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Increased beta-band oscillatory activity in the basal ganglia network is associated with

Parkinsonian motor symptoms and is suppressed with medication and deep brain

stimulation (DBS). The origins of the beta-band oscillations, however, remains unclear

with both intrinsic oscillations arising within the subthalamic nucleus (STN)—external

globus pallidus (GPe) network and exogenous beta-activity, originating outside the

network, proposed as potential sources of the pathological activity. The aim of this

study was to explore the relative contribution of autonomous oscillations and exogenous

oscillatory inputs in the generation of pathological oscillatory activity in a biophysically

detailed model of the parkinsonian STN-GPe network. The network model accounts for

the integration of synaptic currents and their interaction with intrinsic membrane currents

in dendritic structures within the STN and GPe. The model was used to investigate

the development of beta-band synchrony and bursting within the STN-GPe network

by changing the balance of excitation and inhibition in both nuclei, and by adding

exogenous oscillatory inputs with varying phase relationships through the hyperdirect

cortico-subthalamic and indirect striato-pallidal pathways. The model showed an

intrinsic susceptibility to beta-band oscillations that was manifest in weak autonomously

generated oscillations within the STN-GPe network and in selective amplification

of exogenous beta-band synaptic inputs near the network’s endogenous oscillation

frequency. The frequency at which this resonance peak occurred was determined by

the net level of excitatory drive to the network. Intrinsic or endogenously generated

oscillations were too weak to support a pacemaker role for the STN-GPe network,

however, they were considerably amplified by sparse cortical beta inputs and were

further amplified by striatal beta inputs that promoted anti-phase firing of the cortex and

GPe, resulting in maximum transient inhibition of STN neurons. The model elucidates a

mechanism of cortical patterning of the STN-GPe network through feedback inhibition

whereby intrinsic susceptibility to beta-band oscillations can lead to phase locked

spiking under parkinsonian conditions. These results point to resonance of endogenous

oscillations with exogenous patterning of the STN-GPe network as a mechanism of

pathological synchronization, and a role for the pallido-striatal feedback loop in amplifying

beta oscillations.

Keywords: basal ganglia, subthalamic nucleus, Parkinson’s disease, beta-band oscillations, synchronization,
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INTRODUCTION

Pathological oscillations in the basal ganglia-thalamocortical
(BGTC) network have long been implicated in the motor
symptoms of Parkinson’s disease. Beta-band (13–30 Hz)
oscillations are consistently strengthened with dopamine
depletion both in individuals with Parkinson’s disease (PD)
and parkinsonian animal models (Sharott et al., 2005; Kuhn
et al., 2008; Mallet et al., 2008b), and are reduced by deep
brain stimulation (DBS) and pharmacological interventions
that alleviate parkinsonian motor symptoms (Kühn et al.,
2006; Weinberger et al., 2006; Ray et al., 2008; Eusebio et al.,
2011). The magnitude of subthalamic nucleus local field
potential beta oscillations is also correlated with the severity
and degree of improvement of bradykinetic/akinetic motor
symptoms and rigidity (Kühn et al., 2006; Bronte-Stewart et al.,
2009). Although beta-band oscillations may not be causal to
bradykinetic/akinetic symptoms (Leblois et al., 2007), they
offer potential as a biomarker for symptom severity and the
underlying network pathophysiology in advanced Parkinson’s
Disease. The origin of beta-band oscillations in the BGTC
network, however, remains unclear. The most prominent
hypotheses emphasize the importance of dopamine-modulated
strengthening of particular feedback loops within the BGTC
network. Computational models have provided a valuable
tool with which to explore various hypotheses regarding the
mechanisms by which oscillatory activity with the network is
generated. Different models have placed the origin of beta and
sub-beta band oscillations in the STN-GPe network (Terman
et al., 2002; Gillies and Willshaw, 2007; Holgado et al., 2010;
Pavlides et al., 2012), in cortical and thalamo-cortical circuits
(Pavlides et al., 2015; Sherman et al., 2016; Liu et al., 2017; Reis
et al., 2019), in striatal or pallidostriatal circuits (McCarthy et al.,
2011; Corbit et al., 2016), or in the full BGTC loop (Leblois,
2006; Kang and Lowery, 2013; Pavlides et al., 2015; Kumaravelu
et al., 2016). These models show that under many conditions the
network is prone to oscillate, through intrinsic pacemaking or
susceptibility to an extrinsic rhythm.

The reciprocally connected subthalamo-pallidal (STN-GPe)
network is a key site in the basal ganglia in which beta-band
oscillations are manifest in Parkinson’s disease (Mallet et al.,
2008a,b). This network was an early focus of modeling studies
due to its reciprocally connected structure and ability to generate
low frequency oscillations in tissue cultures (Plenz and Kital,
1999). Models of the STN-GPe as a pacemaker initially focused
on the generation of low frequency oscillations within the
frequency range of parkinsonian tremor (Gillies et al., 2002;
Terman et al., 2002), with focus shifting to the beta-band
with increasing evidence of a link between beta activity and
parkinsonian motor symptoms (Holgado et al., 2010; Pavlides
et al., 2012).

More recent experimental evidence suggests that, rather

than the STN-GPe network operating in a pacemaking mode,

patterning by cortex may play a critical role in the generation

of pathological beta-band oscillations in Parkinson’s disease.
This is supported by observations of high functional coupling
between cortex and STN (Magill et al., 2004; Sharott et al.,

2005; Mallet et al., 2008a; Litvak et al., 2011; Moran et al.,
2011), and that oscillatory activity in STN-GPe is contingent
on inputs from the cortex and can be abolished by disrupting
them (Magill et al., 2001; Drouot et al., 2004; Tachibana et al.,
2011). Cortical patterning of the STN-GPe network by means
of feedback inhibition provides a proposed mechanism for this
functional coupling (Baufreton et al., 2005; Bevan et al., 2006;
Mallet et al., 2008a, 2012; Tachibana et al., 2011). According to
this hypothesis, weak oscillatory activity arriving via cortico-STN
afferents is amplified in the STN-GPe network when feedback
inhibition from the GPe is offset in phase with cortical excitation.
While such feedback-mediated oscillations have been observed in
vivo (Paz, 2005) and in slices (Baufreton et al., 2005), the ability of
the network to generate autonomous oscillations and its resonant
response properties are still poorly understood. Specifically, it
is not clear whether the STN-GPe network plays an active part
in generating beta-band oscillations, nor whether it amplifies or
merely sustains them. Neither is it fully understood how beta-
band oscillations relate to other pathological patterns of neural
activity in the subthalamic nucleus (STN) and external globus
pallidus (GPe) that correlate more strongly with parkinsonian
motor symptoms, notably increased neural bursting (Sanders
et al., 2013; Sharott et al., 2014). It is clear, however, that
interventions in the loop and its afferents that reduce beta-
band oscillations (Tachibana et al., 2011) or bursting (Gradinaru
et al., 2009; Pan et al., 2016; Sanders and Jaeger, 2016) lead to
improvements in motor symptoms. Similarly, the STN (Benabid
et al., 2009) and GPe, in non-human primates (Vitek et al., 2012),
are effective targets for DBS.

Previous modeling studies have focused on alterations in
connection patterns and strength within or between nuclei,
typically represented by mean-field or single-compartment
spiking neuron models. While such models are computationally
efficient, theymay not fully capture the role of intrinsic properties
of neurons in shaping pathological activity patterns. Although
cell-specific ion channels can be used, single-compartment
neuron models lump together ion channels and synapses in one
isopotential compartment in a way that may not capture the
complex dynamics that arise when non-uniformly distributed
ion channels (Gillies and Willshaw, 2005) interact with synapses
associated with distinct subcellular regions (Bevan et al., 1995;
Galvan et al., 2004; Pan et al., 2016). Hence they may not
fully account for the mechanisms contributing to pathological
activity within the STN and the role that synaptic-ionic
current interactions play in sustaining beta-band oscillations and
excessive burst firing.

It has recently been demonstrated that following dopamine
depletion the balance of excitatory and inhibitory synaptic
currents in STN neurons is shifted toward inhibition (Chu et al.,
2017; Wang et al., 2018), known to promote burst responses
by increasing the availability of Ca2+ and Na+ channels de-
inactivated at hyperpolarized potentials (Baufreton et al., 2005).
In the GPe increased inhibition, caused mainly by strengthening
of striato-pallidal afferents, is also believed to play a role in
generating pathological oscillations as demonstrated in model
simulation (Gillies et al., 2002; Terman et al., 2002; Holgado
et al., 2010; Kumar et al., 2011). Increased GPe inhibition
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has been suggested to cause increased engagement of HCN
channels (Chan, 2004), which are involved in phase resetting and
controlling the regularity of firing. However, whether functional
coupling between BG nuclei is also moderated by the excitation-
inhibition balance is not fully understood.

The aim of this study was, therefore, to examine the relative
contributions of intrinsic, endogenously generated oscillations
and patterning by exogenous oscillatory inputs in the generation
of synchronous beta-band oscillatory activity in a biophysically
detailed model of the parkinsonian STN-GPe network and
the underlying biophysical mechanisms. A second aim was to
understand how pathological oscillations and bursting patterns
are related to the balance of excitation and inhibition in
the STN and GPe. The STN-GPe network was modeled
using biophysically detailed multi-compartmental cell models
of STN and GPe neurons that capture the interaction between
synaptic and intrinsic currents distributed within the dendritic
structure and involved in autonomous pacemaking and bursting
(Gillies and Willshaw, 2005; Gunay et al., 2008). The generation
of oscillations both autonomously within the network and in
response to beta frequency inputs from the cortex (CTX) and
indirect pathway striatal medium spiny neurons (iMSN) was
examined as the balance of excitation and inhibition within the
network was systematically varied, and oscillatory inputs with
varying phase relationships were added. A better understanding
of the relative contribution of these different factors and their
interaction has the potential to improve understanding of the
mechanism of action of existing anti-parkinsonian therapies,
including DBS and to guide the development of more effective
circuit interventions.

METHODS

Model Architecture
The network model of the STN-GPe network consisted of four
populations of neurons (Figure 1): the STN and GPe neurons,
modeled as multi-compartmental conductance-based models,
and their cortical and striatal inputs, modeled as Poisson or
bursting spike generators.

Population sizes were chosen to preserve the decrease in
population sizes and convergence of projections along the
indirect and hyperdirect pathways in the basal ganglia. The
STN and GPe populations consisted of 50 and 100 multi-
compartmental cells, respectively, to approximate the ratio
of 13,000 STN cells to 30,000 GPe prototypic cells (Oorschot
et al., 1999; Abdi et al., 2015) unilaterally in the rat. As a source
of synaptic noise, an additional 10% of the cells in the STN and
GPe populations were modeled as Poisson spike generators firing
at a mean rate equal to the experimentally reported rate for the
modeled state.

