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Abstract
The influence of climate on the distribution of taxa has been extensively inves-
tigated in the last two decades through Habitat Suitability Models (HSMs). In this 
context, the Worldclim database represents an invaluable data source as it provides 
worldwide climate surfaces for both historical and future time horizons. Thousands 
of HSMs-based papers have been published taking advantage of Worldclim 1.4, the 
first online version of this repository. In 2017, Worldclim 2.1 was released. Here, 
we evaluated spatially explicit prediction mismatch at continental scale, focusing on 
Europe, between HSMs fitted using climate surfaces from the two Worldclim versions 
(between-version differences). To this aim, we simulated occurrence probability and 
presence-absence across Europe of four virtual species (VS) with differing climate-
occurrence relationships. For each VS, we fitted HSMs upon uncorrelated bioclimatic 
variables derived from each Worldclim version at three grid resolutions. For each fac-
tor combination, HSMs attaining sufficient discrimination performance on spatially 
independent test data were projected across Europe under current conditions and 
various future scenarios, and importance scores of the single variables were com-
puted. HSMs failed in accurately retrieving the simulated climate-occurrence relation-
ships for the climate-tolerant VS and the one occurring under a narrow combination 
of climatic conditions. Under current climate, noticeable between-version prediction 
mismatch emerged across most of Europe for these two VSs, whose simulated suit-
ability mainly depended upon diurnal or yearly variability in temperature; differently, 
between-version differences were more clustered toward areas showing extreme 
values, like mountainous massifs or southern regions, for VSs responding to average 
temperature and precipitation trends. Under future climate, the chosen emission sce-
narios and Global Climate Models did not evidently influence between-version pre-
diction discrepancies, while grid resolution synergistically interacted with VSs' niche 
characteristics in determining extent of such differences. Our findings could help in 
re-evaluating previous biodiversity-related works relying on geographical predictions 
from Worldclim-based HSMs.
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1  |  INTRODUC TION

Climate shapes the distribution of organisms at regional-to-global 
scales (Newbold, 2018; Thuiller et al., 2004) as it constrains the 
fundamental niche of species (Pearman et al., 2008). The need to 
quantify climate-occurrence relationships, which characterizes disci-
plines like macroecology and phylogeography, has boosted research 
efforts on predicting the response of species to climate across space 
and time (Bellard et al., 2013; Nogués-Bravo et al., 2010).

The spread of Habitat Suitability Models (HSMs) during the last 
two decades has further expanded the toolbox aiding researchers 
in tackling questions related to climate and biodiversity (Guisan 
et al., 2017). Correlative HSMs, also commonly named Species 
Distribution Models (SDMs) or Ecological Niche Models (ENMs), 
estimate the relationships between the target biological entity 
(e.g. species or populations) and a set of abiotic and/or biotic vari-
ables (predictors), based on data representing presence, presence-
absence or presence-background localities (Elith & Leathwick, 
2009). Once estimated, such relationships are usually projected 
onto the geographical space, either limiting predictions to the cali-
bration area (interpolation) or also predicting into new regions and 
past/future time horizons (extrapolation). HSMs rely upon some 
fundamental assumptions, notably species-environment equilib-
rium and appropriate coverage of the species' realized niche within 
calibration data (Araújo & Rahbek, 2006; Cerasoli et al., 2021), 
which question their applicability in situations like recent range ex-
pansion by alien species or rapid niche shifts (Pearman et al., 2008). 
Nonetheless, thoughtfully implemented HSMs represent a power-
ful tool to investigate the influence of climate on species' range 
dynamics (Cerasoli et al., 2020; Iannella et al., 2017, 2020; Vega 
et al., 2010).

To this aim, availability of gridded spatial layers representing cli-
matic conditions across the study area (i.e. climate surfaces) is es-
sential. Among the various sources of climate data, the Worldclim 
database has represented a breakthrough as it has provided eco-
logical modellers with worldwide climate surfaces at various grid 
resolutions (from 30  arc-seconds to 10  arc-minutes) for “current” 
conditions (averaging between 1950s and early 2000s) as well 
as for past (late Pleistocene to middle Holocene) and future (up 
to 2100) time horizons. The first version of this database was re-
leased in 2005 (Hijmans et al., 2005) and successively stabilized in 
the Worldclim 1.4 online repository, including climate surfaces de-
rived from interpolation of monthly precipitation and temperature 
data recorded by thousands of meteorological stations around the 
globe (excluding Antarctica). These baseline climate surfaces were 
used in the following years to downscale the climate projections to 
past and future time horizons performed within the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) of the Working Group on 

