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Abstract
The	 influence	 of	 climate	 on	 the	 distribution	 of	 taxa	 has	 been	 extensively	 inves-
tigated	 in	 the	 last	 two	decades	 through	Habitat	 Suitability	Models	 (HSMs).	 In	 this	
context,	the	Worldclim	database	represents	an	invaluable	data	source	as	it	provides	
worldwide	climate	surfaces	for	both	historical	and	future	time	horizons.	Thousands	
of	HSMs-	based	papers	have	been	published	taking	advantage	of	Worldclim	1.4,	the	
first	 online	 version	 of	 this	 repository.	 In	 2017,	Worldclim	 2.1	 was	 released.	 Here,	
we	evaluated	spatially	explicit	prediction	mismatch	at	continental	scale,	focusing	on	
Europe,	between	HSMs	fitted	using	climate	surfaces	from	the	two	Worldclim	versions	
(between-	version	differences).	To	this	aim,	we	simulated	occurrence	probability	and	
presence-	absence	across	Europe	of	 four	virtual	species	 (VS)	with	differing	climate-	
occurrence	relationships.	For	each	VS,	we	fitted	HSMs	upon	uncorrelated	bioclimatic	
variables	derived	from	each	Worldclim	version	at	three	grid	resolutions.	For	each	fac-
tor	 combination,	HSMs	attaining	 sufficient	discrimination	performance	on	 spatially	
independent test data were projected across Europe under current conditions and 
various	 future	 scenarios,	 and	 importance	 scores	 of	 the	 single	 variables	were	 com-
puted.	HSMs	failed	in	accurately	retrieving	the	simulated	climate-	occurrence	relation-
ships	for	the	climate-	tolerant	VS	and	the	one	occurring	under	a	narrow	combination	
of	climatic	conditions.	Under	current	climate,	noticeable	between-	version	prediction	
mismatch	emerged	across	most	of	Europe	for	these	two	VSs,	whose	simulated	suit-
ability	mainly	depended	upon	diurnal	or	yearly	variability	in	temperature;	differently,	
between-	version	 differences	 were	 more	 clustered	 toward	 areas	 showing	 extreme	
values,	like	mountainous	massifs	or	southern	regions,	for	VSs	responding	to	average	
temperature	and	precipitation	trends.	Under	future	climate,	the	chosen	emission	sce-
narios	and	Global	Climate	Models	did	not	evidently	influence	between-	version	pre-
diction	discrepancies,	while	grid	resolution	synergistically	interacted	with	VSs'	niche	
characteristics	in	determining	extent	of	such	differences.	Our	findings	could	help	in	
re-	evaluating	previous	biodiversity-	related	works	relying	on	geographical	predictions	
from	Worldclim-	based	HSMs.
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1  |  INTRODUC TION

Climate	 shapes	 the	 distribution	 of	 organisms	 at	 regional-	to-	global	
scales	 (Newbold,	 2018;	 Thuiller	 et	 al.,	 2004)	 as	 it	 constrains	 the	
fundamental	 niche	of	 species	 (Pearman	et	 al.,	 2008).	 The	need	 to	
quantify	climate-	occurrence	relationships,	which	characterizes	disci-
plines	like	macroecology	and	phylogeography,	has	boosted	research	
efforts	on	predicting	the	response	of	species	to	climate	across	space	
and	time	(Bellard	et	al.,	2013;	Nogués-	Bravo	et	al.,	2010).

The	spread	of	Habitat	Suitability	Models	(HSMs)	during	the	last	
two	decades	has	further	expanded	the	toolbox	aiding	researchers	
in	 tackling	 questions	 related	 to	 climate	 and	 biodiversity	 (Guisan	
et	 al.,	 2017).	 Correlative	 HSMs,	 also	 commonly	 named	 Species	
Distribution	Models	 (SDMs)	 or	 Ecological	 Niche	Models	 (ENMs),	
estimate	 the	 relationships	 between	 the	 target	 biological	 entity	
(e.g.	species	or	populations)	and	a	set	of	abiotic	and/or	biotic	vari-
ables	(predictors),	based	on	data	representing	presence,	presence-	
absence	 or	 presence-	background	 localities	 (Elith	 &	 Leathwick,	
2009).	 Once	 estimated,	 such	 relationships	 are	 usually	 projected	
onto	the	geographical	space,	either	limiting	predictions	to	the	cali-
bration	area	(interpolation)	or	also	predicting	into	new	regions	and	
past/future	 time	 horizons	 (extrapolation).	 HSMs	 rely	 upon	 some	
fundamental	 assumptions,	 notably	 species-	environment	 equilib-
rium	and	appropriate	coverage	of	the	species'	realized	niche	within	
calibration	 data	 (Araújo	 &	 Rahbek,	 2006;	 Cerasoli	 et	 al.,	 2021),	
which	question	their	applicability	in	situations	like	recent	range	ex-
pansion	by	alien	species	or	rapid	niche	shifts	(Pearman	et	al.,	2008).	
Nonetheless,	thoughtfully	implemented	HSMs	represent	a	power-
ful	 tool	 to	 investigate	 the	 influence	 of	 climate	 on	 species'	 range	
dynamics	 (Cerasoli	 et	 al.,	 2020;	 Iannella	 et	 al.,	 2017,	 2020;	Vega	
et	al.,	2010).

To	this	aim,	availability	of	gridded	spatial	layers	representing	cli-
matic	conditions	across	 the	study	area	 (i.e.	climate	surfaces)	 is	es-
sential.	Among	 the	various	sources	of	climate	data,	 the	Worldclim	
database	 has	 represented	 a	 breakthrough	 as	 it	 has	 provided	 eco-
logical	 modellers	 with	 worldwide	 climate	 surfaces	 at	 various	 grid	
resolutions	 (from	 30	 arc-	seconds	 to	 10	 arc-	minutes)	 for	 “current”	
conditions	 (averaging	 between	 1950s	 and	 early	 2000s)	 as	 well	
as	 for	 past	 (late	 Pleistocene	 to	 middle	 Holocene)	 and	 future	 (up	
to	2100)	 time	horizons.	 The	 first	 version	of	 this	 database	was	 re-
leased	in	2005	(Hijmans	et	al.,	2005)	and	successively	stabilized	in	
the	Worldclim	1.4	online	repository,	 including	climate	surfaces	de-
rived	from	 interpolation	of	monthly	precipitation	and	temperature	
data	recorded	by	thousands	of	meteorological	stations	around	the	
globe	 (excluding	Antarctica).	These	baseline	climate	surfaces	were	
used	in	the	following	years	to	downscale	the	climate	projections	to	
past	and	future	time	horizons	performed	within	the	Coupled	Model	
Intercomparison	Project	Phase	5	(CMIP5)	of	the	Working	Group	on	

Coupled	Modeling.	Worldclim	was	updated	 in	2017	to	version	2.1	
(Fick	&	Hijmans,	 2017),	which	 benefited	 from	 data	 recorded	 by	 a	
higher	 number	 of	meteorological	 stations,	 particularly	 at	 high	 lat-
itudes	 and	 elevations,	 and	 included	 climate	 surfaces	 representing	
solar	 radiation,	windspeed	 and	vapour	pressure	 in	 addition	 to	 the	
ones	available	in	Worldclim	1.4.	Subsequently,	baseline	climate	sur-
faces	 from	Worldclim	2.1	were	used	to	downscale	 the	projections	
to	 future	 alternative	 scenarios	 derived	within	 the	Coupled	Model	
Intercomparison	 Project	 Phase	 6	 (CMIP6).	 While	 CMIP5	 future	
scenarios	 comprised	 four	 Representative	Concentration	 Pathways	
(RCPs)	depicting	different	trajectories	of	greenhouse	gas	emissions	
resulting	in	 increased	radiative	forcing	compared	to	current	values	
(Moss	et	al.,	2010),	CMIP6	extended	the	range	of	alternative	scenar-
ios	by	coupling	RCPs	with	a	newly	developed	framework	of	Shared	
Socio-	Economic	 Pathways	 (SSPs),	 focused	 on	 possible	 socioeco-
nomic	developments	influencing	adaptation	and	mitigation	policies	
(Riahi	et	al.,	2017).	The	stabilized	version	of	the	Worldclim	2.1	repos-
itory,	including	current	and	future	climate	surfaces,	was	released	in	
January	2020.