The cortical and striatal populations consisted of 1,000 and
2,000 cells, respectively, modeled as spike generators. These
numbers were chosen to have 20 independent pre-synaptic spike
generators per post-synaptic cell to model convergence along the
hyperdirect CTX-STN and indirect iMSN-GPe projection. For
the iMSN-GPe projection, convergence from all medium spiny
neurons (MSN) to GPe, ignoring subpopulations, is 2,800,000

MSN cells to 46,000 GPe cells (Oorschot, 1996) resulting in a
convergence factor of 60. Assuming that convergence is similar
between iMSN and GPe prototypic neurons, our number is an
underestimation by a factor three. Because iMSN cells in our
model spike independently and since the number of synapses per
cell was lower than in reality, this was considered acceptable.

Stochastic connectivity profiles for the connections illustrated
in Figure 1 were generated by randomly selecting a fixed number
of afferents from the pre-synaptic population for each post-
synaptic cell. The ratios of number of afferents from each
source population were determined, where possible, based on
the reported number of synaptic boutons per afferent type and
the number of contacts per axon (Table 1). Each multi-synaptic
contact was represented by a single synapse to reduce the number
of simulated synapses to a more tractable number.

Conductance-Based Models
The membrane potential vj (mV) in each compartment j of a
multi-compartmental cable model is governed by:

cm
δvj

δt
=

d

4Ra

δ2V

δx2
− gm(V − Em)−

∑

Iion,j −
∑

Isyn,j (1)

where x (cm) is the position along the cable, cm (µF/cm2) is
the specific membrane capacitance, d (cm) is the cable diameter,
Ra is the specific axial resistance (�cm), gm (S/cm2) is the
passive membrane conductance, Em (mV) the leakage reversal
potential, Iion,j (mA/cm2) are the ionic currents flowing across
the membrane of compartment j, and Isyn,j (mA/cm2) are the
synaptic currents at synapses placed in the compartment. Each
ionic current is governed by an equation of the form:

Ix = gxm
p
xh

q
x(V − Ex) (2)

where gx is themaximum conductance of the channel (S/cm2), Ex
is the reversal potential (mV), and mx and hx the open fractions
of the activation and inactivation gates. The dynamics of the
activation and inactivation gatesm and h are governed by

dm

dt
=

m∞(v)−m

τm(v)
, (3)

withm∞(v) and τm(v) representing the voltage-dependent steady
state value and time constant of the gate. For some currents
the gating dynamics are described in terms of the opening and
closing rates αm and βm related through τm =

1
αm+βm

, m∞ =

αm
αm+βm

:

dm

dt
= αm(v) · (1−m)− βm(v) ·m. (4)

Reversal potentials are assumed constant unless otherwise
noted. The reversal potential for Ca2+ currents was calculated
using the Nernst equation from the intra- and extracellular
ion concentrations:

ECa =
RT

zF
ln

[

Ca2+
]

o
[

Ca2+
]

i

(5)
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FIGURE 1 | Network architecture: population and subcellular connectivity. (A) Neuronal populations and their projections modeled in the network. Subthalamic

projection neurons (STN) and prototypic neurons of the external globus pallidus (GPe) were modeled using multi-compartmental neuron models. Cortical projection

neurons (CTX) and indirect pathway striatal medium spiny neurons (iMSN) were modeled as spike generators. (B) Branching structure of the STN neuron model and

representative synapses by afferent type, indicating subcellular distribution of synapses. Cortical glutamergic afferents synapse primarily onto thin dendrites, distally

relative to the soma, but NMDA receptors with faster NR2A subunits mainly target the soma and proximal areas. Pallidal GABAergic afferents target proximal areas of

the cell. (C) Branching structure of the GPe neuron model and representative synapses by afferent type. GABAergic GPe-GPe collaterals mainly target somata and

proximal dendrites, whereas glutamergic afferents were placed in distal regions. Full details of the model are provided in the section Methods.

where T is the temperature in Kelvin, R is the universal gas
constant, F is the Faraday constant, and z is the valence of
the calcium ion (+2). Intracellular calcium buffering in a sub-
membrane shell is modeled as:

d
[

Ca2+
]

i

dt
= − (ICaL + ICaN + ICaT)

c

2Fd
−

[

Ca2+
]

i0
−

[

Ca2+
]

i

τCa
(6)

where c is a unit conversion constant, d is the thickness of the
sub-membrane shell, and τCa is the time constant of decay.

Synaptic connections between cells were modeled by spike
detectors in the somatic compartments, coupled to synapses
in the target cells by a time delay. As no interactions
between axons and other biophysical processes such as electric
fields were required, axonal structures were omitted from the
model and represented as delays between connected neurons.
This constrained the computational complexity of the model,
avoiding the requirement to simulate large number of additional
compartments without altering the network behavior. Synapses
were modeled by a dual exponential profile with rise and decay
times τrise and τdecay modulated by the fraction of synaptic
resources in the active state which was governed by Tsodyks-
Markram dynamics (Tsodyks et al., 1998):

Isyn = gsyn(B− A)(v− Esyn) (7)

dA

dt
=

−A

τrise
+ fpeak · USE · R · δ(t − tspk) (8)

dB

dt
=

−B

τdecay
+ fpeak · USE · R · δ(t − tspk) (9)

dR

dt
=

1− R

τrec
− USE · R · δ(t − tspk) (10)

dUSE

dt
=

−USE

τfacil
+ U1 · (1− USE) · δ(t − tspk) (11)

fpeak =
1

exp(−tpeak/τdecay)− exp(−tpeak/τrise)
(12)

tpeak =
τrise · τdecay

τdecay − τrise
log(

τdecay

τrise
) (13)

where, gsyn is the peak synaptic conductance, B-A represents

the synaptic gating variable, fpeak is a normalization factor so
that B-A reaches its maximum at time tpeak after the time
of spike arrival tspk, R is the fraction of vesicles available for
release, USE is the release probability, and τrec and τfacil are
the time constants for recovery from short-term depression and
facilitation, respectively. The synaptic reversal potentials Esyn
were 0 mV for AMPA and NMDA, −80 mV for GABAA, and
−95 mV for GABAB. For NMDA synapses there is an additional
voltage-dependent gating variable representingmagnesium block
(Jahr and Stevens, 1990):

m(v) = 1/(1+ exp(−0.062v) ∗ (1/3.57)) (14)

The metabotropoc GABAB receptor-mediated current was
modeled as an intracellular signaling cascade based on the model
by Destexhe and Sejnowski (1995). The equations describing G-
protein activation and the synaptic current were retained, but the
bound receptor fraction including the effects of desensitization
was represented by the fraction of resources in the active state
in the Tsodyks-Markram scheme (B-A). The equation governing
the G-protein production rate thus became

dG

dt
= K3 ∗ (B− A)− K4 ∗ G (15)
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TABLE 1 | Experimentally reported connection parameters used to calibrate the model.

Target Source Afferent neurons Synaptic

contacts

Subcellular

targets

Short-term plasticity Delay Effect of dopamine

depletion

STN (all) 300 (Baufreton

and Bevan, 2008)

N.A. N.A. N.A. N.A.

CTX distal (Bevan et al.,

1995; Mathai

et al., 2015; Pan

et al., 2016),

depression (Chu et al.,

2015)

5.9 ms (Kita and Kita,

2011)

weakened (Chu et al.,

2017; Wang et al.,

2018)

proximal (Pan

et al., 2016)

GPe 57 (Atherton et al.,

2013)

883 (Baufreton

et al., 2009)

proximal (Smith

et al., 1990)

depression (Atherton

et al., 2013)

4 ms (Fujimoto and

Kita, 1993)

strengthened (Chu

et al., 2015)

prolonged decay (Fan

et al., 2012)

GPe GPe proximal,somatic

(Chan, 2004;

Sadek et al., 2007)

depression (Miguelez

et al., 2012)

strengthened (Miguelez

et al., 2012)

STN 135 (Kita and

Jaeger, 2016)

dendritic,distal

(Shink and Smith,

1995)

facilitation, 2 ms (Kita and Kitai,

1991)

strengthened

(Hernández et al.,

2006)
depression (Hanson

and Jaeger, 2002)

MSN 10622 (Kita and

Jaeger, 2016)

dendritic, distal

(Chan, 2004)

facilitation (Miguelez

et al., 2012)

5 ms (Kita and Kitai,

1991)

where G is the G-protein concentration, and K3 and K4 are the
rates of G-protein production and decay, respectively. The G-
protein concentration G gates the peak synaptic conductance
according to a sigmoid activation function represented by the
Hill equation:

IGABAB = gsyn
Gn

Gn+Kn
d
(v− EGABAB ). (16)

STN Cell Model
STN neurons were modeled using the rat subthalamic projection
neuron model by Gillies and Willshaw (2005) (ModelDB
accession number 74298). The neuron morphology is based
on quantitative characterization of the dendritic trees of STN
neurons in vitro. The model includes 10 intrinsic ionic currents
(Table 2) :

Iion,j = INaF + INaP

+ IKDR + IKv31 + IsKCa

+ ICaT + ICaL + ICaN

+ IHCN + IL

(17)

where INaF and INaP are the transient fast-acting and persistent
sodium current, IKDR, IKv31, and IsKCa the delayed rectifier, fast
rectifier and calcium-activated potassium current, ICaT , ICaL, and
ICaN the low-voltage-activated T-type, high-voltage-activated L-
type, and high-voltage-activated N-type calcium currents, IHCN
the hyperpolarization-activated cyclic nucleotide (HCN) current,
and IL the leak current. The equations governing the dynamics
of the gating variables are listed in Table 2. The channel density
distributions are described extensively in Gillies and Willshaw
(2005). As a source of noise, a current with a Gaussian amplitude

distribution, mean zero and standard deviation 0.1 was added to
the somatic compartment.