Coupled Modeling. Worldclim was updated in 2017 to version 2.1 
(Fick & Hijmans, 2017), which benefited from data recorded by a 
higher number of meteorological stations, particularly at high lat-
itudes and elevations, and included climate surfaces representing 
solar radiation, windspeed and vapour pressure in addition to the 
ones available in Worldclim 1.4. Subsequently, baseline climate sur-
faces from Worldclim 2.1 were used to downscale the projections 
to future alternative scenarios derived within the Coupled Model 
Intercomparison Project Phase 6 (CMIP6). While CMIP5 future 
scenarios comprised four Representative Concentration Pathways 
(RCPs) depicting different trajectories of greenhouse gas emissions 
resulting in increased radiative forcing compared to current values 
(Moss et al., 2010), CMIP6 extended the range of alternative scenar-
ios by coupling RCPs with a newly developed framework of Shared 
Socio-Economic Pathways (SSPs), focused on possible socioeco-
nomic developments influencing adaptation and mitigation policies 
(Riahi et al., 2017). The stabilized version of the Worldclim 2.1 repos-
itory, including current and future climate surfaces, was released in 
January 2020.

The Worldclim database has been vastly implemented in 
Habitat Suitability (HS) Modeling to estimate climate influences 
on the realized niche of species and predict possible distributional 
shifts driven by climate change: as an example, a simple query of 
“Worldclim” +  “SDMs” (SDMs being the most common labeling of 
HSMs projected onto the geographical space) in Google Scholar 
(performed on 27 May 2021) delivered 3550 results, 2660 of which 
published up to 2019 (i.e. before Worldclim 2.1 was released). Source 
of climate data is an important driver of uncertainty in HSMs' pre-
dictions, according to papers contrasting models fitted using various 
global climate datasets (Baker et al., 2016; Morales-Barbero & Vega-
Álvarez, 2019; Watling et al., 2014) or global datasets versus regional 
ones (Jiménez-Valverde et al., 2021) as well as versus fine-scale 
predictors derived from remote sensing or in situ measurements 
(Deblauwe et al., 2016; Lembrechts et al., 2019). Nonetheless, to the 
best of our knowledge, no research has so far investigated geograph-
ical discrepancies in predictions from climate-based HSMs fitted 
using Worldclim 2.1 versus Worldclim 1.4: assessing the geograph-
ical arrangement and magnitude of such differences would greatly 
help to critically evaluate results from the huge number of HSMs-
based studies conducted using Worldclim 1.4 in the light of the re-
cent advances in climate modeling. To fill this gap of information, we 
analyzed spatially explicit prediction mismatch between HSMs fitted 
using bioclimatic variables from the two Worldclim versions at the 
continental scale, focusing on Europe. Moreover, as source of pre-
dictors represents one of many factors contributing to uncertainty 
in model predictions (Connor et al., 2018; Lobo & Tognelli, 2011; 
Saupe et al., 2012), we also investigated if grid resolution of climate 
surfaces, niche characteristics of the target entity, and the future 
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scenario considered for HSMs' projection may significantly affect 
prediction mismatch. To this aim, differently from most of previous 
research pinpointing the effects of climate data sources on HSMs 
fitted using occurrences of real-world species, we implemented the 
so-called “virtual ecologist approach” (Zurell et al., 2010). The main 
advantage of this approach in HSMs-related studies is the possibility 
of simulating the environment-occurrence relationships one wants 
to investigate, the equilibrium or disequilibrium of the virtual spe-
cies with the environment, the sampling protocol and possible biases 
therein: a priori control of these conditions permits the evaluation of 
their influence, and that of various modeling choices, upon HSMs' 
outcomes with lower risk of drawing conclusions affected by con-
founding factors (Meynard et al., 2019).

Here, we first simulated occurrence probability across Europe of 
four virtual species differing in climate-occurrence relationships and 
niche breadth. Then, for each virtual species, we fitted HSMs for nu-
merous artificial presence-absence datasets using climate surfaces 
from Worldclim 1.4 and Worldclim 2.1 at three grid resolutions; the 
obtained models were subsequently projected to the European ex-
tent under current climate and various future scenarios. Finally, we 
assessed overall correlation and spatially explicit mismatch between 
predictions of HSMs obtained using the two Worldclim versions, 
along with correspondence between model predictions and simu-
lated occurrence probabilities, evaluating possible effects of grid 

resolution, peculiarities of the simulated species and alternative pro-
jection scenarios.