The	 Worldclim	 database	 has	 been	 vastly	 implemented	 in	
Habitat	 Suitability	 (HS)	 Modeling	 to	 estimate	 climate	 influences	
on	the	realized	niche	of	species	and	predict	possible	distributional	
shifts	 driven	by	 climate	 change:	 as	 an	 example,	 a	 simple	 query	of	
“Worldclim”	+	 “SDMs”	 (SDMs	being	 the	most	common	 labeling	of	
HSMs	 projected	 onto	 the	 geographical	 space)	 in	 Google	 Scholar	
(performed	on	27	May	2021)	delivered	3550	results,	2660	of	which	
published	up	to	2019	(i.e.	before	Worldclim	2.1	was	released).	Source	
of	climate	data	is	an	important	driver	of	uncertainty	in	HSMs'	pre-
dictions,	according	to	papers	contrasting	models	fitted	using	various	
global	climate	datasets	(Baker	et	al.,	2016;	Morales-	Barbero	&	Vega-	
Álvarez,	2019;	Watling	et	al.,	2014)	or	global	datasets	versus	regional	
ones	 (Jiménez-	Valverde	 et	 al.,	 2021)	 as	 well	 as	 versus	 fine-	scale	
predictors	 derived	 from	 remote	 sensing	 or	 in situ	 measurements	
(Deblauwe	et	al.,	2016;	Lembrechts	et	al.,	2019).	Nonetheless,	to	the	
best	of	our	knowledge,	no	research	has	so	far	investigated	geograph-
ical	 discrepancies	 in	 predictions	 from	 climate-	based	 HSMs	 fitted	
using	Worldclim	2.1	versus	Worldclim	1.4:	assessing	the	geograph-
ical	arrangement	and	magnitude	of	such	differences	would	greatly	
help	 to	critically	evaluate	results	 from	the	huge	number	of	HSMs-	
based	studies	conducted	using	Worldclim	1.4	in	the	light	of	the	re-
cent	advances	in	climate	modeling.	To	fill	this	gap	of	information,	we	
analyzed	spatially	explicit	prediction	mismatch	between	HSMs	fitted	
using	bioclimatic	variables	from	the	two	Worldclim	versions	at	the	
continental	scale,	focusing	on	Europe.	Moreover,	as	source	of	pre-
dictors	represents	one	of	many	factors	contributing	to	uncertainty	
in	model	 predictions	 (Connor	 et	 al.,	 2018;	 Lobo	&	 Tognelli,	 2011;	
Saupe	et	al.,	2012),	we	also	investigated	if	grid	resolution	of	climate	
surfaces,	 niche	 characteristics	of	 the	 target	 entity,	 and	 the	 future	
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scenario	 considered	 for	HSMs'	 projection	may	 significantly	 affect	
prediction	mismatch.	To	this	aim,	differently	from	most	of	previous	
research	pinpointing	 the	effects	of	climate	data	 sources	on	HSMs	
fitted	using	occurrences	of	real-	world	species,	we	implemented	the	
so-	called	“virtual	ecologist	approach”	(Zurell	et	al.,	2010).	The	main	
advantage	of	this	approach	in	HSMs-	related	studies	is	the	possibility	
of	simulating	 the	environment-	occurrence	relationships	one	wants	
to	 investigate,	 the	equilibrium	or	disequilibrium	of	 the	virtual	spe-
cies	with	the	environment,	the	sampling	protocol	and	possible	biases	
therein: a priori	control	of	these	conditions	permits	the	evaluation	of	
their	 influence,	and	that	of	various	modeling	choices,	upon	HSMs'	
outcomes	with	 lower	risk	of	drawing	conclusions	affected	by	con-
founding	factors	(Meynard	et	al.,	2019).

Here,	we	first	simulated	occurrence	probability	across	Europe	of	
four	virtual	species	differing	in	climate-	occurrence	relationships	and	
niche	breadth.	Then,	for	each	virtual	species,	we	fitted	HSMs	for	nu-
merous	artificial	presence-	absence	datasets	using	climate	surfaces	
from	Worldclim	1.4	and	Worldclim	2.1	at	three	grid	resolutions;	the	
obtained	models	were	subsequently	projected	to	the	European	ex-
tent	under	current	climate	and	various	future	scenarios.	Finally,	we	
assessed	overall	correlation	and	spatially	explicit	mismatch	between	
predictions	 of	 HSMs	 obtained	 using	 the	 two	Worldclim	 versions,	
along	with	 correspondence	between	model	 predictions	 and	 simu-
lated	 occurrence	 probabilities,	 evaluating	 possible	 effects	 of	 grid	

resolution,	peculiarities	of	the	simulated	species	and	alternative	pro-
jection scenarios.

2  |  METHODS

A	schematic	representation	of	the	steps	leading	from	the	collection,	
processing,	and	selection	of	the	climate	surfaces	to	the	generation	
of	 the	 presence-	absence	 datasets	 for	 each	 virtual	 species	 is	 pro-
vided	 in	Figure	1,	while	a	similar	 flowchart	 is	 reported	 in	Figure	2	
to	summarize	the	steps	taken	to	fit,	evaluate,	select,	and	project	the	
HSMs.	Details	about	the	entire	modeling	workflow	are	provided	in	
the	sections	below.

2.1  |  Bioclimatic variables

Raster	 layers	 of	 worldwide	 climate	 surfaces	 representing	 19	
temperature-		and	precipitation-	related	bioclimatic	variables	were	
downloaded	from	the	Worldclim	online	repository	(https://www.
world	clim.org/data/index.html)	 for	 both	Worldclim	 1.4	 (Hijmans	
et	al.,	2005)	and	Worldclim	2.1	(Fick	&	Hijmans,	2017),	each	at	three	
grid	resolutions:	2.5,	5,	and	10	arc-	minutes	(hereafter	2.5,	5,	and	
10	min),	respectively,	corresponding	to	pixels	whose	sides	roughly	

F I G U R E  1 Flowchart	resuming	the	considered	combinations	of	climate	surfaces	(Worldclim	versions,	grid	resolutions,	future	scenarios),	
and	the	steps	leading	from	variable	processing	and	selection	to	the	simulation	of	occurrence	probability	and	presence-	absence	patterns	
of	the	four	virtual	species.	Green	boxes	show	the	steps	involving	climate	surfaces	derived	from	Worldclim	1.4,	while	golden	boxes	show	
the	steps	involving	climate	surfaces	derived	from	Worldclim	2.1.	Grid	res.	=	resolution	(arc-	minutes)	of	the	gridded	climate	surfaces;	
RCPs	=	Representative	Concentration	Pathways;	SSPs	=	Shared	Socio-	Economic	Pathways;	GCMs	=	Global	Climate	Models;	VIF	= stepwise 
Variance	Inflation	Factor	analysis;	nb.points	=	number	of	background	points	on	which	PCA	is	performed

https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
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measure	5,	10,	and	20	km	at	the	equator.	Worldclim	climate	sur-
faces	 referring	 to	 “current”	 conditions	 derive	 from	 interpolation	
of	monthly	meteorological	data	averaged	across	30	years	(1960–	
1990	in	Worldclim	1.4,	1970–	2000	in	Worldclim	2.1).	Climate	sur-
faces	 representing	possible	 future	 conditions	were	downloaded,	
at	2.5,	5,	and	10	min	 for	both	Worldclim	versions,	choosing	 two	
alternative	 hypotheses	 about	 global	 policies	 characterizing	 the	
next	decades:	the	former,	represented	by	the	RCP4.5	scenario	in	
Worldclim	 1.4	 (hereafter	Wclim1.4)	 and	 by	 the	 SSP2-	4.5	 one	 in	
Worldclim	 2.1	 (hereafter	Wclim2.1;	 Riahi	 et	 al.,	 2017;	 Thomson	
et	 al.,	 2011),	 assumes	 some	 degree	 of	 international	 cooperation	
to	 limit	 greenhouse	 gas	 emissions	 and	 enhance	 exploitation	 of	
renewable	energy	 sources,	 leading	 to	 a	 stabilized	 radiative	 forc-
ing	 of	 4.5	W	m−2	 in	 2100;	 the	 latter,	 represented	 by	 RCP8.5	 in	
Wclim1.4	and	by	SSP5-	8.5	in	Wclim2.1	(Riahi	et	al.,	2011,	2017),	

instead	assumes	increasing	emissions	from	continued	exploitation	
of	 fossil	 fuels,	 limited	 technological	 advancement	and	almost	no	
coordinate	 efforts	 to	 mitigate	 climate	 change,	 resulting	 in	 non-	
stabilized	radiative	forcing	of	at	least	8.5	W	m−2 in 2100. For the 
sake	of	simplicity,	hereafter	we	will	refer	to	these	two	alternative	
emission	 scenarios	 as	 “Scen4.5”	 and	 “Scen8.5,”	 respectively,	 for	
both	Worldclim	 versions.	 For	 each	 scenario,	we	 considered	 two	
future	timeframes,	2050	and	2070,	respectively	corresponding	to	
average	projections	across	2041–	2060	and	2061–	2080.	Previous	
works	 (Garcia	 et	 al.,	 2012;	 Porfirio	 et	 al.,	 2014;	 Stralberg	 et	 al.,	
2015)	 showed	 that	 the	 specific	 Global	 Climate	 Models	 (GCMs)	
used	 to	 project	 the	 climate-	occurrence	 relationships	 estimated	
under	present	 conditions	may	noticeably	affect	predicted	distri-
butional	 shifts.	 To	 account	 for	 the	 possible	 effect	 of	 the	 choice	
of	 GCMs	 on	 prediction	 mismatch	 between	 Wclim1.4-	based	

F I G U R E  2 Flowchart	resuming	the	
algorithmic	workflow	implemented	to	
analyse,	for	each	virtual	species,	between-	
version	differences	in	Worldclim-	based	
HSMs'	predictions.	VS	= virtual species; 
size	=	number	of	records	for	each	
sample;	Worldclim	vers.	=	version	of	
the	Worldclim	database	(1.4	or	2.1);	
Grid res. =	resolution	(arc-	minutes)	of	
the	gridded	climate	surfaces;	Moran's	
I =	Moran's	index;	SAC	=	Spatial	
Autocorrelation	range;	checkerboard	
SB	=	checkerboard	spatial	blocking;	
CV	=	cross-	validation;	HSM	=	Habitat	
Suitability	Model;	EM	=	Ensemble	
Model;	GCMs	=	Global	Climate	Models;	
Scen.	=	emission	scenario
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HSMs	 and	Wclim2.1-	based	 ones,	 we	 downloaded,	 for	 each	 grid	
resolution	 *	 scenario	 *	 timeframe	 combination,	 climate	 surfaces	
derived	 from	 four	 GCMs:	 for	Wclim1.4	 we	 chose	 BCC-	CSM1.1,	
CNRM-	CM5,	 IPSL-	CM5A-	LR,	and	MIROC-	ESM;	 for	Wclim2.1	we	
selected	updated	GCMs	from	the	same	modeling	groups,	namely	
BCC-	CSM2-	MR,	CNRM-	CM6,	 IPSL-	CM6A-	LR,	 and	MIROC-	ESL2.	
Hereafter,	regardless	of	the	considered	Worldclim	version,	we	will	
refer	to	these	GCMs	simply	according	to	the	corresponding	mod-
eling	group:	the	Chinese	BCC	(Beijing	Climate	Center);	the	French	
CNRM	(Centre	National	de	Recherches	Météorologiques)	and	IPSL	
(Institute	Pierre-	Simon	Laplace);	the	Japanese	MIROC	(Model	for	
Interdisciplinary	Research	On	Climate).