The synaptic currents included an excitatory glutamergic
input from cortex, acting through AMPA and NMDA receptors,
and an inhibitory GABAergic input from the GPe, acting through
GABAA and GABAB receptors (Table 3):

Isyn,j = ICTX−STN,AMPA + ICTX−STN,NMDA

+ IGPE−STN,GABAA + IGPE−STN,GABAB

(18)

In the control condition STN neurons had 20 excitatory
afferents from CTX neurons and 8 inhibitory afferents from GPe
neurons. The location of synapses on STN neurons and axonal
propagation delays were based on experimental observations
(Table 1). Cortico-subthalamic (CTX-STN) synapses were
modeled as conductance-based synapses with Tsodyks-Markram
dynamics (Tsodyks et al., 1998). On each of its target cells, a
cortical axon had one synapse located distally in the dendritic
tree and one located proximally near the soma. Distal synapses
had both an AMPA and slower NMDA conductance component.
The latter represented slower-kinetics NMDA receptors with
majority NR2B and NR2D subunits that have dendritic punctual
expression (Pan et al., 2016). Proximal synapses had only an
NMDA component and represented NMDA receptors with
fast-kinetics NR2A subunits. Synaptic parameter values are
listed in Table 3. Synaptic rise and decay time constants τrise
and τdecay for AMPA and NMDA NR2A constants were based
on traces reported in Chu et al. (2015). For the slower NMDA
NR2B synapses, values were based on Flint et al. (1997). The
propagation delay td was taken from Kita and Kita (2011).
Synapses were made to exhibit short-term depression upon
high-frequency activation, based on observations by Froux et al.
(2018). The ratio of the total AMPA to NMDA conductance were
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TABLE 2 | STN model intrinsic current equations from Gillies and Willshaw (2005).

Current Equation Gating variables Parameters

INaF gNaFm
2h(v− ENa) αm = 0.32 (13.1−v)

exp((13.1−v)/4)−1 βm = 0.28 (v−40,1)

exp(v−40.1)−1 gNaF = 14.83e−3 (soma)

αh = 0.128 exp
(

17−v
18

)

βh =
4

exp((40−v)/5)+1 gNaF = 1e−7 (dendrite)

INaP gNaP (v− ENa) gNaP = 1.11e−5 (soma)

gNaP = 8.10e−6 (dendrite)

IKDR gKDRn(v− EK ) αn =
0.016(35.1−v)

exp((35.1−v)/5)−1 βn = 0.25 exp ((20− v) /40) gKDR = 3.84e−3 (soma)

gKDR ∈ [4.22, 9.32]× 105 (dendrite)

IKv31 gKv31p(v− EK ) p∞ =
1

1+exp(−(v+5)/9)
τ∞ =

18.71
exp(−(v+28)/6)+exp((v+4)/16) gKv31 = 1.34e−2 (soma)

gKv31 ∈ [8.91, 10]× 104 (dendrite)

IsKCa gsKCaw(v− EK ) w∞ =
0.81

1+exp
− log[Ca2+]

i
−0.3

0.46

τw = 40 gsKCa = 6.84e−5 (soma)

gsKCa = 3.92e−5 (dendrite)

IHCN gHCN f (v− EHCN ) f∞ =
1

1+exp(v+75)/5.5]
τf =

1
exp(−14.59−.086v)+exp(−1.87+.07v)

gHCN = 1.01e−3 (soma)

gHCN = 5.10e−4 (dendrite)

ICaT gCaT r
3 s (v− ECa) αr =

1
1.7+exp(−(v+28.2)/13.5)

βr =
exp(−(v+63)/7.8)

1.7+exp(−(v+28.8)/13.5)
gCaT = 0 (soma)

αs = exp [− (v+ 160.3) /17.8] βs =

(

√

.25+ exp v+83.5
6.3 − .5

)

ks gCaT ∈ [1.17, 1.67]× 103 (dendrite)

αd =
1+exp[ (v+37.4)

30 ]

240

(

0.5+
√

0.25+exp[ (v+83.5)
6.3 ]

) ks = exp [− (v + 160.3) /17.8]
[

Ca2+
]

i0
= 1e−4

βd =

(

√

0.25+ exp v+83.5
6.3 − 0.5

)

αd (v) τCa = 185.7

ICaL gCaT q
2h (v− ECa) h∞([Ca2+]

i
)=0.53+ 0.47

1+exp(
[Ca2+]

i
−0.7

0.15
)

τ∞
(

[Ca2+]
i

)

= 1220 gCaL = 9.50e−4 (soma)

q∞ (v) = 1
1+exp[−(24.6v)/11.3]

τq (v) = 1.25
cosh[−0.03(v+37.1)]

gCaL ∈ [1.21, 18.7]× 104 (dendrite)

ICaN gCaN q
2 (v− ECa) u∞

(

vj
)

=
1

1+exp[(vj+60)/12.5]
τu (v) = 98+ cosh [0.021 (10.1− v)] gCaN = 1.15e−3 (soma)

gCaN = 4.79e−4 (dendrite)

based on the ratios reported in Shen and Johnson (2005) for the
normal and dopamine-depleted conditions, taking into account
the reduction of synaptic terminals reported in Chu et al. (2017).
Absolute values for the synaptic conductances were hand-tuned
to bring the mean population firing rates into the reported
range for the rat in dopamine-depleted condition (Mallet et al.,
2008b; Kita and Kita, 2011). Synapses from GPe neurons were
located proximally, close to the soma. Synapses of GPe-STN
afferents had a fast GABAA and a slower GABAB component.
Rise and decay time constants for the GABAA conductance
were based on Fan et al. (2012). Short-term plasticity parameters
were chosen so that synapses exhibited short-term depression,
as shown in Atherton et al. (2013). Parameters for the GABAB

synapse were taken from the model by Destexhe and Sejnowski
(1995), and the decay time constant K4 was adapted so that
the GABAB conductance exhibited depression upon continued
pre-synaptic stimulation.

GPe Cell Model
GPe neurons were modeled using the baseline rat GPe neuron
model by Gunay et al. (2008) (ModelDB accession number
114639). The model is based on a reconstructed morphology
from the adult rat and contains nine types of ion channels with
varying densities in the soma, dendrite, and axon initial segment:

Iion,j = INaF + INaP + IKv2 + IKv3

+ IKv4,f + IKv4,s + IKCNQ + IsKCa

+ ICaHVA + IHCN,f + IHCN,s + IL

(19)

where INaF and INaP are the transient fast-acting and persistent
sodium current, IKv2 and IKv3 the slow and fast delayed
rectifier potassium current, IKv4f and IKv4s the fast and slow
component of the A-type, transient potassium current, IKCNQ
the M-type potassium current, IsKCa the calcium-dependent
potassium current, ICaHVA the high-threshold, non-inactivating
calcium current (reflecting a mixture of L, N, and P/Q-type
calcium channel types), and IHCN,f and IHCN,s the fast and
slow component of the HCN channel. The equations governing
the dynamics of the gating variables are listed in Table 4. The
channel density distributions are those described in Gunay et al.
(2008) for model t9842. As a source of noise, a current that
with a Gaussian amplitude distribution, mean zero and standard
deviation 0.0075 was added to the somatic compartment, to
represent membrane voltage noise of similar amplitude the STN
cell model, given the lower somatic input resistance of the
STN model.

GPe neurons each had 10 excitatory afferents from STN
neurons, 6 inhibitory afferents from GPe-GPe collaterals, and
30 inhibitory afferents from iMSN (Table 5). The location of
synapses on GPe neurons and axonal propagation delays were
based on experimental observations reported in the literature
(Table 1). Relative magnitudes of synaptic conductances were
chosen to bring the population firing rate into the reported
range for the rat (Mallet et al., 2008b; Kita and Kita, 2011).
Rise and decay time constants for AMPA conductances were
set to 1 and 4 ms, respectively, and for GABAA conductances
they were set to 2 and 5 ms, respectively. Synapses from
STN neurons were located distally, in the dendritic tree.
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TABLE 3 | STN model synaptic current equations.

Current Equation Location Parameters

ICTX−STN,AMPA gsyns(v−

EAMPA)

distal:

x ≥ 100µm

τrise = 1 τrec = 200

τdecay = 4 τfacil = 1

td = 5.9 U1 = 0.2

gsyn = 4.44e−3

ICTX−STN,NMDA1 gsynms(v−

ENMDA)

distal:

x ≥ 100µm

τrise = 3.7 τrec = 200

τdecay = 212 τfacil = 1

td = 5.9 U1 = 0.2

gsyn = 5.04e−3

ICTX−STN,NMDA2 gsynms(v−

ENMDA)

proximal:

x < 120µm

τrise = 3.7 τrec = 200

τdecay = 80 τfacil = 1

td = 5.9 U1 = 0.2

gsyn = 5.04e−3

IGPE−STN,GABAA
gsyns(v−

EGABAA )

proximal:

x < 120µm

τrise = 2 τrec = 400

τdecay = 7 τfacil = 1

td = 2.0 U1 = 0.2

gsyn = 18e−3

IGPE−STN,GABAB
gsyn

Gn

Gn+Kn
d
(v−

EGABAB )

proximal:

x < 120µm

τrise = 5 τrec = 400

τdecay = 25 τfacil = 1

td = 2.0 U1 = 0.2

gsyn = 3.75e−3 K3 = 0.098

n = 4 K4 = 6.25e−3

Kd = 1.4

They consisted of an AMPA component and were modeled
using Tsodyks-Markram dynamics. The parameters describing
short-term plasticity dynamics were chosen to match traces
reported in Hanson and Jaeger (2002). Synapses from GPe
were located proximally, near the soma and had both a fast
GABAA component with Tsodyks-Markram dynamics, and a
slow metabotropic GABAB component. Short-term plasticity
parameters were chosen so that synapses exhibited short-term
depression (Miguelez et al., 2012). Synapses from striatal neurons
had a GABAA component and were made to exhibit short-term
facilitation based on Miguelez et al. (2012).

Modeling the Parkinsonian State
Tomodel the parkinsonian state, the biophysical properties of the
network and cell models were modified based on experimental
observations made in the dopamine depleted and control
conditions as reported in the literature. Various biophysical
parameters, including synaptic strengths and time constants are
affected by dopamine depletion, and were adjusted as detailed
below. Scaling factors for synaptic and ionic conductances were
set to experimentally reported values where available. Otherwise
they were chosen to bring the mean population firing rates into
physiological ranges reported for the rat in a state of cortical
activation during light anesthesia (Mallet et al., 2008b; Kita and
Kita, 2011).

The mean firing rate of STN surrogate spike sources was
increased from 14.6 to 29.5 Hz in the parkinsonian state (Mallet
et al., 2008b). The peak GABAA and GABAB conductance of GPe

to STN synapses was increased by 50% and the GABAB decay
time constant increased by 2 ms to model the increase in the
number of contacts, vesicle release probability, and decay kinetics
of GPe afferents (Fan et al., 2012). To model the reduction in
cortico-STN axon terminals and their dendritic targets (Chu
et al., 2017; Wang et al., 2018) the number of CTX-STN afferents
was reduced to 70% of the normal condition, corresponding to
the ratio of vGluT1 expression in the normal and dopamine
depleted condition used to label axon terminals (Chu et al., 2017).
To model functional strengthening of remaining synapses, the
AMPA and NMDA peak conductances of remaining synapses
were multiplied by the ratio of the current scaling factors
reported in Shen and Johnson (2005) to the fraction of
remaining synapses. The effect of functional strengthening and
weakening of the CTX-STN projection was further investigated
by systematically varying the peak synaptic conductances in the
simulations experiments. Finally, HCN currents were reduced by
50% to model reduced depolarization and spontaneous activity
after dopamine depletion (Zhu et al., 2002; Cragg et al., 2004) and
modulation of HCN current by D2R receptors (Yang et al., 2016).