2  |  METHODS

A schematic representation of the steps leading from the collection, 
processing, and selection of the climate surfaces to the generation 
of the presence-absence datasets for each virtual species is pro-
vided in Figure 1, while a similar flowchart is reported in Figure 2 
to summarize the steps taken to fit, evaluate, select, and project the 
HSMs. Details about the entire modeling workflow are provided in 
the sections below.

2.1  |  Bioclimatic variables

Raster layers of worldwide climate surfaces representing 19 
temperature- and precipitation-related bioclimatic variables were 
downloaded from the Worldclim online repository (https://www.
world​clim.org/data/index.html) for both Worldclim 1.4 (Hijmans 
et al., 2005) and Worldclim 2.1 (Fick & Hijmans, 2017), each at three 
grid resolutions: 2.5, 5, and 10 arc-minutes (hereafter 2.5, 5, and 
10 min), respectively, corresponding to pixels whose sides roughly 

F I G U R E  1 Flowchart resuming the considered combinations of climate surfaces (Worldclim versions, grid resolutions, future scenarios), 
and the steps leading from variable processing and selection to the simulation of occurrence probability and presence-absence patterns 
of the four virtual species. Green boxes show the steps involving climate surfaces derived from Worldclim 1.4, while golden boxes show 
the steps involving climate surfaces derived from Worldclim 2.1. Grid res. = resolution (arc-minutes) of the gridded climate surfaces; 
RCPs = Representative Concentration Pathways; SSPs = Shared Socio-Economic Pathways; GCMs = Global Climate Models; VIF = stepwise 
Variance Inflation Factor analysis; nb.points = number of background points on which PCA is performed

https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
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measure 5, 10, and 20 km at the equator. Worldclim climate sur-
faces referring to “current” conditions derive from interpolation 
of monthly meteorological data averaged across 30 years (1960–
1990 in Worldclim 1.4, 1970–2000 in Worldclim 2.1). Climate sur-
faces representing possible future conditions were downloaded, 
at 2.5, 5, and 10 min for both Worldclim versions, choosing two 
alternative hypotheses about global policies characterizing the 
next decades: the former, represented by the RCP4.5 scenario in 
Worldclim 1.4 (hereafter Wclim1.4) and by the SSP2-4.5 one in 
Worldclim 2.1 (hereafter Wclim2.1; Riahi et al., 2017; Thomson 
et al., 2011), assumes some degree of international cooperation 
to limit greenhouse gas emissions and enhance exploitation of 
renewable energy sources, leading to a stabilized radiative forc-
ing of 4.5 W m−2 in 2100; the latter, represented by RCP8.5 in 
Wclim1.4 and by SSP5-8.5 in Wclim2.1 (Riahi et al., 2011, 2017), 

instead assumes increasing emissions from continued exploitation 
of fossil fuels, limited technological advancement and almost no 
coordinate efforts to mitigate climate change, resulting in non-
stabilized radiative forcing of at least 8.5 W m−2 in 2100. For the 
sake of simplicity, hereafter we will refer to these two alternative 
emission scenarios as “Scen4.5” and “Scen8.5,” respectively, for 
both Worldclim versions. For each scenario, we considered two 
future timeframes, 2050 and 2070, respectively corresponding to 
average projections across 2041–2060 and 2061–2080. Previous 
works (Garcia et al., 2012; Porfirio et al., 2014; Stralberg et al., 
2015) showed that the specific Global Climate Models (GCMs) 
used to project the climate-occurrence relationships estimated 
under present conditions may noticeably affect predicted distri-
butional shifts. To account for the possible effect of the choice 
of GCMs on prediction mismatch between Wclim1.4-based 

F I G U R E  2 Flowchart resuming the 
algorithmic workflow implemented to 
analyse, for each virtual species, between-
version differences in Worldclim-based 
HSMs' predictions. VS = virtual species; 
size = number of records for each 
sample; Worldclim vers. = version of 
the Worldclim database (1.4 or 2.1); 
Grid res. = resolution (arc-minutes) of 
the gridded climate surfaces; Moran's 
I = Moran's index; SAC = Spatial 
Autocorrelation range; checkerboard 
SB = checkerboard spatial blocking; 
CV = cross-validation; HSM = Habitat 
Suitability Model; EM = Ensemble 
Model; GCMs = Global Climate Models; 
Scen. = emission scenario
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HSMs and Wclim2.1-based ones, we downloaded, for each grid 
resolution  *  scenario  *  timeframe combination, climate surfaces 
derived from four GCMs: for Wclim1.4 we chose BCC-CSM1.1, 
CNRM-CM5, IPSL-CM5A-LR, and MIROC-ESM; for Wclim2.1 we 
selected updated GCMs from the same modeling groups, namely 
BCC-CSM2-MR, CNRM-CM6, IPSL-CM6A-LR, and MIROC-ESL2. 
Hereafter, regardless of the considered Worldclim version, we will 
refer to these GCMs simply according to the corresponding mod-
eling group: the Chinese BCC (Beijing Climate Center); the French 
CNRM (Centre National de Recherches Météorologiques) and IPSL 
(Institute Pierre-Simon Laplace); the Japanese MIROC (Model for 
Interdisciplinary Research On Climate).