Using	 the	 “raster”	 (Hijmans,	 2020)	 R	 (R	 Core	 Team,	 2020)	
package,	 current	 and	 future	 climate	 surfaces	 were	 cropped	 to	
the	 European	 geographical	 boundaries	 (spatial	 extent:	 Longitude	
24.55°O–	61.68°E,	Latitude	34.56°N–	73.43°N).	All	 the	climate	sur-
faces	were	then	projected	from	the	original	WGS84	geographic	co-
ordinate	system	to	the	ETRS89-	LAEA	projected	one	to	get	equally	
sized	raster	cells	across	the	European	extent.

As	multicollinearity	 among	 predictors	may	 substantially	 affect	
HSMs,	biasing	the	fitted	environment-	occurrence	relationships	and	
the	estimated	importance	scores	of	the	single	predictors	(Dormann	
et	 al.,	 2013),	we	used	 the	 stepwise	Variance	 Inflation	Factor	 (VIF)	
analysis	 implemented	 in	 the	“usdm”	R	package	 (Naimi	et	al.,	2014)	
to	filter	the	initial	set	of	nineteen	bioclimatic	variables:	the	variables	
not	exceeding	VIF	=	10	(Guisan	et	al.,	2006;	Werkowska	et	al.,	2017)	
for	more	than	half	of	the	Worldclim	version	*	grid	resolution	com-
binations	were	 retained	 to	 simulate	 the	virtual	 species	and	 fit	 the	
HSMs.

Values	 of	 the	 selected	 temperature-	related	 variables	 from	
Wclim1.4	were	divided	by	10,	because	 in	Wclim1.4	temperature	 is	
reported	as	degree	celsius	*	10	while	 in	Wclim2.1	 it	 is	reported	as	
“plain”	degree	celsius.	Then,	 climate	 surfaces	 from	Wclim1.4	were	
resampled	 through	 bilinear	 interpolation	 to	 match	 dimensions	 of	
Wclim2.1-	derived	 ones,	 thus	 permitting	 pixel-	by-	pixel	 comparison	
across	 Europe	 of	 predictions	 from	HSMs	 fitted	 using	 climate	 sur-
faces	 from	 the	 two	Worldclim	 versions.	 Finally,	 for	 each	 retained	
variable,	 we	 assessed	 correlation	 between	 climate	 surfaces	 from	
the	 two	versions	 (hereafter	between-	version	 r)	 in	 two	ways.	First,	
computing	 pairwise	 Pearson's	 r	 on	 sets	 of	 points	 drawn	 through	
regular	 random	 sampling	 across	 Europe,	 comparing	 the	 “original”	
layers	(i.e.,	prior	to	the	resampling	of	Wclim1.4-	derived	ones)	from	
both	Worldclim	versions,	as	well	as	the	resampled	Wclim1.4-	derived	
layers	 with	 the	 Wclim2.1-	derived	 ones.	 Second,	 computing	 local	
Pearson's	r	across	the	entire	European	extent	through	a	focal	neigh-
borhood	analysis	contrasting	the	resampled	Wclim1.4-	derived	 lay-
ers	with	the	Wclim2.1-	derived	ones.

2.2  |  Virtual species

Taking	 advantage	 of	 the	 “virtualspecies”	 R	 package	 (Leroy	
et	al.,	2016),	we	simulated	HS	across	Europe	of	four	virtual	species	

(hereafter	VS).	One	of	the	VSs	represents	a	climate-	tolerant	species	
(“Generalist”),	 while	 the	 remaining	 three	 correspond	 to	 different	
typologies	 of	 climate-	constrained	 species:	 (i)	 a	 cold-	adapted	 spe-
cies	 (“Alpine”),	whose	 distribution	 is	 limited	 to	mountainous	 areas	
in	southern	Europe	while	being	wider	at	high	latitudes;	(ii)	a	species	
preferring	warm	 and	 dry	 conditions,	 thus	mainly	 occurring	within	
the	Mediterranean	European	regions	 (“Mediterranean”);	 (iii)	 a	 spe-
cies	adapted	to	a	poorly	 represented	combination	of	climatic	con-
ditions,	 thus	 occurring	 in	 narrow	 and	 geographically	 sparse	 areas	
(“Restricted”).

HS	for	the	Alpine	and	Mediterranean	VSs	was	simulated	through	
customized	response	curves	to	some	of	the	retained	variables,	while	
HS	for	the	Generalist	and	Restricted	VSs	was	modelled	as	a	function	
of	niche	breadth	within	a	two-	dimensional	gridded	space	resulting	
from	a	preliminary	Principal	Component	Analysis	 (PCA)	applied	 to	
the	retained	variables.	Density	of	occurrence	of	the	Generalist	and	
Restricted	 VSs	 within	 the	 PCA-	derived	 2D	 space	 was	 estimated	
by	means	of	the	“ecospat”	R	package	(Di	Cola	et	al.,	2017).	Details	
about	 the	 functions	used	 to	 simulate	 responses	of	 the	Alpine	and	
Mediterranean	VSs	 to	 the	 selected	variables,	 as	well	 as	about	 the	
PCA	performed	for	the	Generalist	and	Restricted	VSs,	are	provided	
in	Appendix	Note	S1.	The	resulting	HS	maps	were	visually	checked	
to	 ensure	 they	 matched	 the	 climate-	occurrence	 relationships	 we	
intended	 to	 simulate	 (Meynard	 et	 al.,	 2019).	 Then,	 a	 probabilistic	
approach	was	used	 to	convert,	 for	each	pixel,	 the	HS	value	 into	a	
corresponding	occurrence	probability	value	(Figure	3a)	and	then	into	
a	presence-	absence	(hereafter	Pres-	Abs)	record	(Figure	3b)	based	on	
a	logistic	function:	relying	on	a	probabilistic	approach	rather	than	on	
a	threshold-	based	one	permits	to	avoid	abrupt	changes	in	the	rela-
tionship	between	HS	and	 the	 resulting	occurrence	probability	 (i.e.	
threshold-	like	responses),	which	are	rare	in	real-	world	circumstances	
(Meynard	&	Kaplan,	2013).	Within	the	logistic	function	used	to	con-
vert	 occurrence	 probability	 into	 Pres-	Abs	 records,	 lower	α	 (slope)	
and β	 (inflexion	point)	 absolute	values	were	set	 for	 the	Generalist	
(α =	−0.01;	β =	0.4)	than	for	the	other	VSs	to	obtain	a	considerably	
wider	 extent	 of	 occurrence	 for	 the	 former,	 thus	 simulating	 a	 spe-
cies	 adapted	 to	 a	 broad	 range	 of	 climatic	 conditions.	 The	 remain-
ing	VSs	shared	the	same	slope	value	(α =	−0.05),	while	the	inflexion	
point	 was	 adjusted	 in	 a	 species-	specific	 manner	 (Alpine:	 β =	 0.6;	
Mediterranean:	β = 0.7; Restricted: β =	0.8),	so	as	to	get	a	relatively	
wide	distribution	for	the	Alpine	VS	at	high	latitudes	and	across	the	
main	 European	 mountainous	 massifs,	 a	 somewhat	 narrower	 dis-
tribution	 for	 the	Mediterranean	one,	mainly	occurring	 in	 southern	
coastal	 areas	 except	 for	 some	 inland	 regions	 of	 Iberia,	 southern	
Italy,	Greece,	and	Turkey,	and	an	even	narrower	distribution	for	the	
Restricted	VS	(Figure	3b).	The	“virtualspecies”	package	also	allows	
to	 limit	 the	actual	distribution	of	VSs	 to	a	user-	defined	portion	of	
the	occurrence	area	resulting	from	the	conversion	of	the	simulated	
HS	to	Pres-	Abs	patterns,	thus	mimicking	species	being	not	in	equi-
librium	with	 climate	 (Leroy	 et	 al.,	 2016).	Here,	 following	Meynard	
et	al.	(2019)	who	suggested	that	studies	based	on	VSs	should	keep	as	
simple	as	possible	the	factors	not	under	investigation,	we	simulated	
VSs	being	in	equilibrium	with	climate.
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F I G U R E  3 (a)	Occurrence	probability	and	(b)	presence-	absence	maps,	for	each	VS,	resulting	from	the	probabilistic	conversion	of	the	
simulated	HS
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For	 all	 the	VSs,	 the	baseline	 climate	 surfaces	used	 to	 simulate	
HS	were	those	from	Wclim2.1	at	2.5	min.	The	rationale	behind	this	
choice	was	 twofold.	 First,	 for	 the	Alpine	 and	Mediterranean	 spe-
cies	 we	 could	 also	 have	 made	 a	 separate	 HS	 simulation	 for	 each	
Worldclim	version	*	grid	 resolution	combination	as	suitable	condi-
tions	for	these	VSs	were	related	to	specific	value	ranges	of	selected	
variables	 via	 customized	 response	 functions,	 thus	 being	 indepen-
dent	of	the	particular	climate	surfaces	used;	instead,	doing	the	same	
for	 the	 Generalist	 and	 Restricted	 species	 would	 have	 produced	
different	 climate-	occurrence	 relationships	 depending	 on	 the	 con-
sidered	Worldclim	 version	 *	 grid	 resolution	 combination,	 because	
HS	 for	 these	VSs	was	 related	 to	 their	overall	niche	breadth	 in	 the	
PCA-	derived	 2D	 space	 summarizing	 a	 specific	 set	 of	 climate	 sur-
faces.	Second,	simulating	HS	using	the	climate	surfaces	at	2.5	min	
as	reference	layers	for	all	the	VSs	permitted	to	also	assess	to	what	
extent	HSMs	fitted	using	coarser	climate	surfaces	were	able	to	cor-
rectly	 retrieve	 climate-	occurrence	 relationships	 acting	 at	 a	 finer	
scale	(Connor	et	al.,	2018).