In GPe neurons the peak AMPA conductance of STN
afferents was increased by 50% to model the modulatory
effect of dopamine on glutamergic excitatory currents (Johnson
and Napier, 1997; Hernández et al., 2006; Kita, 2007). The
strengthening of GPe-GPe collaterals (Miguelez et al., 2012;
Nevado-Holgado et al., 2014) wasmodeled by increasing the peak
GABAA and GABAB conductances by 50%. The mean firing rate
of GPe surrogate spike sources was decreased from 33.7 to 14.6
(Mallet et al., 2008a). Finally, the HCN channel conductance was
decreased by 50% in accordance with experimental data (Chan
et al., 2011).

In simulations without oscillatory inputs, cortical projection
neurons were modeled as Poisson spike generators firing at
10 Hz, a multiple of the experimentally reported rate of 2.5
Hz (Li et al., 2012), so that each synapse represented the
combined inputs of four pre-synaptic neurons (making use of
the additive property of the Poisson distribution). In simulations
with oscillatory inputs, oscillatory spike trains were generated as
follows: on top of the aforementioned background firing pattern,
bursts were added in each period of a regular oscillation at the
chosen oscillation frequency. In each period of the oscillation
10% of neurons were selected randomly to emit a burst. The
onset time of the burst was the same in each selected neuron,
so that bursts occurred in-phase between neurons, but the
number of spikes in a burst was variable with inter-spike intervals
sampled from the interval [5, 6] ms. All background spikes
occurring in a time window centered on a burst were deleted
to prevent unrealistically high inter-spike intervals. Figure 7D
shows a rastergram with representative spike trains generated
using this method.

The increase in excitability and spontaneous activity of iMSN
(Kita and Kita, 2011; Fieblinger et al., 2014) was modeled by
increasing the mean firing rate of the Poisson spike generators
from 1.5 to 6.64 Hz. In experiments where iMSN cells fired
oscillatory bursts the same algorithm as described for cortical
projection neurons was used. The modulation of GABAergic
transmission from iMSN to GPe neurons (Cooper and Stanford,
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TABLE 4 | GPe model intrinsic current equations from Gunay et al. (2008).

Current Equation Gate m0 θm∞ σm∞ τ0 τ1 θmτ σm0 σm1 Additional parameters

INaF gNaFm
3hs(v− ENa) m 0 –39 5 0.028 0.028 N/A N/A N/A gNaF = 0.035 (soma)

h 0 –48 –2.8 0.025 4 –43 10 –5 gNaF = 0.035 (dendrite)

s 0.15 –40 –5.4 10 1000 –40 18.3 –10 gNaF = 0.5 (axon)

INaP gNaPm
3hs(v− ENa) m 0 –57.7 5.7 0.03 0.146 –42.6 14.4 –14.4 gNaP = 10.15e−3 (soma)

h 0.154 –57 –4 10 17 –34 26 –31.9 gNaP = 10.15e−3 (dendrite)

s 0 –10 –4.9 N/A N/A N/A N/A N/A gNaF = 4e−3 (axon)

IKv2 gKv2m
4h(v− EK ) m 0 –33.2 9.1 0.1 30 –33.2 21.7 –13.9 gKv2 = 0.1e−3 (soma, dendrite)

h 0.2 –20 –10 3400 3400 N/A N/A N/A gKv2 = 64e−3 (axon)

IKv3 gKv3m
4h(v− EK ) m 0 –26 7.8 0.1 14 –26 13 –12 gKv3 = 1e−3 (soma, dendrite)

h 0.6 –20 –10 7 33 0 10 –10 gKv3 = 128e−3 (axon)

IKv4,f gKv4,fm
4h(v− EK ) m 0 –49 12.5 0.25 7 –49 29 –29 gKv4,f = 2e−3 (soma)

h 0 –83 –10 7 21 –83 10 –10 gKv4,f = 4e−3 (dendrite)

gKv4,f = 160e−3 (axon)

IKv4,s gKv4,sm
4h(v− EK ) m 0 –49 12.5 0.25 7 –49 29 –29 gKv4,s = 3e−3 (soma)

h 0 –83 –10 50 121 –83 10 –10 gKv4,s = 6e−3 (dendrite)

gKv4,s = 240e−3 (axon)

IKCNQ gKCNQm
4h(v− EK ) m 0 –61 19.5 6.7 100 –61 35 –25 gKCNQ = 20e−5 (soma, dendrite)

gKCNQ = 4e−5 (axon)

ICaHVA gCaHVAm(v− ECa) m 0 –20 7 0.2 0.2 –20 N/A N/A gCaHVA = 3e−5 (soma, thick dendrites)

gCaHVA = 4.5e−5 (medium dendrites)

gCaHVA = 9e−5 (thin dendrites)
[

Ca2+
]

i0
= 5e−5

τCa = 1

IHCN,f gHCN,fm(v− Eh) m 0 –76.4 –3.3 0 3625 –76.4 6.56 –7.48 gHCN,f = 1e−4 (soma, dendrite)

IHCN,s gHCN,sm(v − Eh) m 0 –87.5 –4 0 6300 –87.5 8.9 –8.2 gHCN,f = 2.5e−4 (soma, dendrite)

TABLE 5 | GPe model synaptic current equations.

Current Equation Location Parameters

ISTN−GPE,AMPA gsyns(v−

EAMPA)

distal:

x ≥ 100µm

τrise = 1 τrec = 200

τdecay = 4 τfacil = 800

td = 2 U1 = 0.1

gsyn = 3.75e−4

IGPE−GPE,GABAA
gsyns(v−

EGABAA )

proximal:

x < 200µm

τrise = 2 τrec = 400

τdecay = 5 τfacil = 1

td = 0.5 U1 = 0.2

gsyn = 2e−4

IGPE−GPE,GABAB
gsyn

Gn

Gn+Kn
d
(v−

EGABAB )

proximal:

x < 200µm

τrise = 5 K3 = 0.098

τdecay = 25 K4 = 6.25e−3

td = 0.5 Kd = 1.4

gsyn = 0.4e−4 n = 4

IiMSN−GPE,GABAA
gsyns(v−

EGABAA )

proximal:

x < 200µm

τrise = 2 τrec = 1

τdecay = 5 τfacil = 200

td = 5 U1 = 0.3

gsyn = 3e−4

2001; Shin et al., 2003) was modeled by increasing the initial
release probability and the peak GABAA conductance of synapses
by 50%.

Simulation Details
The model was simulated in the NEURON simulation
environment (Hines and Carnevale, 1997) and implemented
in Python. The default fixed time step integrator with a time
step of 0.025 ms was used for all simulations. Compartmental
membrane voltages were initialized to a random value between
−63 and −73 mV in GPe and between −60 and −70 mV in
STN cells. Gating variables were initialized to their equilibrium
values for the initial membrane voltage. Simulation data for
the first 2,000 ms of each simulation were discarded, and the
analyzed intervals were of duration 4,000 ms unless otherwise
noted. Simulations were run on the UCD Sonic cluster using 8
parallel processes per simulation on a single computing node,
consisting of two Intel Ivybridge E5-2660 v2 CPUs (10 cores
per CPU).

Signal Analysis
Signal analyses were performed using the SciPy toolbox (Jones
et al., 2001) for Python. Power spectral densities (PSDs) were
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calculated usingWelch’s periodogrammethod, using overlapping
segments of 2 s duration with 50% overlap and a Hanning
window. Given the sampling period of 0.05 ms this led to
a frequency resolution of 0.5 Hz. The population PSD was
calculated as the mean PSD of all somatic membrane voltages.
The instantaneous phase of each population was estimated by
applying the Hilbert transform to the average somatic membrane
voltage of cells in the population, after band-pass filtering using
a neutral-phase filter (Butterworth filter, 4th order, command
sosfiltfilt) in an 8 Hz wide frequency band centered on the
dominant oscillation frequency. For populations that were
modeled as surrogate spike trains (cortex and striatum), artificial
membrane voltage signals were first constructed by convolving
the spike trains with a typical action potential waveform. Bursts
were detected using a simple algorithm where a burst consisted
of a minimum of four spikes with inter-spike intervals (ISIs) ≤
20 ms.

RESULTS

The STN-GPe pacemaker hypothesis was first investigated
by modeling cortical inputs to the STN as Poisson spike
generators without any periodic or oscillatory component.
Cortical patterning of neural activity in the STN-GPe network
via the hyperdirect pathway was then investigated by modeling
cortical input to the STN inputs as periodically bursting spike
trains. To investigate whether changing the excitation-inhibition
balance in STN and GPe contributed to changes in spontaneous
synchronization and functional coupling between nuclei, the
ratio of excitation and inhibition was systematically increased
by altering the strength of individual projections between nuclei.
The ratio of total excitatory to inhibitory synaptic currents (E/I
ratio) was altered by scaling the peak conductance of all synapses
belonging to a given projection known to be strengthened
or weakened by dopamine depletion. The role of additional
oscillatory inputs entering the STN-GPe network via the indirect
striato-pallidal pathway and their phase relationship to cortical
inputs were then investigated.

The Balance of Excitation and Inhibition
Balance in the STN Affects the Oscillation
Frequency of the STN-GPe Network and
Firing Mode of STN Neurons
Increasing the strength of the CTX-STN projection by increasing
the conductance of cortico-subthalamic synapses revealed
parameter regimes that favored low frequency bursting in STN
neurons and phase-locking to an emergent beta-band rhythm
in the STN-GPe network (Figures 2A–D). For lower values
of synaptic conductance the network exhibited synchronous
oscillatory activity at 12–13 Hz (Figure 2A), with both STN and
GPe neurons entrained to the oscillation (Figures 2Bi–iii). This
high entrainment regimen coincided with low neuronal firing
rates (Figure 2E) where short spike sequences, mostly singlets
and doublets, showed a high phase preference as evidenced by

the high population and individual neuronal phase vector lengths
(Figure 2Bii).

