cingulate gyrus,
thalamus, third ventricle and brain stem. As illustrated above, two
physicians performed VOI delineation for each included patient
to confirm the brain midline structure involvement status and
to obtain two sets of MET metric features. In order to build
a relatively stable integrated 11C-MET PET/CT metrics-based
model, we evaluated the inter-observer agreement indices for
those obtained results.

Neuropathologic Analyses
Histological specimens were obtained by surgery or stereotactic
brain biopsy. H&E staining and immunohistochemical analysis
were performed by an experienced neuropathologist according to
the current WHO guidelines. IDH status of the surgical samples
was identified with an antibody to the IDH1 (R132H) mutation
by immunohistochemical staining.

Establishment of a MET PET-Based
Nomogram and Validation of the Model
Performance
Participant’s age, gender and brainmidline structure involvement
were used as potential predictors, together with those MET-PET
metrics, to perform the univariate logistic regression analysis
for developing a prediction model of IDH mutation. Those
MET-PET metrics share a deep homology, so we first evaluated
their correlations to avoid overfitting in the nomogram model
building. After that, the MET PET metrics-based nomogram
was then designed based on a multivariable logistic analysis
results in the whole group with the aim of providing the
clinician with a quantitative tool used in the prediction of IDH
mutation status. The nomogram model validation involved the
quantitative assessment of the nomogram’s accuracy in IDH
mutation prediction by use of Harrell’s concordance index (C-
statistic) and calibration curve. The corrected C-index, which
is used to quantify the level of concordance between predicted
probabilities and actual chance, was measured to predict the
accuracy (discrimination) of the nomogram (20, 25). A relatively
corrected C-index could be calculated after bootstrap analyses
using 1,000 resamples. The calibration curve was used to estimate
how closely the modeled nomogram estimated the risk relative to
the actual risk of IDH status (mutant or wildtype), accompanied
by the Hosmer-Lemeshow test (26).

Statistical Analysis
All continuous variables are expressed as mean ± standard
deviation or median and range. Categorical variables are
expressed as percentages. For continuous variables, an
independent sample t-test was used to compare the two groups,
while the chi-square test was applied to calculate P-values for
categorical variables. Inter-observer agreements on 11C-MET
PET metrics and dichotomized location results were assessed
with interclass correlation coefficients (ICC) and Cohen’s kappa
coefficient analysis, respectively, defined as poor (<0.2), fair
(0.21–0.4), moderate (0.41–0.6), good (0.61–0.8), and very good
(0.8–1.0). All PET activity measuring indices were compared
with each other using scatter plots and Pearson correlation
coefficients. Receiver operating characteristic (ROC) analysis
was performed to calculate the area under the ROC curve (AUC)
for each PET semi-quantitative parameters. The Delong test was
used in the comparison of ROC curves. The AUC of ROC curves
analysis and the Delong test were performed by using MedCalc
for windows (version11.3.3.0, MedCalc software, Mariakierke,
Belgium). Univariate and multivariate logistic regression models
were used to identify the predictive factors for an IDH mutation.
A nomogram was formulated based on the results of multivariate
logistic regression analysis and by using the rms package of
R, version 3.6.1 (http://www.r-project.org/). The predictive
performance of the nomogram was measured by concordance
index (C-Statistics) and calibration with 1000 bootstrap samples
to decrease the overfit bias. All other statistical analysis was
performed using the Prism Software version 8.0 (GraphPad, San
Diego. CA). In all analyses, P < 0.05 was considered to indicate
statistical significance.

RESULTS

Patient Demographics
The demographic data of the patients included in this study
are listed in Table 1. Of the 110 patients who were evaluated
retrospectively, 67 (59.32%) were male, and 43 (40.68%) were
female, with a mean age of 45.5 years (range 10–71). The
majority of patients (80/110) underwent tumor resection. The
post-surgical histological examination demonstrated 59 grade II
diffuse glioma, 32 grade III anaplastic tumors, and 19 grade
IV glioblastomas, among which 61 patients confirmed IDH-
wildtype while 49 patients were IDH-mutant. Patients with IDH-
wildtype were more likely to present with lesions involving the
midline structures, while there was no significant difference
in gender distribution between these two groups (detailed in
Table 2).