For	each	VS,	50	samples,	each	comprising	300	Pres-	Abs	points,	
were	drawn	from	the	simulated	Pres-	Abs	maps.	The	effect	of	sample	
size	 on	HSMs'	 predictive	 performance	 has	 been	 variously	 investi-
gated	 in	 recent	years,	with	some	studies	suggesting	 that	good	ac-
curacy	may	be	attained	with	at	least	25–	30	training	presences	(van	
Proosdij	 et	 al.,	 2016;	Wisz	 et	 al.,	 2008)	 while	 others	 claiming	 for	
the	need	to	collect	more	presence	records	 (Hanberry	et	al.,	2012;	
Santini	et	al.,	2021).	The	sample	size	we	chose	aimed	at	balancing	the	
need	for	sufficient	calibration	data	with	that	of	making	the	results	
of	our	simulations	comparable	to	those	researchers	may	get	when	
fitting	Worldclim-	based	HSMs	to	datasets	collected	for	 real-	world	
species,	which	often	comprise	<50	presence	points	 (Santini	et	 al.,	
2021).	Except	for	the	Generalist	VS,	sampling	was	limited	to	a	buf-
fer	area	(120	km	for	Alpine	and	Mediterranean	VSs,	60	km	for	the	
Restricted	one)	around	a	randomly	chosen	sample	of	500	presence	
pixels.	Indeed,	if	Pres-	Abs	records	for	the	three	climate-	constrained	
VSs	had	been	sampled	from	the	entire	European	extent,	the	risk	of	
generating	 datasets	with	 very	 low	 sample	 prevalence	would	 have	
been	high,	which	in	turn	would	have	biased	the	estimation	of	HSMs'	
accuracy	(Jiménez-	Valverde,	2021).	As	discrimination	scores	on	test	
data	were	later	used	to	select	the	HSMs	to	be	passed	thourgh	the	
projection	phase	 (see	Model fitting and projection),	 it	was	essential	
that	such	estimates	were	as	unbiased	as	possible.	On	the	other	hand,	
this	choice	presumably	introduced	a	certain	degree	of	extrapolation	
in	the	HSMs'	projection	phase	for	the	climate-	constrained	VSs,	par-
ticularly	for	the	Restricted	one	whose	occurrence	area	was	notably	
narrower	 (and	 thus	 likely	 covered	 fewer	 combinations	 of	 climatic	
conditions)	than	for	the	others.	However,	this	was	beneficial	to	the	
aim	of	our	research,	as	we	wanted	to	 investigate	between-	version	
differences	 in	 Worldclim-	based	 HSMs	 not	 only	 for	 interpolation	
tasks	but	also	when	the	models	have	to	predict	outside	calibration	
areas,	given	that	this	 latter	condition	characterizes	most	of	HSMs'	
practical applications.

Finally,	 we	 simulated	 unperfect	 detection	 during	 the	 “virtual	
sampling”,	here	again	in	order	to	make	modeling	conditions	on	our	

VSs	 relatively	 similar	 to	 those	 researchers	 working	 on	 real-	world	
datasets	 (e.g.,	cryptic	 target	species,	 lowly	experienced	observers)	
usually	 face:	 specifically,	 the	 “detection.probability”	 value	 in	 the	
“convertToPA”	function	from	the	“virtualspecies”	package	was	set	to	
0.75	for	the	Alpine,	Mediterranean,	and	Generalist	VSs,	and	to	0.9	
for	the	Restricted	one.	The	higher	detection	probability	chosen	for	
the	Restricted	VS	aimed	at	making	its	Pres-	Abs	datasets	containing	
few	false	absences;	indeed,	a	high	number	of	false	absences	would	
have	 further	 decreased	 its	 sample	 prevalence,	 which	was	 likely	 a 
priori	 lower	 than	 that	 of	 the	 other	VSs	 given	 its	 limited	 extent	 of	
occurrence.

2.3  |  Model fitting and projection

First,	for	each	combination	of	VS	*	retained	variable	*	grid	resolution,	
we	computed	between-	version	pairwise	r	on	each	Pres-	Abs	sample	
to	preliminary	assess	whether	diverging	 input	values	between	 the	
two	 Worldclim	 versions	 could	 differently	 influence	 the	 climate-	
occurrence	relationships	estimated	in	the	corresponding	HSMs.

Then,	we	investigated	for	each	VS	the	possible	presence	of	spa-
tial	 autocorrelation	 (SAC)	 affecting	 the	 simulated	 Pres-	Abs	 data.	
Indeed,	 occurrence	 records	 and	 associated	 environmental	 data	
usually	show	spatial	dependence	structures	 (i.e.,	nearby	sites	host	
more	similar	environmental	conditions	 than	distant	ones)	which,	 if	
disregarded	when	fitting	HSMs,	frequently	lead	to	biases	in	the	es-
timation	of	model	parameters	and	prediction	error	(Dormann,	2007;	
Roberts	et	al.,	2017).	In	particular,	if	HSMs	are	validated	on	randomly	
withheld	data	being	environmentally	close	to	the	training	ones	due	
to	 underlying	 SAC,	 estimates	 of	 model	 predictive	 performance	
will	be	inflated	(Veloz,	2009).	As	mentioned	above,	we	needed	our	
estimates	 of	 model	 accuracy	 to	 be	 not	 biased	 as	 they	were	 later	
used	for	model	selection.	Thus,	we	implemented	a	cross-	validation	
scheme	which	 takes	 advantage	 of	 geographically	 designed	 blocks	
to	split	train	and	test	data	accounting	for	SAC.	To	this	aim,	we	fit-
ted	 “full-	data”	HSMs	 (i.e.,	 using	 all	 the	Pres-	Abs	points	 from	each	
sample)	for	each	VS	*	Worldclim	version	*	grid	resolution	combina-
tion	using	Generalized	Additive	Models	(GAM;	Guisan	et	al.,	2002)	
and	 Generalized	 Boosted	 Regression	 Models	 (GBM),	 also	 known	
as	 Boosted	 Regression	 Trees	 (Elith	 et	 al.,	 2008),	 respectively,	 im-
plemented	through	the	“gam”	(Hastie,	2019)	and	“gbm”	(Greenwell	
et	al.,	2020)	R	packages.	GAM	and	GBM	emerged	in	previous	studies	
among	the	best	performing	algorithms	in	terms	of	both	interpolation	
and	extrapolation	accuracy	(Heikkinen	et	al.,	2012;	Qiao	et	al.,	2019).	
Residuals	of	predictions	from	these	“full-	data”	HSMs	were	then	used	
to	derive,	 through	 the	 “ncf”	 (Bjornstad,	2020)	R	package,	 correlo-
grams	 showing	 variations	 in	 residuals-	based	 Moran's	 index	 (I)	 at	
increasing	inter-	point	distance:	the	distance	after	which	Moran's	I ap-
proaches	0	indicates	the	SAC	range	(Roberts	et	al.,	2017).	In	order	to	
improve	the	spatial	independence	of	test	data	from	training	ones,	the	
size	of	spatial	blocks	should	be	greater	than	the	SAC	range	(Roberts	
et	al.,	2017).	Thus,	a	specific	block	size	was	selected	for	each	VS	by	
increasing	the	SAC	range	visually	estimated	from	the	corresponding	



8 of 20  |     CERASOLI Et AL.

correlograms	by	100	km.	Then,	we	used	the	“blockCV”	(Valavi	et	al.,	
2019)	R	package	to	design	spatial	blocks	of	 the	chosen	block	size:	
for	each	VS	*	Worldclim	version	*	grid	resolution	combination,	the	
obtained	blocks	were	grouped	in	two	folds	through	a	checkerboard	
blocks-	to-	fold	assignment,	which	ensures	a	more	equal	distribution	
of	 the	 environmental	 space	 across	 folds	 compared	 to	 contiguous	
or	 random	blocking,	 avoiding	excessive	extrapolation	when	HSMs	
predict	on	test	 folds	 (Roberts	et	al.,	2017).	Successively,	we	fitted	
new	HSMs	upon	training	data	from	each	of	the	two	obtained	folds,	
taking	advantage	of	the	“biomod2”	(Thuiller	et	al.,	2020)	R	platform	
and	using	 four	 algorithms:	 in	 addition	 to	GAM	and	GBM,	we	 also	
used	Generalized	Linear	Models	 (Guisan	et	al.,	2002)	and	Random	
Forests	(RF)	(Breiman,	2001),	two	of	the	most	widely	implemented	
algorithms	in	HS	Modeling.	This	way,	a	total	of	2400	HSMs	were	fit-
ted	for	each	VS	(2	Worldclim	versions	*	3	grid	resolutions	*	50	Pres-	
Abs	samples	*	4	algorithms	*	2	blocks-	to-	folds	assignments).	Details	
about	model	 parameterization	 are	 provided	 in	Appendix	Note	 S2.	
Although	fine-	tuning	of	the	single	algorithms	based	on	the	specific	
climatic	niche,	simulated	distribution	and	“virtual	sampling”	of	each	
VS	could	have	led	to	a	better	calibration	of	some	HSMs	(Hao	et	al.,	
2020),	we	chose	the	“biomod2”	ensemble	modeling	platform,	with	
commonly	used	parameterization	settings	 for	all	 the	VSs,	because	
we	intended	to	investigate	the	extent	and	determinants	of	between-	
version	 discrepancies	 in	 Worldclim-	based	 HSMs	 under	 modeling	
protocols	which	have	been	vastly	implemented	in	the	ecological	lit-
erature	in	the	past	two	decades	(Hao	et	al.,	2019).