Increasing the synaptic conductance caused a proportional
increase in excitatory current to the STN (Figure 2E, blue area),
with a corresponding increase in inhibition (red area) as a
result of the negative feedback structure of the STN-GPe loop.
However, because the GPe population exhibited a saturating
population firing rate curve (Figure 2Eii), feedback inhibition to
STN was outpaced by cortical excitation, resulting in a shift to
net excitation (E/I > 1). This saturating firing rate curve in the
GPe was a result of two negative feedback mechanisms that have
a homeostatic effect on the GPE’s E/I ratio: reciprocal inhibition
through intra-GPe colaterals and short-term depression of STN
to GPe synapses (Hanson and Jaeger, 2002). The increase of
excitatory drive in the network increased the frequency at which
oscillations emerged within the network (Figure 2Aii, peak in the
PSD is shifted), though the level of synchronization of neurons
was relatively weak. This was particularly the case in the STN, as
evidenced by the low phase vector lengths (Figures 2Cii,Dii,Eii).
Despite the lower vector lengths, reflecting more dispersed spike
timings within a period of the oscillation, spikes in both STN
and GPe neurons showed a consistent phase preference with
respect to the ongoing oscillation, as evidenced by the alignment
of individual neuronal and population phase vector. The STN
population vector led that of GPe by 45 degrees indicating that
STN neurons excited GPe neurons which responded with a delay
of 10 ms, resulting in a wave of inhibition to the STN with
a long recovery period comparable to the oscillation period.
Although excitation outpaced inhibition in STN neurons, higher
inhibitory currents resulted in increased transient inhibition
of STN dendrites, engaging the ion channels underlying burst
responses. This brought STN neurons into a slow burst firing
mode characterized by sparse, strong bursts (Figure 2Ci). These
low-frequency fluctuations in firing rate were transmitted to
GPe neurons as evident in the power spectra of both nuclei
(Figures 2Ai,ii).

Increasing the strength of GPe-GPe colaterals (Figure 3)
similarly increased the level of excitation of STN neurons
but by a different mechanism. By increasing self-inhibition
within the GPe, and thereby decreasing inhibition of targets
in the STN (Figure 3D, red area), the E/I ratio in both
populations moved in opposite directions. As the E/I ratio
in STN increased toward dominant excitation (Figure 3D),
neural activity shifted from strong low-frequency bursting
(characterized by a high intra-burst firing rate and high low-
frequency power) (Figures 3Ai,Bi,F) toward more regular firing
with decreasing coefficient of variation of inter-spike intervals
(CVISI) and intra-burst firing rate (Figures 3Ci,F). The E/I ratio
and population firing rate in the GPe showed a saturating
characteristic (Figure 3Dii) caused by the negative feedback
structures inherent in the loop as before (Figure 3D) as it was
progressively disinhibited. GPe neurons were more strongly
entrained to the emergent oscillation (17–26 Hz) whereas STN
spiking showed a weaker phase preference (Figures 3Bii,Cii,E).
This result was the same whether the instantaneous phase was
extracted from the STN or GPe population.
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FIGURE 2 | The level of excitation by cortex determines firing patterns and oscillation frequency in the autonomous STN-GPe network. Behavior of the autonomous

STN-GPe network for increasing values of the CTX to STN synaptic conductance. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii)

neurons. (B–D) Representative spike trains and phase vectors for STN (column i, green) and GPe population (column iii, red) for three different scale factors of the CTX

to STN conductance [scale 0.2; 0.7; 1.3 in rows (C–E), respectively]. Column ii shows phase vectors of the STN and GPe populations (in green; red, respectively,

mean population vectors plotted as thick solid lines and cell vectors as thin transparent lines) reflecting phase locking to the instantaneous GPe phase. Phase vectors

were measured with respect to the instantaneous phase of the GPe population extracted using a bandpass filter with passband of 8 Hz centered on the frequency bin

with maximum power in the 13–30 Hz band. (E) Balance of excitation and inhibition in the STN (Ei) and GPe (Eii) based on synaptic currents recorded in three

neurons. Population firing rate (brown), E/I ratio (purple), and net synaptic current (blue). Shaded areas represent estimated total synaptic current from one

pre-synaptic population during a simulation. Total current was estimated by recording all synapses on 3 randomly selected cells in each population and adjusting for

the true number of cells.

Strength and Time-Course of GPe-STN
Inhibition Controls Bursting and
Phase-Locking in STN Neurons
Following dopamine depletion the inhibitory GPe-STN

connection is strengthened by a proliferation of synapses and

increased decay kinetics of GABA currents (Fan et al., 2012).

Moreover, the expression of both GABAA (Fan et al., 2012)

and GABAB (Shen and Johnson, 2005) receptors is upregulated

leading to larger evoked synaptic currents. To investigate the
effects of increased inhibition and altered kinetics of inhibitory
post-synaptic currents (IPSC) in STN neurons on network
activity patterns, an increase in the GABAA and GABAB

conductances was simulated and the relative contribution of
both currents was altered.

Increasing the conductance of both GABAA and GABAB

synapses lead to an increase in low-frequency bursting of
STN neurons (Figures 4A–C). Bursting was periodic at

Frontiers in Computational Neuroscience | www.frontiersin.org 10 November 2019 | Volume 13 | Article 77

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Koelman and Lowery A Biophysically Detailed Model of the STN-GPe Network

FIGURE 3 | Increasing the level of collateral GPe-GPe inhibition shifts the excitation-inhibition balance in STN and GPe in opposite directions. Behavior of the

autonomous STN-GPe network for increasing values of GPe-GPe synaptic conductance. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii)

neurons. (B,C) Representative spike trains and phase vectors for STN (column i, green) and GPe population (column iii, red) for two values of the GPe to GPe

conductance [scale 0.33; 2.0 in rows (B,C), respectively]. Column ii shows phase vectors of the STN and GPe populations (in green; red, respectively, mean

population vectors plotted as thick solid lines and cell vectors as thin transparent lines) reflecting phase locking to the instantaneous GPe phase. (D): Balance of

excitation and inhibition in the STN (Di) and GPe (Dii) based on synaptic currents recorded in three neurons. Mean population firing rate (brown), E/I ratio (purple), and

net synaptic current (blue). Shaded areas represent estimated total synaptic current from one pre-synaptic population during a simulation. (E) Population vector length

and angle of STN and GPe population (green; red, respectively). (F) Metrics that characterize bursting in STN neurons: median burst rate, intra-burst firing rate, and

coefficient of variation of ISIs across all STN cells.

low frequencies (∼ 2–5 Hz) but was not synchronized
between cells (Figure 4Ci). Increasing the conductance
also shifted the firing mode of STN neurons toward longer
bursts with higher intra-burst firing rate against a lower
background firing rate, characterized by a high coefficient
of variation of ISIs (Figures 4D,F). Bursting with high
intra-burst firing rates is mediated by a shift toward net

inhibition in STN neurons (Figure 4D), leading to increased
availability of voltage-sensitive Na+ and Ca2+ channels
through de-inactivation at hyperpolarized membrane voltages
(Baufreton et al., 2005; Gillies and Willshaw, 2005; Hallworth
and Bevan, 2005). The GPe neuron model does not possess
the same high density of Ca2+ channels that underlies
plateau potentials and strong bursting, and therefore has
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FIGURE 4 | Increasing the level of GPe-STN inhibition shifts STN to a low-frequency burst firing mode. Behavior of the autonomous STN-GPe network for increasing

values of the GPe to STN synaptic conductance. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii) neurons. (B,C) Representative spike

trains and phase vectors for STN (column i, green) and GPe population (column iii, red) for two values of the GPe to STN conductance [scale 0.33; 2.0 in rows (C,D),

respectively]. Column ii shows phase vectors of the STN and GPe populations (in green; red, respectively, mean population vectors plotted as thick solid lines and cell

vectors as thin transparent lines) reflecting phase locking to the instantaneous GPe phase. (D) Balance of excitation and inhibition in the STN (Di) and GPe (Dii) based

on synaptic currents recorded in three neurons. Population firing rate (brown), E/I ratio (purple), and net synaptic current (blue). Shaded areas represent estimated total

synaptic current from one pre-synaptic population during a simulation. (E) Population vector length and angle of STN (green) and GPe (red) population. (F) Metrics

that characterize bursting in STN neurons: median burst rate, intra-burst firing rate, and coefficient of variation of ISIs across all STN cells.

a lower tendency toward burst firing. While STN neurons
were more weakly entrained to the beta oscillation they
preferentially fired in an interval leading the GPe by 65
degrees (Figures 4B,C,E). The shift toward low-frequency, fast
bursting coincided with an increase in synchronization in the

network, as measured by the population vector length of the
STN and GPe.

To investigate the effect of IPSC kinetics on the generation
of beta oscillations within the network, the relative strength
of the GABAA and GABAB-mediated current was changed by
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FIGURE 5 | Endogenous oscillations in the STN-GPe network are strengthened by shifting the GPe-STN synaptic current from slow GABAB receptors to fast GABAA

receptors. Behavior or the STN-GPe network for increasing values of the GABAA to GABAB conductance ratio. The GABAB conductance of the GPe to STN

projection was decreased by 50% and the GABAA conductance was increased progressively. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe

(Aii) neurons. (B,C) Representative spike trains and phase histograms of STN (green) and GPe neurons (red) in baseline model without scaling of conductances (B)

and model where GABAA conductance was scaled by a factor 6 and GABAB conductance was scaled by factor 0.2, chosen so that the E/I ratio was close to that in

the baseline model (B: baseline model, E/I ratio was 0.89; 0.97 in STN, GPe respectively; C: scaled conductances, ratio was 0.89; 0.93). The presence of stronger

GABAB currents results in higher phase dispersion (B) compared to the case with weaker GABAB currents and stronger, fast GABAA currents (C). (D) Mean PSD of

somatic membrane voltages of STN (Di) and GPe (Dii) neurons for increasing CTX-STN conductance and adjusted GABAA to GABAB ratio. The GABAB conductance

of GPe to STN synapses was halved, and the GABAA conductance was doubled.

decreasing the GABAB conductance by 50% and increasing the

GABAA conductance progressively (Figure 5). As this increased
the level of inhibition in STN neurons, it resulted in a small

shift in the oscillation frequency across the parameter sweep
(Figure 5A). The simulations results showed that the slow nature

of the GABAB-mediated current prevented GPe neurons from
patterning their targets with short duration IPSC required for

strong entrainment in the 20–30 Hz range. When the GABAA

conductance was increased, and the GABAB conductance

decreased accordingly, both STN and GPe neurons entrained
strongly to the beta rhythm as evident in phase histograms and

spike trains (Figures 5B,C). When the experiment of Figure 2
was repeated in the adjusted network with a higher GABAA to

GABAB ratio, the oscillation frequency in both STN and GPe

also showed a clear sensitivity to the strength of the Poisson
distributed cortical excitatory input (Figure 5D).