Inter-reader Agreement in 11C-MET PET
Results
The dichotomized location results of the interested tumor lesion
yielded very similar values for both readers, and accordingly, the
inter-observer kappa was satisfactory (κ = 1.0, p < 0.0001). The
ICC also showed perfect agreement for the five 11C-MET PET
volume-based metrics (ICC > 0.95, p < 0.0001). Therefore, only
the results of reader one were considered for further analysis.
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The absolute values for all 11C-MET PET metrics based on
IDH-genotype were given in Table 2.

Correlations of 11C-MET PET Metrics
All pairs of volume-based 11C-MET PET metrics showed a
linear association, which was quantified by Pearson correlation
coefficients. There were strong correlations between paired
TNRs, i.e., TNRmax, TNRmean, and TNRpeak, and SUVSD with
r values ranging from 0.843 to 0.986 (p < 0.0001). The volume-
related features, including MTV and TLMU, also correlated

TABLE 1 | Clinicopathological features of 110 patients.

Characteristic Numbers (Percentage %)

Age (median, range) 45.5 years old (10–71)

Gender

Male 67 (59.32%)

Female 43 (40.68%)

Primary tumor location

Frontal 27 (24.54%)

Parietal 6 (5.45%)

Temporal 20 (18.18%)

Occipital 1 (0.91%)

Cerebellum 5 (4.55%)

Deep brain structure 14 (12.73%)

Multifocal 37 (33.64%)

WHO grade classification

Grade II 59 (55.09%)

Grade III 32 (28.81%)

Grade IV 19 (16.10%)

IDH status

Mutant (Grade II/III/IV) 42/7/0 (85.71%/14.29%/0.00%)

Wildtype (Grade II/III/IV) 17/25/19 (27.87%/40.98%/31.15%)

Type of operation (surgery/stereotactic biopsy)

Grade II 47/12 (79.66%/20.34%)

Grade III 21/11 (65.63%/34.37%)

Grade IV 14/5 (73.68%/26.32%)

strongly with each other (r = 0.927, p < 0.0001). Intratumoral
heterogeneity feature SUVSD and TNRs demonstrated fair or
moderate associations withMTV (r= 0.228–0.370, p< 0.05) and
TLMU (r = 0.342–0.430, p < 0.0001) (detailed in Table 3 and
Supplementary Figures 1A,B).

Pre-operative 11C-MET PET/CT ROC
Analysis for IDH Mutation
As shown in Table 2, IDH-wildtype patients had significantly
higher TNRmax, TNRmean, and TNRpeak values. Lower SUVSD

values were shown in IDH-mutant patients. Lower MTV and
TLMU values were also observed in the IDH-mutant group,
albeit not significantly so.

In the ROC analysis, the highest AUC of 0.731 (95%CI: 0.638–
0.811) was reached by the SUVSD value, with the best cut-off
value at 0.29, a specificity of 60.66% and a sensitivity of 77.55%,
followed by the TNRmax value with an AUC of 0.678, the best
cut-off value at 2.99, a specificity of 59.02% and a sensitivity
of 75.51%. Their optimal cutoff, AUC, sensitivity, specificity
values, etc., for the abovementioned 11C-METMET PET metrics
were listed in Table 4. Their AUC curves were displayed in
Supplementary Figure 2.

Further pairwise comparisons of ROC curves confirmed that
the AUC of SUVSD differed significantly from any other MET
PET metrics (p < 0.05, details in Supplementary Table 1).

Predicting IDH-Mutant Gliomas and
Construction of the Nomogram
In univariate analysis, the MET PET metrics including SUVSD,
TNRmax, TNRpeak and TNRmean, except for MTV and TLMU,
were significantly associated with IDH mutation (p < 0.05 for
all the variables). Considering their collinearity and the AUC
curve comparison results for the MET PET metrics, SUVSD was
selected as the only MET PET feature for further multivariate
logistic regression analysis. In multivariate logistic regression
analysis, the three factors, i.e., participant’s age, the involvement
of midline structure, and SUVSD, were found to be significant
independent predictors. We demonstrated that SUVSD (>0.29 vs.
≤0.29 OR: 0.053, p= 0.010), brainmidline structure involvement

TABLE 2 | Clinical features and 11C-MET PET metrics based on IDH-genotype.