The	 predictive	 performance	 of	 HSMs	 on	 test	 folds	 was	 as-
sessed	through:	(i)	Root	Mean	Squared	Error	(RMSE),	measuring	the	
squared	mean	distance	between	the	predicted	HS	and	the	Pres-	Abs	
values;	 (ii)	Area	Under	the	Curve	 (AUC)	of	the	Receiver	Operating	
Characteristic	 (ROC)	plot,	contrasting	sensitivity	 (i.e.,	 true	positive	
rate)	versus	1-	specificity	(i.e.,	false	positive	rate)	along	a	continuous	
gradient	of	binarization	thresholds	(Fielding	&	Bell,	1997);	(iii)	True	
Skill	 Statistic	 (TSS	=	 sensitivity	+	 specificity	 −	 1)	 (Allouche	 et	 al.,	
2006),	 computed	 upon	 single-	threshold-	based	 binarized	 predic-
tions.	Only	 the	HSMs	attaining	at	 least	AUC	=	0.7	and	TSS	= 0.4 
when	validated	on	the	test	data	were	retained	for	the	subsequent	
phases:	we	chose	these	“relaxed”	thresholds	to	feed	the	HSMs'	pro-
jection	process	with	a	large	enough	number	of	better-	than-	random	
models	for	all	the	factor	(i.e.,	VS,	Worldclim	version,	grid	resolution)	
combinations.	 If	 two	or	more	HSMs	were	retained	for	a	sample,	a	
weighted	ensemble	model	 (hereafter	EMwmean)	was	built	using	 the	
“wmean”	 algorithm	 in	 biomod2,	 assigning	 weights	 to	 the	 single	
HSMs	 based	 on	 the	 corresponding	 attained	 AUC	 score	 (Marmion	
et	al.,	2009).	Standardized	importance	scores	(hereafter	Std_Imp)	of	
input	predictors	were	computed	for	the	single	retained	HSM	(here-
after	HSMunique)	or	 for	 the	EMwmean, depending on the considered 
sample,	 through	 the	 permutation-	based	 algorithm-	independent	
procedure	 implemented	 in	 “biomod2”	 (Thuiller	et	 al.,	2009).	Then,	
EMwmean	 and	HSMunique were projected throughout Europe under 
current	 climatic	 conditions	 as	 well	 as	 under	 the	 different	 future	
timeframe	 *	 GCM	 *	 emission	 scenario	 combinations,	 and	 median	
predictions	 across	 the	 projected	models	were	 computed	 for	 each	

combination.	For	current	projections,	we	assessed	between-	version	
differences	in	median	predicted	HS	as	well	as	Pearson's	correlation	
coefficient	between	median	predicted	HS	and	simulated	occurrence	
probability	 (hereafter	 predicted-	simulated	 r),	while	 for	 future	pro-
jections	we	 only	 assessed	 between-	version	 differences	 in	median	
predictions.

2.4  |  Importance of modeling factors

We	 assessed	 the	 relative	 importance	 of	 the	 considered	 factors	
upon	modeling	outcomes	fitting	RF	regression	models	(Santini	et	al.,	
2021),	with	response	variable	iteratively	set	to:	(i)	Std_Imp	of	input	
variables;	 (ii)	 predicted-	simulated	 r	 computed	 upon	 50	 samples	
for	each	 factor	 combination,	with	each	 sample	comprising	10,000	
randomly	drawn	pixels;	 (iii)	between-	version	differences	in	median	
predicted	HS	 under	 future	 scenarios,	with	 difference	 values	 sam-
pled	upon	10,000	randomly	drawn	pixels	for	each	factor	combina-
tion.	RF	models	were	fitted	through	the	“randomForest”	R	package	
(Liaw	&	Wiener,	2002)	upon	1000	trees,	with	the	“mtry”	parameter	
left	as	default	(i.e.	mtry =

number of predictors

3
).	Standardized	importance	

score	 of	 each	 factor	 was	 computed	 by	 applying	 the	 “biomod2”	
permutation-	based	procedure	to	the	fitted	RF	models.

3  |  RESULTS

3.1  |  Input variables

Based	on	VIF	analysis,	seven	bioclimatic	variables	were	selected	for	
model	 fitting:	bio1	 (annual	mean	 temperature),	 bio2	 (mean	diurnal	
temperature	range),	bio4	(temperature	seasonality),	bio8	(mean	tem-
perature	of	wettest	quarter),	bio15	(precipitation	seasonality),	bio18	
(precipitation	of	warmest	quarter),	and	bio19	(precipitation	of	cold-
est	quarter).

Between-	version	 local	 Pearson's	 r	 varied	 across	 variables	 and	
grid	 resolutions	 (Appendix	 Figure	 S1a–	c).	 At	 2.5	 min,	 values	 of	
bio1	 were	 positively	 correlated	 within	 most	 European	 regions;	
correlation	maps	obtained	for	bio8,	bio18,	and	bio19	showed	wide	
extents	 of	 positive	 r	 in	 southern	Europe,	while	 scattered	 areas	of	
negative	 correlation	 emerged	mainly	 in	 central	 and	 north-	eastern	
Europe;	for	bio2,	bio4,	and	bio15,	wide	areas	of	negative	correlation	
emerged	across	Europe.	These	trends	persisted	at	coarser	grid	res-
olutions,	although	positively	correlated	areas	were	generally	wider.	
Differently,	between-	version	pairwise	correlation	computed	on	the	
50	sets	of	 randomly	 sampled	points	exceeded	 r =	0.85	 for	all	 the	
variable	 *	 grid	 resolution	 combinations,	without	 noticeable	 differ-
ences	between	“original”	and	resampled	Wclim1.4-	derived	variables	
when	compared	to	Wclim2.1-	based	ones	(Appendix	Figure	S2).	This	
suggests	that	the	resampling	of	Wclim1.4-	derived	layers,	necessary	
to	conduct	the	subsequent	spatially	explicit	comparisons	of	model	
predictions	derived	from	the	two	Worldclim	versions,	did	not	sub-
stantially	 alter	 cell-	by-	cell	 values	 of	Wclim1.4	 variables.	 Similar	 to	
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what	appeared	from	the	maps	of	local	Pearson's	r,	bio2	was	the	vari-
able	with	the	lowest	between-	version	pairwise	correlation.

3.2  |  Virtual species

The	Alpine	VS	was	related	negatively	to	bio1	and	positively	to	bio2	
via	 sigmoid	 curves,	 while	 it	 was	 related	 to	 bio8	 through	 a	 bell-	
shaped	curve	peaking	between	0°C	and	5°C	(Appendix	Figure	S3a);	
the	Mediterranean	VS	was	 instead	positively	 related	 to	bio1	via	 a	
sigmoid	 curve	 showing	 a	 steep	 increase	 after	 5°C,	 and	 negatively	
related	 to	 bio18	 via	 a	 threshold-	like	 function	 making	 suitability	
dramatically	 decrease	 after	 100	 mm	 (Appendix	 Figure	 S3b).	 The	
Generalist	VS	was	primarily	associated	to	the	positive	semiaxis	of	the	
first	 Principal	 Component	 (PrinComp1)	 to	which	 bio4	 contributed	
the	most,	followed	by	bio8	and	bio18	(Appendix	Figure	S4a1);	differ-
ently,	the	Restricted	VS	was	mainly	related	to	the	negative	semiaxes	
of	both	PrinComp1	and	PrinComp2,	to	which	bio2	contributed	the	
most	 (Appendix	 Figure	 S4b1),	 followed	 by	 bio15	 and	 bio1.	 As	 ex-
pected,	density	of	occurrence	within	 the	PCA-	derived	2D	climatic	
space	was	 far	wider	 for	 the	Generalist	VS	 than	 for	 the	Restricted	
one	(Appendix	Figures	S4a2	and	S4b2).	Occurrence	probability	and	
Pres-	Abs	 patterns	 properly	 reflected,	 for	 all	 the	 VSs,	 the	 realiza-
tion	into	the	European	geographic	space	of	the	climate-	occurrence	
relationships	we	 intended	 to	 simulate	 (Figure	 3a,b).	 Prevalence	 of	
the	VSs	across	Europe	was:	Alpine	=	0.25,	Mediterranean	=	0.08,	
Generalist =	0.79,	and	Restricted	=	0.01;	median	prevalence	across	
the	 50	 Pres-	Abs	 samples	 was	 relatively	 close	 to	 the	 prevalence	
across	Europe	for	the	Alpine	(~0.4)	and	Generalist	(~0.6)	VSs,	while	it	
was	noticeably	higher	than	this	latter	for	the	Mediterranean	(~0.36)	
and	Restricted	(~0.25)	ones	(Appendix	Figure	S5a).	Between-	version	
r	of	the	selected	variables	upon	Pres-	Abs	points	was	higher	than	0.8	
for	all	the	VS	*	grid	resolution	combinations,	except	for	bio2	showing	
median	r =	0.4	for	the	Restricted	VS	(Appendix	Figure	S5b).