STN-GPe Network Shows Resonant
Properties and Phase Locks to Cortical
Beta Inputs
The degree of phase locking of the STN-GPe network to
synchronous cortical rhythms and its sensitivity to intrinsic
network parameters was then examined. The network was
simulated with cortical inputs modeled as spike trains exhibiting
sparse, synchronous bursts. The frequency of the synchronous
cortical inputs was first increased from 3 to 60 Hz and the
frequency response and phase locking strength of the STN-
GPe loop was estimated (Figures 6A–C). Spectral power and
phase locking, measured by the population vector length, were
strongest when the cortical oscillation frequency was close to
the network’s endogenous oscillation frequency (Figures 6B,C),
indicating a resonance effect. Spectral power at the oscillation
frequency was increased considerably above that observed for
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FIGURE 6 | Frequency response and phase locking of the STN-GPe network to cortical oscillatory bursting inputs. Sweep of cortical oscillation frequency (top row)

and phase locking to cortical oscillations for increasing CTX-STN synapse strength (bottom row). (A) Mean PSD of somatic membrane voltages in STN (Ai) and GPe

(Aii) for increasing oscillatory bursting frequency. (B) Mean PSD of the somatic membrane voltages of STN (green) and GPe (red) neurons, averaged within a 5 Hz

wide frequency band centered on the cortical oscillation frequency. (C) Population vector length, indicating strength of phase locking to the cortical oscillation of STN

(green) and GPe (red) neurons. (D) Change in population vector length (solid lines) for a fixed cortical oscillation frequency (20 Hz, 25 hz, 30 Hz in green, blue, orange,

respectively) and increasing CTX-STN input synaptic conductance, reflected in an increased ratio of excitation to inhibition (E/I ratio). Endogenous oscillation power in

simulations without oscillatory cortical input is plotted for comparison (dotted lines, power integrated in 5 Hz band centered on cortical frequency in equivalent

simulation with cortical inputs). An increased E/I ratio results in maximum phase locking at a higher oscillation frequency, and power of endogenous oscillations follows

trend of phase locking strength.

Poisson distributed cortical inputs (compare Figures 6Ai,ii to
Figures 2Ai,ii). Moreover, the frequencies that were amplified
by the STN-GPe network corresponded well to the beta-
band, i.e., 13–30 Hz (Figure 2B). To study the dependence
of the resonance peak on the excitation-inhibition balance in
the STN, the cortical input strength was then varied while the
oscillation frequency remained fixed (Figure 6D). The range of
synaptic conductances was chosen so that the STN population
firing rate traversed the experimentally reported range of 17–
37 Hz (Mallet et al., 2008b; Kita and Kita, 2011) in the
dopamine depleted state during cortical activation (Figure 7C).
Maximum phase locking coincided with frequency of maximum

endogenous oscillation power observed in the absence of

oscillatory inputs (Figures 2Di,ii). The results demonstrate how

the resonant frequency of the network can be shifted by

changing the excitation-inhibition balance, biasing the network

toward a slower or faster oscillation. GPe neurons synchronized
stronger to the oscillatory input compared to STN neurons
(Figures 6B,C, 7Bi,ii), which showed a tendency to burst,
mirroring the results for spontaneous synchronization in the
autonomous STN-GPe network. Analogous to the autonomous
loop, when the slow bursting behavior was reduced by shifting
the GPe to STN synaptic current from GABAB to faster GABAA

receptors, synchronization and phase locking of both STN and
GPe neurons was greatly increased.

Influence of Phase Relationship Between
Cortical and Striatal Beta Inputs
Striatal microcircuits exhibit beta-band oscillations in healthy
primates (Feingold et al., 2015) and parkinsonian rodent models
(McCarthy et al., 2011; Sharott et al., 2017) and have been
hypothesized to be part of the pacemaking circuit that generates
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FIGURE 7 | Response of STN-GPe network to cortical oscillatory bursting at 20 Hz. (A) Mean PSD of somatic membrane voltages in STN (Ai) and GPe (Aii) as a

function of the synaptic conductance (scale factor) of CTX-STN inputs. The peak at 20 Hz reaches a maximum when synapses are at 70% of their baseline strength,

whereas the peak in low-frequency power (2-5 Hz) occurs at 50%. (B) Representative spike trains of STN (Bi, green) and GPe neurons (Bii, red) in simulation with

synaptic conductances scaled to 70%, corresponding to maximum phase locking and 20 Hz power. (C) Balance of excitation and inhibition in the STN (Ci) and GPe

(Cii) based on synaptic currents recorded in three neurons. Population firing rate (brown), E/I ratio (purple), and net synaptic current (blue). (D) Cortical oscillatory

bursting pattern illustrated using representative spike trains. In each cycle of the oscillation 10% of cells were selected at random to fire a burst in phase with the

oscillation, with a variation of 1 ms on the onset and spike timings.

them. In the previous section, the STN-GPe network was
shown to generate weak beta-band oscillations in the absence
of exogenous beta inputs (Figures 2, 3, 4), and to phase lock
to cortical beta-band inputs which amplified oscillatory activity
(Figure 6). A potential role of the pallido-striatal loop could be to
amplify beta-band oscillations in the STN-GPe network to amore
pathological level, as part of a double resonant loop converging
on the GPe. A suggested mechanism is that altered striatal
activity in PD could shift the phase of firing of the GPe relative
to the STN to one that supports STN phase locking through
increasing the availability of Na+ and Ca2+ channels post-
inhibition and pre-excitation (Baufreton et al., 2005; Mallet et al.,
2008a, 2012). Alternatively, oscillations that originate in striatal
circuits could be transmitted via the striato-pallidal projection
and thus introduced into the STN-GPe network (McCarthy et al.,
2011; Corbit et al., 2016). Of the two loops converging on GPe
neurons, inhibitory striatal afferents would be better suited to
interrupt ongoing activity and influence the phase compared to
excitatory STN afferents. Hence, the iMSN to GPe projection

could play an important role in patterning neural activity in the
STN-GPe network.

Phase vector plots in the previous section show that STN and
GPe neurons settle into a particular phase relationship where
STN leads GPe by 60–90 degrees which contributed to sustaining
beta-band oscillations. We hypothesized that inhibitory inputs
from the striatum would either disrupt this phase relationship,
thereby suppressing beta-band oscillations, or reinforce them
depending on where in the phase of the beta oscillation they
arrive. To investigate this hypothesis, surrogate striatal spike
trains exhibiting beta frequency bursts were generated and the
phase with respect to the incoming cortical oscillation was
increased in increments of 45 degrees by varying the onset time
of bursts. As iMSN-GPe synapses exhibit short-term facilitation,
bursts administered through this projection led to an increase in
inhibition to the GPe that was greater than the relative increase
in spike rate. To compensate for this effect and maintain a
physiological firing rate range of the GPe neurons, the peak
conductance of iMSN-GPe synapses was reduced by 60%.
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Varying the phase of striatal relative to cortical bursts revealed
that populations connected by an inhibitory projection, i.e.,
iMSN, GPe, and STN maintained a rigid phase relationship with
respect to the cortical oscillation (Figure 8: population vectors in
green, red, purple formed a rigid frame that rotated relative to the
cyan-colored cortical population vector). The local maximum in
phase locking occurred when excitatory CTX and inhibitory GPe
afferents to STN fired in anti-phase, occurring when the CTX-
iMSN phase difference was set to 225 degrees (Figures 8B,D,Ei).
This supports the feedback inhibition hypothesis where cortical
patterning is promoted when GPe-STN inhibition is offset in
phase relative to cortical excitation in PD (Baufreton et al.,
2005; Mallet et al., 2008a, 2012). The changing phase relationship
of cortical spiking relative to the three other populations also
shifted the balance of excitatory and inhibitory currents in the
STN (Figure 8Ai). Maximum phase locking occurred where the
STN was maximally inhibited (E/I ratio ≈ 1.1, population firing
rate ≈ 21 Hz), whereas minimum phase locking coincided with
maximum excitation (E/I ratio ≈ 1.3, population firing rate
≈ 40 Hz). In the GPe this relationship between phase locking
strength and firing rate was reversed (Figure 8Ai) whereas
the relationship with E/I ratio showed no clear trend. The
optimal phase relationship of 225 degrees further strengthened
phase locking to the applied beta rhythm compared to the
situation with only cortical oscillatory inputs. Maximum vector
length was increased by a factor of two, confirming increased
synchronization, in both populations when compared to the
case where only cortical beta frequency inputs were simulated.
Maximum power at the oscillation frequency was also increased
by a factor of 2.7 in STN and 5.2 in GPe.

Mechanism of Phase Locking
To further illustrate the interaction between synaptically coupled
STN and GPe neurons in the model under conditions of
synchronous oscillatory beta-band activity, the mechanism of
phase locking of STN cells is presented in Figure 9. Pooled
cortical spike trains (Figures 9A,B, green) illustrate how sparse
cortical beta bursts (Figure 7B) result in distributed synaptic
inputs to individual STN neurons that are not tightly phase
locked, but have a combined firing rate that is modulated at
the beta frequency. While these exogenous cortical inputs had
high spike timing variability, STN and GPe spikes became
highly structured and tightly locked to the beta oscillation
through the feedback inhibition mechanism. The cortical beta
modulation is transmitted to the STN and then to the GPe
through their excitatory projections (see phase vectors in
Figure 8Dii). When the inhibitory feedback arrives back in
STN this shuts down spiking (Figure 9A) and simultaneously
primes the cell for the next period of increased cortical
excitation by de-inactivating Ca2+ channels (Figure 9C) and
Na+ channels. As the cortical firing rate rises again, synaptic
currents (Figure 9B) combine with dendritic Ca2+ currents to
overcome any lingering inhibition and cause the next wave
of phase-locked STN spikes. The striatal beta inputs further
decreased spiking variability of GPe neurons by narrowing their
time window of firing through phasic inhibition (purple phase
vector in Figure 8Dii).