PET Metric All patients (n = 110) IDH-mutant (n = 49) IDH-wildtype (n = 61) P-valuea

Age (mean ± SD) 45.08 ± 13.56 42.63 ± 10.6 47.05 ± 15.35 0.090

Age (≤45/>45 years) 55/55 31/18 24/37 0.013

Gender (M/F) 67/43 27/22 40/21 0.263

Midline Involvement (yes/no) 37/73 2/47 35/26 0.000

TNRmax 1.7719 ± 0.3038 1.6692 ± 0.2474 1.8544 ± 0.3211 0.001

TNRmean 3.2421 ± 1.3193 2.8277 ± 1.1741 3.5749 ± 1.3440 0.002

TNRpeak 2.8114 ± 1.1222 2.4739 ± 0.9704 3.0824 ± 1.1690 0.004

MTV 48.6750 ± 54.9081 44.9551 ± 53.7083 51.6631 ± 56.1161 0.525

TLMU 87.9881 ± 104.0785 68.5628 ± 86.9409 103.5920 ± 114.3505 0.071

SUVSD 0.3783 ± 0.2819 0.2551 ± 0.1781 0.4772 ± 0.3108 0.000

acomparison between IDH-mutant and IDH-wildtype.
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TABLE 3 | Correlation of 11C-MET PET metrics.

PET Metric TNRmax TNRmean TNRpeak MTV TLMU SUVSD

TNRmax 1 0.843 0.986 0.364 0.419 0.861

TNRmean 1 0.872 0.242 0.342 0.855

TNRpeak 1 0.370 0.430 0.876

MTV 1 0.927 0.228

TLMU 1 0.401

SUVSD 1

TABLE 4 | The Performance of 11C-MET PET metrics and age feature for IDH-mutation prediction.

PET metric Cutoff AUC (95% CI) ACC SEN SPE PPV NPV Youden-index

SUVSD ≤0.29 0.731 (0.638–0.811) 68.18% 77.55% 60.66% 61.30% 77.10% 0.3821

TNRmax ≤2.9886 0.678 (0.582–0.764) 66.36% 75.51% 59.02% 59.70% 75.00% 0.3453

TNRmean ≤1.7051 0.679 (0.583–0.765) 65.46% 69.39% 62.30% 59.60% 71.70% 0.3168

TNRpeak ≤2.8191 0.660 (0.564-0.748) 65.45% 79.59% 54.10% 58.20% 76.70% 0.3369

Age ≤45 0.630 (0.533–0.720) 62.73% 65.31% 60.66% 57.10% 68.50% 0.2596

Midline involvement yes 0.766 (0.676–0.842) 74.54% 95.92% 57.38% 64.40% 94.60% 0.5330

CI, Confidence interval; AUC, Area under the receiver-operating characteristic curve; ACC, Accuracy; SEN, Sensitivity; SPE, Specitivity; PPV, Positive predictive value; NPV, Negative

predictive value.

TABLE 5 | Univariate and multivariate regression analyses for IDH mutation prediction.

Multivariate analysis

Univariate analysis Model 1 Model 2

Variable OR (95% CI) P OR (95% CI) P OR (95% CI) P

Age (≤45 vs. >45) 2.655 (1.223–5.765) 0.014 3.232 (1.180–8.854) 0.023

Gender (male vs. female) 0.644 (0.298–1.394) 0.264

Midline structure Involvement (no vs. yes) 31.635 (7.035–142.248) 0.000 26.523 (5.547–126.831) 0.000 24.461 (5.305–112.789) 0.000

MTV 0.998 (0.991–1.005) 0.525

TLMU 0.996 (0.992–1.001) 0.090

TNRmean 0.093 (0.020–0.435) 0.003

TNRmax 0.605 (0.427–0.857) 0.005

TNRpeak 0.574 (0.385–0.856) 0.007

SUVSD 0.02 (0.003–0.157) 0.000 0.053 (0.006–0.497) 0.010 0.048 (0.006–0.411) 0.006

C–index 0.866 (0.796–0.937) 0.843 (0.766–0.920)

(no vs. yes OR: 26.52, p = 0.000) and age (≤45 vs. >45 years OR:
3.23, p = 0.023), were associated with a higher incidence of IDH
mutation (shown Table 5).