3.3  |  Model fitting and evaluation

The	 species-	specific	 block	 sizes	 chosen	 based	 on	 the	 SAC	
ranges	 estimated	 from	 the	 correlograms	 derived	 from	 residu-
als	 of	 the	 “full-	data”	 HSMs	 (Appendix	 Figure	 S6a–	d)	 were:	
Alpine =	1600	km;	Mediterranean	=	600	km;	Generalist	=	1600	km;	
Restricted =	 400	 km.	 An	 example	 of	 the	 resulting	 checkerboard	
blocking	is	shown	for	each	VS	in	Appendix	Figure	S7a,b.

RMSE	computed	upon	test	blocks	did	not	show	clear	between-	
version	 differences	 across	 the	 VS	 *	 grid	 resolution	 combinations,	
although	GBM	and	RF	attained	slightly	 lower	median	RMSE	when	
fitted	using	Wclim2.1-	derived	variables,	especially	for	the	Restricted	
VS	(Appendix	Figure	S8).	Median	RMSE	was	higher	for	the	Generalist	
VS	(~0.45)	than	for	the	others	(~0.40)	considering	all	the	algorithms	
except	 GAM,	which	 performed	 poorly	 (median	 RMSE	=	 0.65)	 for	
all	 VSs,	 suggesting	 that	 the	 used	 “biomod2”	 GAM	 parameteriza-
tion	 (“mgcv”	 algorithm	 with	 cross-	validation-	based	 selection	 of	

smoothing	parameters)	 did	not	 lead	 to	 a	 proper	 calibration	of	 the	
corresponding	HSMs.

While	 for	 the	 Alpine	 and	Mediterranean	 VSs	 all	 the	 sampling	
replicates	produced	at	least	an	HSM	exceeding	the	chosen	discrim-
ination	thresholds,	some	replicates	with	no	HSMs	entering	the	pro-
jection	phase	emerged	for	 the	remaining	VSs	 (Appendix	Table	S1),	
confirming	 higher	 difficulty	 of	 the	HSMs	 fitted	 for	 these	 latter	 in	
retrieving	the	simulated	climate-	occurrence	relationships.

3.4  |  Between- version differences

Between-	version	r	across	Europe	in	median	predicted	HS	was	very	
high,	 regardless	 of	 grid	 resolution,	 for	 the	 Alpine,	 Mediterranean	
and	Generalist	VSs,	while	it	was	somewhat	lower	for	the	Restricted	
one	(Appendix	Table	S2).	Looking	at	spatially	explicit	prediction	dis-
crepancies	for	the	Alpine	VS,	Wclim2.1-	based	projections	resulted	in	
higher	median	HS	than	Wclim1.4-	based	ones	across	Carpathians,	in	
the	central	regions	of	Norway	and	Sweden,	in	some	areas	of	north-
ern	 Finland,	 north-	eastern	 European	 Russia,	 and	 north-	eastern	
Turkey,	while	the	opposite	emerged	across	most	of	the	Alpine	arc,	
in	 eastern	 Iceland,	 south-	western	 Norway,	 southern	 Finland,	 and	
some	regions	of	north-	western	European	Russia	(Figure	4a).	For	the	
Mediterranean	VS,	Wclim2.1-	based	median	HS	exceeded	Wclim1.4-	
based	one	within	eastern	inland	Iberia,	southern	French	coasts,	cen-
tral	Tyrrhennian	coasts	and	southern	Adriatic	coasts	in	Italy,	as	well	
as	in	some	scattered	regions	of	Anatolia,	while	the	opposite	emerged	
in	 north-	western	 Iberia,	 at	 the	 southern	 Spain-	France	 border,	
northern	Corse,	northern	Tyrrhenian	and	Adriatic	 Italian	coasts,	 in	
some	territories	of	Peloponnese	and	northern	Anatolia	(Figure	4b).	
Between-	version	 differences	 in	 median	 HS	 involved	 considerably	
wider	 extents	 for	 the	 remaining	 VSs:	Wclim2.1-	based	 projections	
for	the	Generalist	VS	resulted	 in	 lower	median	HS	than	Wclim1.4-	
based	 ones	 for	most	 of	 Iberia,	 central-	northern	 Europe,	 southern	
European	Russia	and	Turkey,	while	the	opposite	resulted	for	Iceland,	
most	of	the	Italian	peninsula	and	the	Balkans	(Figure	5a);	consider-
ing	 the	Restricted	VS,	Wclim2.1-	based	median	HS	was	 lower	 than	
Wclim1.4-	based	one	across	most	of	 eastern	Europe,	with	particu-
larly	 substantial	 differences	 in	 eastern	 Scandinavia	 and	 European	
Russia,	 while	more	mixed	 patterns	 emerged	 in	 eastern	 Iberia	 and	
central	Anatolia	(Figure	5b),	the	regions	showing	high	simulated	oc-
currence	probability	for	this	VS	(Figure	3a).	These	trends	were	con-
sistent	across	the	three	grid	resolutions,	although	between-	version	
differences	were	somewhat	milder	as	cell	size	increased.

Considering	 standardized	 importance	 scores	 (Std_Imp),	 HSMs	
fitted	 for	 the	 Alpine	 and	 Mediterranean	 VSs	 correctly	 retrieved	
as	 preponderant	 the	 predictors	 upon	 which	 HS	 was	 simulated	
(Appendix	 Figure	 S9).	 Indeed,	 bio1	 attained	 the	 far	 highest	 im-
portance	 score	 (median	 Std_Imp	=	 75%–	80%)	 for	 the	 Alpine	 VS,	
followed	 by	 bio8	 (median	 Std_Imp	=	 5%–	10%),	 as	 well	 as	 for	 the	
Mediterranean	 one	 (median	 Std_Imp	=	 55%–	60%),	 here	 followed	
by	bio18	 (median	Std_Imp	=	 15%–	20%).	Median	Std_Imp	of	bio18	
reported	 for	 the	 Mediterranean	 VS	 from	 Wclim2.1-	based	 HSMs	
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was	higher	than	that	resulting	from	Wclim1.4-	based	models	across	
the	 grid	 resolutions,	 suggesting	 a	 better	 characterization	 of	 the	
simulated	 climate-	occurrence	 relationships	within	Wclim2.1-	based	
HSMs.	Differently,	bio19	emerged	as	the	preponderant	predictor	for	
the	Generalist	(median	Std_Imp	=	35%–	50%)	and	Restricted	(median	
Std_Imp	=	20%–	45%)	VSs,	with	Wclim1.4-	based	HSMs	overestimat-
ing	its	importance	compared	to	Wclim2.1-	based	ones.	The	fact	that	
the	variables	mostly	 contributing	 to	 the	PCA	axes	 to	which	 these	

latter	 VSs	 were	 primarily	 associated	 (bio4	 for	 the	 Generalist	 VS,	
bio2	for	the	Restricted	one;	Appendix	Figure	S4)	obtained	far	lower	
Std_Imp	than	bio19	across	all	the	Worldclim	version	*	grid	resolution	
combinations	suggests	that	 the	HSMs	fitted	for	these	VSs	did	not	
properly	model	their	simulated	climate-	occurrence	relationships.

Although	 overall	 correlation	 between	 median	 predicted	 HS	
and	simulated	occurrence	probability	was	high	for	all	the	VSs	ex-
cept	 the	 Restricted	 one	 (Appendix	 Table	 S2),	 median	 predicted	

F I G U R E  4 Spatially	explicit	difference	
between	median	Habitat	Suitability	
(HS)	predicted	by	the	HSMs	fitted	using	
Worldclim	2.1-	based	variables	(and	
selected	for	the	projection	phase)	and	
median	HS	predicted	by	the	HSMs	fitted	
using	Worldclim	1.4-	based	variables	(and	
selected	for	the	projection	phase),	for	the	
(a)	Alpine	and	(b)	Mediterranean	VSs
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HS	 did	 not	 tightly	 approach	 the	 1:1	 correspondence	with	 simu-
lated	occurrence	probability	for	any	VS	*	Worldclim	version	*	grid	
resolution	 combination	 (Figures	 6	 and	 7).	 Nonetheless,	 the	
Alpine	 and	 Mediterranean	 VSs	 showed	 a	 closer	 predicted-	
simulated	 correspondence	 than	 the	 Generalist	 and	 Restricted	
ones,	 as	 a	 noticeably	 higher	 number	 of	 pixels	with	 high	median	
HS	 (although	HSmax =	 0.7–	0.8)	 corresponding	 to	 high	 simulated	
occurrence	 probability,	 as	well	 as	 of	 pixels	with	 low	median	HS	

corresponding	 to	 low	 occurrence	 probability,	 appeared	 for	 the	
formers.	The	Restricted	VS	showed	very	low	predicted-	simulated	
correspondence	for	Wclim2.1-	based	projections,	and	almost	none	
for	 Wclim1.4-	based	 ones	 (Figure	 7b).	 Wclim2.1-	based	 median	
projections	 showed	 lower	 overdispersion	 of	 pixels	 around	 the	
1:1	line	than	Wclim1.4-	based	ones	at	2.5	min,	particularly	for	the	
Mediterranean	VS	(Figure	6b),	while	this	difference	became	milder	
at	5	min	and	10	min.