DISCUSSION

A new model of the STN-GPe network is presented that
incorporates biophysically detailed multi-compartment cell
models. The individual STN and GPE cell models capture
the interaction of intrinsic and synaptic membrane currents
with non-uniform subcellular distributions across the dendritic
structure, which can not be captured in single compartment
models. The model illustrates how phase locking of STN and
GPe neurons, and increased bursting of STN neurons, can
arise from the interaction of these currents when their relative
strengths and temporal relationships are altered. The STN-
GPe model network showed an intrinsic susceptibility to beta-
band synchrony that manifest as weak, autonomously-generated
endogenous oscillations and selective amplification of exogenous
beta-band synaptic inputs at the network’s preferred oscillation
frequency. The frequency at which endogenous beta oscillatory
activity occurred varied with the ratio of excitatory to inhibitory
currents to the STN. Varying the phase relationships between
external beta-frequency inputs to the network through cortical
and striatal pathways further increased or suppressed the level of
amplification of cortical beta inputs by modulating the temporal
dispersion of action potentials in STN neurons and thereby
influencing the precision of phase locking. Varying synaptic
strengths within the network affected the balance of excitation
and inhibition in both STN and GPe neurons and produced a
rich set of behaviors, not only modulating firing rates but also
affecting synchronization and bursting properties of neurons.
Homeostatic mechanisms mediated by feedback connections
and short-term synaptic plasticity dynamics served to stabilize
the excitation-inhibition balance in the GPe and reduced the
sensitivity of its population firing rate to variations in pre-
synaptic rates.

Oscillatory Properties of the
Multi-compartmental STN-GPe Network
In the autonomous STN-GPe network, under conditions of
Poisson distributed external synaptic inputs, STN neurons
exhibited weak synchronization to the endogenous beta rhythm
but retained a weak phase preference with respect to the
stronger oscillation in the GPe population (Figures 2–4). The
synchronization strength of STN neurons was found to depend
on the relative strength of GABAA and GABAB receptors in
STN dendrites (Figure 5), with an increase in the proportion
of fast-acting GABAA receptors resulting in an increase in the
strength of oscillation. The endogenous oscillation frequency of
the STN-GPe network was further influenced by the balance
of excitatory and inhibitory currents in the STN. This balance
affected the net level of excitatory drive in the network,
shifting the oscillation frequency toward the higher beta range
for increased levels of excitatory drive (Figures 2A, 5D).
Besides affecting population firing rates and the frequency of
synchronous oscillations, the excitation-inhibition balance also
strongly influenced the firing pattern of STN neurons: for a
low ratio of excitation to inhibition and sufficiently strong
inhibitory currents, STN neurons transitioned to a firing mode
characterized by low-frequency tight bursts (high intra-burst
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FIGURE 8 | The phase relationship between cortical and striatal beta-band inputs to the STN-GPe network affects the strength of phase-locking by setting the relative

timing of excitatory and inhibitory STN afferents. Response of the STN-GPe network to oscillatory bursting inputs applied via both cortico-subthalamic (CTX-STN) and

striato-pallidal (iMSN-GPe) afferents. The phase difference between cortical and striatal oscillatory bursts was increased in steps of 45◦. All phase vectors were

measured with respect to the instantaneous phase of the cortical oscillation. (A) Mean PSD of the somatic membrane voltages of STN (Ai) and GPe (Aii) neurons,

showing weakening and strengthening of oscillations as relative phases of inputs are rotated. (B,C) Representative spike trains and phase vectors of STN (column i,

green) and GPe population (column iii, red) for CTX-iMSN phase difference of 90◦ (C) and 225◦ (D). Column ii shows phase vectors of the STN, GPe, CTX, iMSN

populations (in green; red; blue; purple, respectively; mean population vectors plotted as thick solid lines and cell vectors as thin transparent lines). (D) Balance of

excitation and inhibition in the STN (Di) and GPe (Dii) based on synaptic currents recorded in three neurons. Population firing rate (brown), E/I ratio (purple), and net

synaptic current (blue). Shaded areas represent estimated total synaptic current from one pre-synaptic population during a simulation. (E) Population vector length

and angle of STN (green) and GPe (red) population. (F) Metrics that characterize bursting in STN neurons: median burst rate, intra-burst firing rate, and coefficient of

variation of ISIs across all STN cells.

firing rate, Figures 2–4). Low-frequency bursting was periodic
at 2–5 Hz but was not synchronized between cells. This shift in
firing pattern toward sparse, tight bursting is in correspondence

with changes in burst-related measures such as intra-burst
firing rate and sub-beta band power that are most predictive
of akinetic-bradykinetic symptoms in humans (Sharott et al.,
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FIGURE 9 | Mechanisms contributing to phase locking of STN cells to cortical beta oscillations. Recordings of synaptic currents and T-type calcium (CaT) channel

inactivation from an identified phase-locked STN cell during a simulation with high phase locking (analogous to Figure 8D, cortical and striatal beta bursts at 20 Hz

with phase difference of 225 degrees). Inactivation variables were recorded from each compartment with CaT ion channels and averaged over all compartments in the

cell. Zero-crossings of the instantaneous beta phase are indicated using vertical dotted lines. (A) Somatic membrane voltage during phase-locked interval (blue).

Spike trains from excitatory (green) and inhibitory (red) afferents to the cell were pooled. (B) Total excitatory and inhibitory synaptic current (in green; red, respectively)

and pooled spike trains underneath. (C) Mean CaT channel inactivation across the cell’s dendritic tree. High values correspond to de-inactivation. Transient

de-inactivation approximately one half period after an inhibitory barrage engages depolarizing T-type Ca2+ current and contributes to phase-locked spiking.

2014) and monkeys (Sanders et al., 2013). The firing rate and
pattern of GPe neurons was less sensitive than that of STN
neurons to variations in its excitatory or inhibitory drive due
to the contribution of negative feedback control by homeostatic
mechanisms that operated in synergy to stabilize its E/I ratio.
However, GPe neurons did synchronize more strongly under
conditions of low excitatory drive from the STN enabling them
to act more autonomously and synchronize through inhibitory
collaterals within the GPe network.

When beta-band spiking inputs were applied to the STN-GPe
network via cortico-STN afferents, the STN-GPe network phase
locked to the beta rhythm. Frequencies near the autonomous

oscillation frequency for a given E/I ratio were preferentially
amplified, reflected in increased phase locking and power of
the somatic membrane voltage at that frequency (Figure 6).
This is supportive of experimental observations that oscillatory
activity in STN is contingent on cortical oscillations (Magill
et al., 2001), likely transmitted though the hyperdirect pathway
(Tachibana et al., 2011). Phase locking and beta frequency power
were further strengthened by the addition of striatal oscillatory
inputs with a particular phase relationship to cortical oscillatory
inputs (Figure 8). Maximum phase-locking occurred when GPe
spiking was aligned in anti-phase with cortical inputs to the
STN (Figures 8C,E). When excitation and inhibition occurred
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in anti-phase, inhibition was likely more effective at transiently
hyperpolarizing the membranes of STN neurons, suggested
by the local minimum in their E/I ratio (Figure 8Di). Strong
hyperpolarization can evoke low-latency, temporally precise
responses to an excitatory stimulus by de-inactivating Ca2+ and
Na+ channels, and thereby priming them to respond to excitatory
cortical inputs (Bevan et al., 2007). This mechanism may be
responsible for the increase in phase locking under this phase
relationship. In contrast, phase alignment of cortical and GPe
neurons, corresponding to coincident firing, desynchronized
STN neurons (Figure 8C). These findings are in agreement
with recent experimental observations which demonstrate that
co-stimulation of GABAergic and glutamergic STN afferents
disperses STN spiking and has a desynchronizing effect on the
population (Amadeus Steiner et al., 2019). Overall, the simulation
results are consistent with the hypothesis of cortical patterning
and resonance of beta activity within the STN-GPe network
through feedback inhibition, whereby GPe inhibition arriving in
anti-phase to cortical excitation promotes phase locking of STN
neurons to beta-band cortical inputs (Baufreton et al., 2005).

Relation of Mechanism of Oscillations to
Other Models of Oscillatory Activity in the
STN-GPe Network
The mechanism by which oscillatory neural activity can be
generated in the STN-GPe network, by alternating phases of
excitation and inhibition in a delayed negative feedback loop, has
been described in previous models (Terman et al., 2002; Holgado
et al., 2010; Kumar et al., 2011). The mechanism of oscillation
in the model presented here is consistent with this, and the
model additionally illustrates the dual role of precisely timed GPe
inhibition in transiently reducing STN neuron excitability and
hyperpolarizing them such that they are primed to respond with
bursting to excitatory cortical inputs (Figure 9). Furthermore,
it highlights the sensitivity of the network oscillation to the
excitation-inhibition balance in each population and synaptic
current properties.

In the multicompartment model, endogenously generated
beta frequency oscillations were generated within the STN-GPe
network when the strength of short duration GABAA-mediated
currents was increased. Since the slow timescale, signaling
cascade-mediated GABAB currents are typically not modeled,
this result can be easily reconciled with results from single-
compartment and firing rate models where high gain within the
closed-loop is a necessary condition for strong endogenously-
generated oscillations in the STN-GPe network (Holgado et al.,
2010; Park et al., 2011; Pavlides et al., 2012; Wei et al., 2015).
The strength of the endogenous oscillations in our model was
relatively weak, except when inhibitory GPe-STN currents were
strongly dominated by fast-acting GABAA-mediated currents
and GABAB-mediated slow currents were weak. The oscillation
frequency of the network could bemodulated by varying the ratio
of excitation to inhibition in STN and GPe, and increased as this
ratio increased (Figure 6).

The oscillation frequency of the network has been shown
to be sensitive to model parameters in previous computational
models of the BGTC network. Specifically, in mean field models

of the STN-GPe loop the oscillation frequency showed a strong
sensitivity to transmission delays and neuronal membrane time
constants (Holgado et al., 2010; Liénard et al., 2017), and a weaker
sensitivity to coupling strengths (Holgado et al., 2010; Pavlides
et al., 2015; Liu et al., 2017), also demonstrated in a spiking model
(Wei et al., 2015). In the multicompartment model presented
here, where active ion channels on the dendrites contribute to
synaptic integration, synaptic strength and effective membrane
time constant are interdependent since the membrane charging
speed is affected by transient activation of ion channels as a
response to synaptic inputs. In biological neurons the balance
of excitation and inhibition is tightly regulated through multiple
adaptive processes (Turrigiano, 2011), and likely maintains the
range of possible oscillation frequencies within a narrow range.