Age does not correlate with SUVSD (r = 0.0370, p = 0.7010).
Lesions involving brain midline structure (73 cases) showed
higher SUVSD (0.3147 ± 0.2501 vs. 0.5038 ± 0.3017, p = 0.007)
compared to lesions without brain midline involvement (37
cases), but no age predominance (45.67± 12.10 vs. 43.92± 16.19,
p = 0.5245) was observed for brain midline involvement (shown
in Supplementary Figure 3).

After that, a nomogram was constructed on the basis of the
multivariate logistic regression (for details, see Figure 1A). The
nomogram (model 1) showed good discrimination efficacy, with
a C-statistics of 0.866 (95%CI: 0.796–0.937). The calibration

curve of the nomogram also indicated good agreement between
predicted probability and actual occurrence in the whole cohort
(Figure 1B). TheHosmer-Lemeshow test indicated no significant
difference (p > 0.05), suggesting that there was no departure
from a perfect fit. Meanwhile, we built model 2 only using
MET PET information, i.e., brain midline structure involvement
and SUVSD derived from lesion VOI, with a C-statistics of
0.843 (95%CI: 0.766–0.920), suggesting that age information
dichotomized by 45 years old do enhance the predictive
ability for IDH genotype. Figure 2 illustrates a comparison of
two representative grade II glioma cases with similar images
by visual analysis. Our 11C-MET PET/CT-based nomogram
could effectively distinguish between IDH-mutant and IDH-
wildtype gliomas.
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FIGURE 1 | (A) The nomogram developed in the whole cohort using the SUVSD metric, the age, and the brain midline structure involvement of the patients. 0

represents ≤ 45 years for age or without brain midline structure involvement and 1 represents >45 years for age or with brain midline involvement, respectively; SD =

100*SUVSD. (B) Calibration plots of the nomogram for predicting IDH mutation. The y-axis represents the actual probability, and the x-axis represents the predicted

probability.

FIGURE 2 | Upper row: example of a patient with a 11C-MET-positive lesion in the left temporo-parietal lobe, moderate TBRmax of 3.21 and moderate MTV of 46.1ml

(A) without contrast-enhancement in CE-T1 MRI (B) and an obvious flair alteration in T2 MRI (C) but with a moderate SUVSD of 0.31 (>0.29); histopathological

analysis revealed an IDH-wildtype, diffuse astrocytoma (WHO grade II). Lower row: example of a patient with a 11C-MET-positive lesion in the left frontal lobe,

moderate TBRmax of 2.46 and moderate MTV of 31.3ml (D) without contrast-enhancement in CE-T1 MRI (E) and a flair alteration in T2 MRI (F) but with a small

SUVSD of 0.26 (<0.29); histopathological analysis revealed an IDH-mutant, diffuse astrocytoma (WHO grade II).
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DISCUSSION

In the present study, we confirmed an association between
volume-based 11C-MET PET quantification metrics and IDH
mutational status for untreated glioma patients and further
constructed a novel and intuitive statistical model to help
clinicians and radiologists non-invasively predict glioma IDH
mutation. As expected, our data demonstrated that TNRs and
SUVSD were significantly lower in the IDH-mutant group
compared with those IDH-wildtypes, which are consistent with
those of Kim et al. (15) 11C-MET PET derived SUVSD showed
the most excellent ability to identify whether glioma had an
IDH mutation or not besides other MET PET metrics. Single-
parameter SUVSD, which is a sort of tumor imaging heterogeneity
feature, had the best prediction efficacy in IDH mutation. It is
reasonable to hypothesize that themore heterogeneous the tumor
MET PET imaging, the more likely IDH status is to be wildtype.