F I G U R E  5 Spatially	explicit	difference	
between	median	Habitat	Suitability	
(HS)	predicted	by	the	HSMs	fitted	using	
Worldclim	2.1-	based	variables	(and	
selected	for	the	projection	phase)	and	
median	HS	predicted	by	the	HSMs	fitted	
using	Worldclim	1.4-	based	variables	(and	
selected	for	the	projection	phase),	for	the	
(a)	Generalist	and	(b)	Restricted	VSs
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Between-	version	differences	in	median	predicted	HS	under	the	
considered	 future	 scenarios	were	 negligible	 for	 the	 Alpine	 VS	 re-
gardless	of	grid	resolution	(Figure	8a),	while	Wclim2.1-	based	median	
HS	exceeded	Wclim1.4-	based	one	 (median	difference	=	 0.15–	0.2)	
for	 the	Mediterranean	VS	across	all	 the	 timeframe	*	GCM	*	emis-
sion	scenario	*	grid	resolution	combinations	(Figure	8b).	Wclim2.1-	
based	median	projections	mainly	 underpredicted	HS	 compared	 to	
Wclim1.4-	based	ones	under	all	 future	scenarios	 for	 the	Generalist	
VS	 (Figure	9a),	while	 the	opposite	emerged	for	 the	Restricted	one	
(Figure	9b),	although	variability	 in	between-	version	difference	val-
ues	 was	 noticeably	 higher	 for	 these	 VSs	 than	 for	 the	 Alpine	 and	
Mediterranean	ones.	Some	discrepancies	among	the	selected	GCMs	
emerged	 for	 the	Alpine	 and	Generalist	VSs,	with	 IPSL	 resulting	 in	
between-	version	 differences	 somewhat	 diverging	 from	 the	 other	
GCMs.	 Moreover,	 in	 2070,	 between-	version	 differences	 for	 the	
Mediterranean	and	Restricted	VSs	were	higher	under	Scen8.5	than	
under	 Scen4.5	 within	 most	 GCM	 *	 grid	 resolution	 combinations.	

Focusing	on	grid	resolution,	between-	version	differences	under	fu-
ture	climate	were	higher	for	5	min	than	for	2.5	min	and	10	min	when	
looking	at	the	Mediterranean	and	Generalist	VSs,	while	higher	dif-
ferences	emerged	for	10	min	considering	the	Restricted	VS.

3.5  |  Importance of factors

When	included	as	factor	in	RF	models	fitted	with	either	predicted-	
simulated	r	or	future	between-	version	differences	as	response	varia-
ble,	the	considered	VS	attained	by	far	the	highest	average	importance	
score	 (94.7%	±	 3.7%	 for	 predicted-	simulated	 r;	 96.5%	±	 0.2%	 for	
between-	version	 differences	 in	 future	 projections).	 When	 fit-
ting	 RF	models	 for	 each	VS	 separately,	 average	 importance	 score	
of	Worldclim	 version	 was	 clearly	 higher	 than	 that	 of	 grid	 resolu-
tion,	 considering	 Std_Imp	 (Figure	 10a)	 or	 predicted-	simulated	 r 
(Figure	10b)	as	response	variable,	for	all	the	VSs	except	the	Alpine	

F I G U R E  6 Hexagonal	heatmaps	(width	of	each	hexagonal	cell	=	0.04)	showing,	for	each	Worldclim	version	*	Grid	resolution	combination,	
the	degree	of	correspondence	between	Simulated	Occurrence	Probability	and	Median	predicted	HS	for	the	(a)	Alpine	and	(b)	Mediterranean	
VSs.;	for	each	hexagonal	cell,	log10	of	the	number	of	pixels	whose	occurrence	probability-	median	HS	pair	of	values	fall	within	the	cell	itself	is	
reported	in	a	blue-	to-	yellow	scale;	the	dot-	dashed	diagonal	red	line	shows	theoretical	1:1	predicted-	simulated	correspondence;	the	dashed	
black	line	represents	smoothed	regression	line	from	the	linear	model	Simulated	Occurr.	Prob.	~	Median	predicted	HS,	summarizing	the	trend	
emerging	from	the	heatmap
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one;	 for	 this	 latter,	 grid	 resolution	 appeared	more	 important	 than	
Worldclim	version	for	predicted-	simulated	r,	while	the	opposite	re-
sulted	for	Std_Imp.	Finally,	grid	resolution	emerged	for	all	the	VSs	as	
the	preponderant	factor	influencing	between-	version	differences	in	
median	HS	under	 future	climate,	closely	 followed	by	GCM	for	 the	
Alpine	and	Generalist	VSs	(Figure	10c).

4  |  DISCUSSION

The	pervasive	use	of	Worldclim	during	the	last	fifteen	years	to	esti-
mate	climate-	occurrence	relationships	for	a	huge	variety	of	taxa	calls	
for	the	need	to	assess	magnitude,	location,	and	drivers	of	prediction	
discrepancies	between	models	fitted	using	climate	surfaces	derived	
from	the	first	version	of	this	database	(Worldclim	1.4)	and	those	re-
lying	upon	the	recently	updated	one	(Worldclim	2.1).	For	instance,	
in	recent	years	geographical	predictions	from	HSMs	 implementing	

Wclim1.4-	derived	climate	surfaces	have	frequently	guided,	at	least	
partially,	 the	 identification	 of	 areas	 deserving	 attention	 as	 poten-
tially	suitable	for	rare	and	endangered	species	(Console	et	al.,	2020;	
Forrest	et	al.,	2012;	Iannella	et	al.,	2018;	Marini	et	al.,	2009)	or,	on	
the	other	hand,	for	invasive	ones	(Cerasoli	et	al.,	2019;	Di	Febbraro	
et	 al.,	 2019;	 Ficetola	 et	 al.,	 2009).	 In	 case	 prioritization	measures	
are	conceived	based	on	these	predictions,	a priori	knowledge	about	
which	areas	will	show	the	greatest	changes	in	predicted	suitability	
in	case	the	updated	Worldclim	variables	are	used	would	be	useful	to	
refine	such	measures.	Indeed,	although	climate	databases	based	on	
quasi-	mechanistic	downscaling	such	as	CHELSA	(Karger	et	al.,	2017)	
or	remote	sensing	like	MERRACLIM	(G.	C.	Vega	et	al.,	2017)	may	be	
more	accurate	than	Worldclim	in	regions	with	scarce	meteorological	
stations	(e.g.	polar	regions	or	tropical	rainforests)	(Morales-	Barbero	
&	Vega-	Álvarez,	2019),	Worldclim	interpolated	climate	surfaces	rep-
resent	an	invaluable	data	source	in	station-	richer	regions	as	North	
America,	 south-	eastern	 Africa	 and	most	 of	 the	 Palearctic	 (Fick	 &	

F I G U R E  7 Hexagonal	heatmaps	(width	of	each	hexagonal	cell	=	0.04)	showing,	for	each	Worldclim	version	*	Grid	resolution	combination,	
the	degree	of	correspondence	between	Simulated	Occurrence	Probability	and	Median	predicted	HS	for	the	(a)	Generalist	and	(b)	Restricted	
VSs.;	for	each	hexagonal	cell,	log10	of	the	number	of	pixels	whose	occurrence	probability-	median	HS	pair	of	values	fall	within	the	cell	itself	is	
reported	in	a	blue-	to-	yellow	scale;	the	dot-	dashed	diagonal	red	line	shows	theoretical	1:1	predicted-	simulated	correspondence;	the	dashed	
black	line	represents	smoothed	regression	line	from	the	linear	model	Simulated	Occurr.	Prob.	~	Median	predicted	HS,	summarizing	the	trend	
emerging	from	the	heatmap
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Hijmans,	2017).	Here,	we	investigated	how	niche	characteristics	of	
the	target	species,	grid	resolution	and	projection	scenarios	influence	
between-	version	differences	in	Worldclim-	based	HSMs.

Limiting	 the	 “virtual	 sampling”	 to	 a	 buffer	 around	 occurrence	
areas	 for	 the	 three	 climate-	constrained	 VSs	 permitted	 to	 obtain	
sample	prevalences	matching	the	“safety	range”	(i.e.	0.1–	0.9)	recom-
mended	by	Jiménez-	Valverde	(2021)	to	get	unbiased	estimations	of	
model	discrimination	capacity	with	presence-	absence	data.	Thus,	we	
can	be	confident	that	the	HSMs	selected	for	the	model	projection	
phase,	and	from	which	between-	version	differences	in	predicted	HS	
were	assessed	under	current	and	future	time	horizons,	were	actually	
the	ones	attaining	a	good	predictive	performance.

Contrasting	 the	 Generalist	 VS	 with	 the	 others,	 considerably	
fewer	 HSMs	 attained	 sufficient	 discrimination	 performance	 to	
enter	the	projection	phase;	this,	coupled	with	higher	RMSE,	further	
corroborates	 mounting	 evidence	 about	 the	 difficulties	 in	 model-
ing	 the	 ecological	 requirements	 of	 euryoecious	 species	 (Cerasoli	
et	al.,	2017;	Connor	et	al.,	2018;	Santini	et	al.,	2021).	On	the	other	
hand,	 the	degree	 to	which	our	HSMs	properly	estimated	 the	 sim-
ulated	 climate-	occurrence	 relationships	 varied	 among	 the	 three	
climate-	constrained	VSs:	indeed,	the	HSMs	fitted	for	the	Alpine	and	

Mediterranean	VSs	succeeded	in	isolating	the	variables	influencing	
their	 suitability	while	 the	models	 obtained	 for	 the	 Restricted	 one	
underestimated	the	influence	of	the	variables	(especially	bio2)	more	
directly	favoring	its	occurrence.	Such	difference	translated	into	the	
relatively	high	correspondence	between	median	predicted	suitabil-
ity	 and	 simulated	 occurrence	 probability	 emerging	 for	 the	 Alpine	
and	Mediterranean	VSs	and	into	the	almost	absent	correspondence	
characterizing	the	Restricted	one.	These	patterns	may	be	because	
suitability	for	the	Restricted	VS	was	simulated	as	dependent	upon	
a	 combination	 of	 climatic	 conditions	 very	 poorly	 represented	 in	
Europe,	resulting	in	the	lowest	prevalence	among	all	the	VSs,	both	
across	Europe	and	within	Pres-	Abs	samples;	this	in	turn	forced	the	
corresponding	 HSMs	 to	 estimate	 its	 climate-	occurrence	 relation-
ships	with	few	presences	available	and,	arguably,	to	widely	extrapo-
late when projected.