Other than the condition where GPe-STN currents
were dominated by fast-acting GABAA currents, strongly
synchronized beta-band oscillations appeared only when
exogenous beta-band inputs were introduced to the network
(Figures 6, 8). These results, therefore, support a role for
resonance with oscillations throughout other basal ganglia
loops in the generation of increased STN-GPe beta activity in
Parkinson’s disease. Such an oscillatory drive can be provided
either by an extrinsic oscillator, assumed to originate within the
cortex in the present model, or by reverberation of oscillations
in connected feedback loops such as the pallido-striatal loop
(Corbit et al., 2016), intra-striatal loops (McCarthy et al.,
2011), or the larger thalamocortical loop (Dovzhenok and
Rubchinsky, 2012; Kang and Lowery, 2013; Pavlides et al.,
2015; Reis et al., 2019). The model exhibited clear resonance in
response to excitatory synaptic inputs to the STN within the
beta frequency range (Figure 6). The frequency at which the
maximum resonance occurred increased with increasing ratio
of excitation to inhibition, similar to the increase in frequency
observed in the case of endogenously generated oscillations.
Resonance phenomena in the beta-band have previously been
reported in computational models of basal ganglia networks,
consistent with our modeling results: Pavlides et al. (2015) fitted
mean field rate models to experimental data from non-human
primates and found that the models that best explained the
data relied on a strong cortical oscillation to sustain beta-band
oscillations (∼ 15 Hz) in the network. In a comparable mean-
field model, Liu et al. (2017) found that upper beta-band (21–35
Hz) oscillations in the STN-GPe loop originated from cortical
oscillatory inputs and supported a lower beta-band (12–20 Hz)
oscillation that was endogenously generated. Ahn et al. (2016)
using 10 single compartment STN and GPe neurons observed
multiple resonances in the beta-band when varying the strength
of striato-pallidal and pallida-subthalamic inhibition, with
resonant peaks occurring consistently between 18 and 21 Hz.
Similarly, Fountas and Shanahan (2017) found that STN neurons
in their model exhibited high spontaneous beta-band power
(18–30 Hz) and synchronized selectively with cortical input in
this frequency range.

Model Complexity and Limitations
One of the main advantages of the biophysically detailed model
presented here is that the model can capture the non-uniform
distribution of afferent inputs from different pre-synaptic
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populations across the dendritic tree (Tables 3, 5). This targeting
of specific regions of the dendrites by different populations can
lead to variations in synaptic integration properties within the
structure. This feature is potentially of particular importance in
the generation of pathological oscillations given that neuronal
phase response curves, used to quantify the tendency of neurons
to synchronize to their inputs, differ when stimuli are applied
to different subcellular regions in STN and GPe neurons
(Schultheiss et al., 2010; Farries and Wilson, 2012). Hence, a
model that incorporates a full complement of ion channel and
the synapse groups that interact with them may be expected
to yield a more realistic representation of how synchronization
arises in the network. In future studies, this could also contribute
to a better understanding of neuronal currents contributing
to the local field potential in synchronized and asynchronous
states, as synaptic and ionic transmembrane currents combine
to form the extracellular currents that underpin this signal
(Buzsáki et al., 2012).

A second advantage of such detailed multicompartment
models is that parameters have a clear relationship to the
underlying biophysical system and are more meaningful in
terms of physiological processes compared to models where
parameters are lumped, as in single-compartment conductance-
based models, or abstracted as in mean-field or generalized
integrate-and-fire models. This allows for a more direct
translation of experimental findings to parameter variations in
the model. On the other hand, detailed cell models are more
sensitive to correct estimation of these parameters which is
limited by measurements performed for the purpose of model
fitting as well as the fitting procedures themselves. Biophysically
detailed models offer new ways to study factors contributing
to the development of synchrony. Such models provide a
means to investigate the relative contributions of physiological
mechanisms to the development of synchrony while controlling
other factors in a manner that is not possible in vivo. Though
the model presented incorporates a higher level of physiological
detail than previous models of the STN-GPe network, several
simplifications were necessary due to the model complexity,
which should be considered.

Downregulation of HCN channel currents with dopamine
depletion was modeled as a decrease in its peak conductance.
However, dopamine is known to interact with several more ion
channels that are involved in linearizing the current-firing rate
curve and regularizing autonomous pacemaking of STN neurons
(Loucif et al., 2008; Ramanathan et al., 2008; Yang et al., 2016)
which are not included in the STN cell model used here (Gillies
and Willshaw, 2005). Recent evidence suggests that the loss of
autonomous spiking is a necessary condition for the exaggerated
cortical patterning of STN related to motor dysfunction (McIver
et al., 2018). Better characterization of the ion channels involved
in pacemaking and their response to dopamine depletion will
enable the systematic exploration of their contribution to STN
response properties and pathological firing patterns.

In our network model the main sources of firing rate
variability were randomness in the input spiking patterns, the
presence of surrogate Poisson spike sources in STN and GPe,
membrane noise, and randomness in connection patterns and

the position of synapses. However these factors do not capture
the full biological variability in morpho-electric cell types,
synaptic strength distributions, and resulting firing patterns in
each population. In the GPe, two distinct populations have
been identified based on their molecular profile and axonal
connectivity (Mallet et al., 2012). Only the prototypic sub-
population projecting mainly to STN and preferentially firing
in anti-phase to it was modeled here, with the arkypallidal sub-
populations projecting back to striatum omitted. Moreover, the
GPe cell model used was only one representative candidate out
of a large set of models with varying ion channel expression
and morphology that matched a corresponding database of
electrophysiological recordings (Gunay et al., 2008). Similarly,
the STN model represents a stereotypic characterization rather
than a reconstruction of a specific STN cell and does not
capture variability in firing properties and receptor expression.
In particular, STN neurons in vivo are known to have variable
expression of GABAB receptors (Galvan et al., 2004) which
cause strong hyperpolarization responses and longer pauses in
some but not all STN neurons (Hallworth and Bevan, 2005)
and a strong rebound burst response (Galvan et al., 2004) in
a subset of these. A model that accounts for the biological
variability in GABAB expression and that of channels underlying
the rebound response may reveal a wider range of responses
to increased inhibition among STN neurons. In such a model,
beta rhythms could be transmitted to a subset of STN neurons
whereas others would show longer pauses with stronger rebound
bursts. Moreover, the GABAB synapse model used does not fully
account for activation of extrasynaptic GABABR due to GABA
spillover (Galvan et al., 2004) which is mediated by tonic high-
frequency and coincident firing of afferents (Bevan et al., 2006).
A model where multiple GABAergic synapses act on a shared
pool of extrasynaptic GABABR might increase the importance of
synchronized pre-synaptic activity in switching STN neurons to
a burst-firing mode.

The effect of the correlation between cortical and striatal
inputs to the network was explored by varying the relative phases
of both populations when firing in a synchronous oscillatory
pattern (Figure 8). Uncorrelated firing between both populations
was also explored (Figures 2–7). In reality, beta activity in both
populations is likely to be correlated as the striatum receives
topographic inputs from the same cortical areas projecting to the
STN. Such correlation could lead to transient synchronization
effects not explored here, that could promote or counteract
additional oscillatory synchronization depending on the exact
phase relationships. The effect of varying connectivity patterns
between neuronal populations was not directly explored here.
The development of neural synchronization and oscillatory
activity are known to be dependent on network topology (Zhao
et al., 2011), and this effect has previously been studied in a
single compartment model of the STN-GPe network (Terman
et al., 2002). The network topology used in the present study is
closest to the random, sparsely-connected topology in Terman
et al. (2002) which was shown to develop synchronized bursting
patterns at lower frequencies. Choosing different randomly-
generated connection matrices did not qualitatively change our
results, however altering the connection topology would likely
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lead to different synchronization properties. Moreover, it is
known that connection patterns within the basal ganglia are
altered with dopamine depletion, particularly within the striatum
(Cho et al., 2002), leading to a loss of input specificity in neuronal
responses (Bronfeld and Bar-Gad, 2011). These alterations in
connection patterns and resulting effects on spike correlations
were not taken into account as we did not consider cortico-
striatal connectivity in our model. As arkypallidal GPe neurons
were not modeled, the pallido-striatal feedback loop was not
captured. This additional feedback loop has also been suggested
as a candidate pacemaker circuit for beta-band oscillations
(Corbit et al., 2016), however, blocking of striatal inputs was
not found to reduce the power of beta oscillations in rat GPe
(Tachibana et al., 2011).

Finally, while there is consistent evidence of increased beta-
band oscillatory activity in Parkinsons disease (Sharott et al.,
2005; Mallet et al., 2008b) and a reduction of pathological beta
band activity with interventions that improve symptoms in
patients and animal models of the disease (Kühn et al., 2006;
Weinberger et al., 2006; Ray et al., 2008; Eusebio et al., 2011),
strong evidence in support of a causal role for pathological beta
activity in the symptoms of Parkinsons disease has yet to be
established. Indeed, recent studies failed to find evidence of any
causal link between artificially induced beta band activity and
motor impairment in parkinsonian rats (Swan et al., 2019), nor
between the reduction of beta band activity and alleviation of
motor symptoms (Pan et al., 2016). A lack of causality, however,
may not necessarily be incompatible with the use of beta-band
oscillations as a clinical biomarker, particularly for akinetic-
bradykinetic forms of Parkinson’s Disease at advanced stages of
disease progression. Initial trials of adaptive or closed-loop DBS
strategies targeted at suppression of beta-band activity have been
successful in demonstrating simultaneous reductions in patient
symptoms (Little et al., 2013; Velisar et al., 2019). Beta-band
power may thus still be a suitable biomarker to indirectly gauge
underlying physiological changes that are more directly related to
network dysfunction such as alterations in synaptic strengths and
functional connectivity within the network.

Sharott et al. (2005), Mallet et al. (2008b), and Kuhn
et al. (2008), and are reduced by DBS and pharmacological
interventions that alleviate parkinsonian motor symptoms
(Kühn et al., 2006; Weinberger et al., 2006; Ray et al., 2008;
Eusebio et al., 2011).

Conclusion
In summary, a biophysically detailed model of the parkinsonian
STN-GPe network is presented which captures non-uniform
distribution of ion channels and synapses in neuronal dendrites.

The network model exhibited an intrinsic susceptibility to
synchronous neural oscillations within the frequency range of
pathological beta-band activity observed in Parkinson’s disease.
Oscillations in the autonomous STN-GPe network, however,
were too weak to support a pacemaker role as the sole
origin of beta-band oscillations in the wider BGTC network
in Parkinson’s disease. In particular in the STN, autonomous
beta-band oscillations and phase locking of individual cells were
weak unless slower GABAB-mediated currents were substantially
reduced. Beta-band oscillations were considerably amplified by
a relatively sparse cortical beta input, with clear resonance
occurring within the beta frequency range. The frequency at
which the resonant peak occurred increased with increasing ratio
of excitatory to inhibitory STN inputs. beta-band oscillations
were further amplified by striatal beta inputs that promoted anti-
phase firing of cortex and GPe. These results support the cortical
patterning and network resonance hypothesis for the generation
of pathological beta-band oscillatory activity in Parkinson’s
disease in a multi-compartment model of the STN-GPe network.
They also illustrate the potential of the pallido-striatal feedback
loop in further amplifying beta oscillations within the network.
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