11C-MET PET played a significant role in evaluating the O6-
methylguanylmethyltransferase methylation (MGMT) status in
gliomas (27, 28). PET imaging was suggested to be informative
for preoperatively differentiating gliomas according to 2016
WHO classification, particularly for differentiating IDH-wildtype
and IDH-mutant tumors (19). A study of hybrid 11C-MET
PET/MRI imaging including 39 glioma patients described that
ROC analysis of TNRmax had a high AUC of 0.79 for predicting
IDH status (16). Another study retrospectively evaluated 109
patients with newly diagnosed glioma also indicated that 11C-
MET uptake was negatively correlated with IDH mutational
status. The MET uptake of IDH-wildtype glioblastoma was
significantly higher than that of IDH-mutant glioma (17).
TNRmax derived from 11C-MET PET appears to be superior
to MRS in differentiating IDH status with a ROC of 0.67 (18).
The investigations on the relationship between amino acid tracer
uptake and IDH status were not totally consistent. One O-(2-
18F-fluoroethyl)-L-tyrosine(18F-FET) PET research in a mixed
group of glioma patients, which included 16 oligodendrogliomas
(IDH mutated and 1p/19q co-deleted), 27 astrocytomas (IDH
mutated only) and 47 glioblastomas (IDH-wildtype), suggested
that gliomas with IDHmutation are typically shown with a lower
tumor to brain ratios(TNRmean and TNRmax), prolonged time
to peak, and a slow-rise time-activity curve of 20–50min (29). By
contrast, another 3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine
(18F-FDOPA) imaging study in a total of 43 newly diagnosed
glioma cases described paradoxically higher 18F-FDOPA uptake
in diffuse grade II and III gliomas with IDH mutation (30). This
inconsistency may be explained by the different amino acids PET
probe uptake models in glioma (31). The expression level of L-
type amino acid transporter in glioma is positively proportional
to the intake value of MET, while the expression level of amino
acid transporter is positively correlated with the microvascular
density of glioma (32). Literature has shown that local blood flow
in IDH wildtype glioma is higher than that of IDH mutants (33).

Our study differs from the abovementioned ones in that
it indicated one predictive model for proper pre-operative
prediction of IDH status in glioma patients. We aimed to develop
a nomogram which is independent of histopathologic features,
such as tumor grade or oligodendrocyte component, etc. The

model showed good discrimination and was well-calibrated. Pre-
operative lesion VOI SUVSD should be important in daily clinical
practice, which is a convenient and repetitive PET imaging
parameter obtained through glioma VOI delineation. The origin
of this PET imaging parameter could reflect the intratumoral
heterogeneity to some degree. The SUVSD difference derived
from 11C-MET PET images between IDH-mutant and IDH-
wildtype gliomas may help understand the possible internal
link of intratumor heterogeneity and IDH mutation. Our model
showed that the middle line structure involvement is associated
with IDH mutational status. Things that need to be clarified is
that this kind of brain midline structure involvement was also
decided by VOI delineation, which could be more extensive and
broader than the enhanced tumor volume in MRI. Moreover,
age information has shown reasonable predictive potential and
enhanced the predictive ability for IDH genotype. We report
for the first time the application of 11C-MET PET/CT metrics
and clinical age feature based nomogram in IDH genotyping for
untreated glioma patients.

From specific clinical perspective, this nomogram model has
some positive features. Firstly, our predictive model takes the
advantage of being able to be rapidly acquired by a radiologist
without requiring specialized software extracting texture features
from high-order matrixes. Secondly, it is based on repetitive
MET-PET metrics and some important clinical features, which
is easily for understanding and clinically viable. This nomogram
model displayed the potential to be used as a standalone
diagnostic modality for patients with excessive surgical risk
related to patient’s comorbidities, advanced age, deep-seated, or
brain stem tumors, etc.

There are some limitations to the present study. First, as this
was a single-center study, with more cases are recruited, the
training and validation group will be set for further external
validation ormulticenter validation to assess the potential clinical
utility of our model further. Furthermore, next-generation
sequencing for the IDH genotype was not available for this
retrospective study, and some patients with the mutation may
have been misidentified. Non-canonical IDH mutations can be
found in IDH1 R132H immune-negative LGG (34). These points
would be addressed in future work.

CONCLUSIONS

This study proved that SUVSD derived from regular glioma VOI
delineation in MET PET imaging is a novel and convenient
semiquantitative parameter for the glioma IDH prediction. The
nomogram model combining with age, brain midline structure
involvement, and SUVSD demonstrates the potential in non-
invasive IDH mutation status prediction for untreated glioma
patients and showed reasonable convenience in clinical practice.
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