Using the “raster” (Hijmans, 2020) R (R Core Team, 2020) 
package, current and future climate surfaces were cropped to 
the European geographical boundaries (spatial extent: Longitude 
24.55°O–61.68°E, Latitude 34.56°N–73.43°N). All the climate sur-
faces were then projected from the original WGS84 geographic co-
ordinate system to the ETRS89-LAEA projected one to get equally 
sized raster cells across the European extent.

As multicollinearity among predictors may substantially affect 
HSMs, biasing the fitted environment-occurrence relationships and 
the estimated importance scores of the single predictors (Dormann 
et al., 2013), we used the stepwise Variance Inflation Factor (VIF) 
analysis implemented in the “usdm” R package (Naimi et al., 2014) 
to filter the initial set of nineteen bioclimatic variables: the variables 
not exceeding VIF = 10 (Guisan et al., 2006; Werkowska et al., 2017) 
for more than half of the Worldclim version * grid resolution com-
binations were retained to simulate the virtual species and fit the 
HSMs.

Values of the selected temperature-related variables from 
Wclim1.4 were divided by 10, because in Wclim1.4 temperature is 
reported as degree celsius * 10 while in Wclim2.1 it is reported as 
“plain” degree celsius. Then, climate surfaces from Wclim1.4 were 
resampled through bilinear interpolation to match dimensions of 
Wclim2.1-derived ones, thus permitting pixel-by-pixel comparison 
across Europe of predictions from HSMs fitted using climate sur-
faces from the two Worldclim versions. Finally, for each retained 
variable, we assessed correlation between climate surfaces from 
the two versions (hereafter between-version r) in two ways. First, 
computing pairwise Pearson's r on sets of points drawn through 
regular random sampling across Europe, comparing the “original” 
layers (i.e., prior to the resampling of Wclim1.4-derived ones) from 
both Worldclim versions, as well as the resampled Wclim1.4-derived 
layers with the Wclim2.1-derived ones. Second, computing local 
Pearson's r across the entire European extent through a focal neigh-
borhood analysis contrasting the resampled Wclim1.4-derived lay-
ers with the Wclim2.1-derived ones.

2.2  |  Virtual species

Taking advantage of the “virtualspecies” R package (Leroy 
et al., 2016), we simulated HS across Europe of four virtual species 

(hereafter VS). One of the VSs represents a climate-tolerant species 
(“Generalist”), while the remaining three correspond to different 
typologies of climate-constrained species: (i) a cold-adapted spe-
cies (“Alpine”), whose distribution is limited to mountainous areas 
in southern Europe while being wider at high latitudes; (ii) a species 
preferring warm and dry conditions, thus mainly occurring within 
the Mediterranean European regions (“Mediterranean”); (iii) a spe-
cies adapted to a poorly represented combination of climatic con-
ditions, thus occurring in narrow and geographically sparse areas 
(“Restricted”).