Generally,	median	predicted	suitability	more	closely	approached	
simulated	occurrence	probability	when	Wclim2.1-	derived	variables	
were	used.	This	was	somehow	expected,	as	occurrence	probability	
for	our	VSs	was	simulated	using	Wclim2.1-	derived	climate	surfaces,	
at	2.5	min	resolution,	as	reference	 layers.	However,	 this	between-	
version	difference	was	not	equally	apparent	for	all	the	VSs:	while	it	

F I G U R E  8 Boxplots	showing	between-	
version	difference	(HSMs	from	Worldclim	
2.1	-		HSMs	from	Worldclim	1.4)	in	median	
HS	computed	from	HSMs'	projections	to	
the	considered	future	climatic	scenarios	
for	the	(a)	Alpine	and	(b)	Mediterranean	
VSs.	Grey	dots	represent	outliers
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was	substantial	for	the	Mediterranean	VS,	in	the	case	of	the	Alpine	
one	grid	resolution	contributed	more	than	Worldclim	version	in	de-
termining	closeness	of	median	predictions	to	simulated	occurrence	
probability.	 Interestingly,	 the	 predicted-	simulated	 correspondence	
did	not	worsen	for	any	VS	at	increasing	grain	size	(i.e.,	at	5	min	and	
10	min).	 This	 result	 partially	 contrasts	 with	 previous	 studies	 sug-
gesting	a	deterioration	of	HSMs'	predictions	when	fitted	at	coarser	
spatial resolution than that at which real- world species react to en-
vironmental	changes	(Seo	et	al.,	2009;	Vale	et	al.,	2014)	or	at	which	
VSs'	suitability	patterns	are	simulated	(Connor	et	al.,	2018),	although	
these	 works	 also	 highlighted	 that	 such	 deterioration	 greatly	 vary	
across	species	and	ratios	of	coarser-	to-	correct	grid	resolutions.

Between-	version	local	correlation	in	values	of	the	selected	bio-
climatic	 variables	 was	 relatively	 high	 across	 most	 of	 Europe	 con-
sidering	yearly	(i.e.,	bio1)	and	seasonal	 (i.e.,	bio8,	bio18,	and	bio19)	
temperature	 and	 precipitation	 averages,	 while	 climate	 surfaces	
from	 the	 two	Worldclim	 versions	 showed	 a	 number	 of	 lowly	 cor-
related	areas	for	variables	representing	diurnal	(i.e.,	bio2)	or	yearly	
(i.e.,	 bio4	 and	 bio15)	 variability,	 particularly	 at	 2.5	 arc-	minutes.	
This	 likely	 explains	 why	 model	 projections	 resulted	 in	 a	 major	
portion	 of	 Europe	 showing	 diverging	 suitability	 for	 the	Restricted	

(primarily	responding	to	bio2)	and	Generalist	 (mainly	associated	to	
bio4)	VSs,	while	between-	version	discrepancies	for	the	Alpine	and	
Mediterranean	VSs	mainly	involved	scattered	regions	characterized	
by	high	occurrence	probability	for	these	latter	and	corresponding	to	
relatively	extreme	average	temperature/precipitation	values.	Thus,	
our	 results	 show	 that,	 at	 the	 European	 scale,	 HSMs	 fitted	 using	
Wclim2.1-	derived	climate	surfaces	may	produce	considerably	diver-
gent	spatial	predictions	compared	to	models	fitted	using	Worldclim	
1.4	 for	 species	whose	 climate-	occurrence	 relationships	 are	 driven	
by	variability	 in	temperature/precipitation	regimes.	Differently,	for	
species	mainly	 responding	 to	yearly	or	 seasonal	average	 tempera-
ture/precipitation	trends	attention	should	be	primarily	paid	to	areas	
showing	extreme	values	(e.g.	mountainous	massifs	for	bio1,	south-
ern	Europe	for	bio18).

Looking	 at	 future	 scenarios,	 differences	 in	 climate-	occurrence	
relationships	 guided	 between-	version	 mismatch	 in	 predicted	 suit-
ability:	 predictions	 derived	 from	 the	 two	Worldclim	 versions	 ap-
pear	convergent	for	species	inhabiting	mountainous	areas	and	high	
latitudes	 (Alpine	VS),	Wclim2.1-	derived	HSMs	mainly	underpredict	
suitability	 compared	 to	 Wclim1.4-	derived	 ones	 for	 euryoecious	
species	 (Generalist	 VS),	 while	 the	 opposite	 emerge	 for	 species	

F I G U R E  9 Boxplots	showing	between-	
version	difference	(HSMs	from	Worldclim	
2.1	-		HSMs	from	Worldclim	1.4)	in	median	
HS	computed	from	HSMs'	projections	
to	the	different	considered	future	
climatic	scenarios	for:	(a)	Generalist	VS;	
(b)	Restricted	VS.	Grey	dots	represent	
outliers
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inhabiting	 southern	 Europe	 (Mediterranean	 and	 Restricted	 VSs).	
Interestingly,	 HSMs	 fitted	 at	 5	 min	 for	 the	 Mediterranean	 and	
Generalist	 VSs	 led	 to	 higher	 between-	version	 differences	 in	 fu-
ture	 suitability	 compared	 to	models	 fitted	 at	 2.5	min	 and	10	min,	
while	higher	differences	 resulted	at	10	min	 for	 the	Restricted	VS.	
Since	 across-	resolution	 differences	 did	 not	 clearly	 emerge	 under	
present	 conditions,	 these	 results	 suggest	 that	 possible	 changes	 in	
correlation	 among	 predictors	 under	 future	 scenarios	 (Mesgaran	
et	al.,	2014;	Zurell	et	al.,	2012)	may	interact	with	grid	resolution	in	

influencing	prediction	discrepancies	between	models	derived	from	
the	two	Worldclim	versions.	Moreover,	the	overall	change	in	the	sign	
of	 between-	version	 differences	 for	 the	 Restricted	 VS	 contrasting	
the	 current	 scenario	 (Wclim1.4-	derived	HS	higher	 than	Wclim2.1-	
derived	one	across	wide	extents	of	eastern	Europe)	with	the	future	
ones	(Wclim1.4-	derived	HS	lower	than	Wclim2.1-	derived	one	within	
most	of	the	pixels	sampled	across	Europe)	suggests	that	discrepant	
changes	between	the	two	Worldclim	versions	in	the	values	of	some	
climate	 surfaces	 from	 current	 to	 future	 scenarios,	 combined	with	

F I G U R E  1 0 Average	(± standard 
deviation,	red	bars)	importance,	for	
each	VS,	of	the	considered	factors	upon	
modelling	outcomes,	computed	through	
the	permutation-	based	(n =	5)	procedure	
implemented	in	the	‘biomod2’	R	package	
and	applied	to	Random	Forests	regression	
models	fitted	with	response	variable	set	
to:	(a)	standardized	importance	scores	of	
input	variables	within	the	HSMs	exceeding	
the	chosen	AUC	and	TSS	thresholds;	(b)	
correlation	between	median	predicted	HS	
and	the	simulated	occurrence	probability	
of	the	considered	VS;	(c)	between-	version	
differences	in	median	predicted	HS	under	
the	considered	future	climatic	scenarios
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the	 presumably	 extensive	 extrapolation	 that	 the	HSMs	 faced	 due	
to	the	limited	calibration	area,	made	predictions	for	this	VS	partic-
ularly	 sensitive	 to	 the	 chosen	 climate	data	 source.	Translated	 into	
real-	world	situations,	this	result	should	further	warn	about	the	need	
to	attentively	analyze	predictions	of	 future	potential	distributional	
shifts	from	climate-	based	HSMs	fitted	for	currently	narrow-	ranging	
species	(Santini	et	al.,	2021).	Quite	reassuringly,	neither	the	specific	
emission	 scenario	 nor	 the	 chosen	 GCMs	 dramatically	 influenced	
between-	version	differences	in	future	projections.

In	conclusion,	 implementing	 the	virtual	ecologist	approach,	we	
highlighted	that,	depending	primarily	on	the	species'	climatic	toler-
ances	and	secondly	on	the	grain	size	of	the	climate	surfaces,	predic-
tion	mismatches	between	HSMs	fitted	on	bioclimatic	variables	from	
the	two	Worldclim	versions	considerably	vary	across	Europe,	pro-
viding	useful	 information	 to	 re-	evaluate	 results	 of	 previous	works	
based	 on	Worldclim	 data.	We	 invite	 researchers	 to	 replicate	 and	
possibly	 improve,	 for	 instance	 including	 also	 instances	of	 species-	
climate	disequilibrium,	our	simulations	within	other	continents	to	as-
sess	if	our	findings	change	under	different	baseline	climate	gradients	
and	density	of	meteorological	stations.
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