HS for the Alpine and Mediterranean VSs was simulated through 
customized response curves to some of the retained variables, while 
HS for the Generalist and Restricted VSs was modelled as a function 
of niche breadth within a two-dimensional gridded space resulting 
from a preliminary Principal Component Analysis (PCA) applied to 
the retained variables. Density of occurrence of the Generalist and 
Restricted VSs within the PCA-derived 2D space was estimated 
by means of the “ecospat” R package (Di Cola et al., 2017). Details 
about the functions used to simulate responses of the Alpine and 
Mediterranean VSs to the selected variables, as well as about the 
PCA performed for the Generalist and Restricted VSs, are provided 
in Appendix Note S1. The resulting HS maps were visually checked 
to ensure they matched the climate-occurrence relationships we 
intended to simulate (Meynard et al., 2019). Then, a probabilistic 
approach was used to convert, for each pixel, the HS value into a 
corresponding occurrence probability value (Figure 3a) and then into 
a presence-absence (hereafter Pres-Abs) record (Figure 3b) based on 
a logistic function: relying on a probabilistic approach rather than on 
a threshold-based one permits to avoid abrupt changes in the rela-
tionship between HS and the resulting occurrence probability (i.e. 
threshold-like responses), which are rare in real-world circumstances 
(Meynard & Kaplan, 2013). Within the logistic function used to con-
vert occurrence probability into Pres-Abs records, lower α (slope) 
and β (inflexion point) absolute values were set for the Generalist 
(α = −0.01; β = 0.4) than for the other VSs to obtain a considerably 
wider extent of occurrence for the former, thus simulating a spe-
cies adapted to a broad range of climatic conditions. The remain-
ing VSs shared the same slope value (α = −0.05), while the inflexion 
point was adjusted in a species-specific manner (Alpine: β  =  0.6; 
Mediterranean: β = 0.7; Restricted: β = 0.8), so as to get a relatively 
wide distribution for the Alpine VS at high latitudes and across the 
main European mountainous massifs, a somewhat narrower dis-
tribution for the Mediterranean one, mainly occurring in southern 
coastal areas except for some inland regions of Iberia, southern 
Italy, Greece, and Turkey, and an even narrower distribution for the 
Restricted VS (Figure 3b). The “virtualspecies” package also allows 
to limit the actual distribution of VSs to a user-defined portion of 
the occurrence area resulting from the conversion of the simulated 
HS to Pres-Abs patterns, thus mimicking species being not in equi-
librium with climate (Leroy et al., 2016). Here, following Meynard 
et al. (2019) who suggested that studies based on VSs should keep as 
simple as possible the factors not under investigation, we simulated 
VSs being in equilibrium with climate.
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F I G U R E  3 (a) Occurrence probability and (b) presence-absence maps, for each VS, resulting from the probabilistic conversion of the 
simulated HS
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For all the VSs, the baseline climate surfaces used to simulate 
HS were those from Wclim2.1 at 2.5 min. The rationale behind this 
choice was twofold. First, for the Alpine and Mediterranean spe-
cies we could also have made a separate HS simulation for each 
Worldclim version * grid resolution combination as suitable condi-
tions for these VSs were related to specific value ranges of selected 
variables via customized response functions, thus being indepen-
dent of the particular climate surfaces used; instead, doing the same 
for the Generalist and Restricted species would have produced 
different climate-occurrence relationships depending on the con-
sidered Worldclim version  *  grid resolution combination, because 
HS for these VSs was related to their overall niche breadth in the 
PCA-derived 2D space summarizing a specific set of climate sur-
faces. Second, simulating HS using the climate surfaces at 2.5 min 
as reference layers for all the VSs permitted to also assess to what 
extent HSMs fitted using coarser climate surfaces were able to cor-
rectly retrieve climate-occurrence relationships acting at a finer 
scale (Connor et al., 2018).

For each VS, 50 samples, each comprising 300 Pres-Abs points, 
were drawn from the simulated Pres-Abs maps. The effect of sample 
size on HSMs' predictive performance has been variously investi-
gated in recent years, with some studies suggesting that good ac-
curacy may be attained with at least 25–30 training presences (van 
Proosdij et al., 2016; Wisz et al., 2008) while others claiming for 
the need to collect more presence records (Hanberry et al., 2012; 
Santini et al., 2021). The sample size we chose aimed at balancing the 
need for sufficient calibration data with that of making the results 
of our simulations comparable to those researchers may get when 
fitting Worldclim-based HSMs to datasets collected for real-world 
species, which often comprise <50 presence points (Santini et al., 
2021). Except for the Generalist VS, sampling was limited to a buf-
fer area (120 km for Alpine and Mediterranean VSs, 60 km for the 
Restricted one) around a randomly chosen sample of 500 presence 
pixels. Indeed, if Pres-Abs records for the three climate-constrained 
VSs had been sampled from the entire European extent, the risk of 
generating datasets with very low sample prevalence would have 
been high, which in turn would have biased the estimation of HSMs' 
accuracy (Jiménez-Valverde, 2021). As discrimination scores on test 
data were later used to select the HSMs to be passed thourgh the 
projection phase (see Model fitting and projection), it was essential 
that such estimates were as unbiased as possible. On the other hand, 
this choice presumably introduced a certain degree of extrapolation 
in the HSMs' projection phase for the climate-constrained VSs, par-
ticularly for the Restricted one whose occurrence area was notably 
narrower (and thus likely covered fewer combinations of climatic 
conditions) than for the others. However, this was beneficial to the 
aim of our research, as we wanted to investigate between-version 
differences in Worldclim-based HSMs not only for interpolation 
tasks but also when the models have to predict outside calibration 
areas, given that this latter condition characterizes most of HSMs' 
practical applications.

Finally, we simulated unperfect detection during the “virtual 
sampling”, here again in order to make modeling conditions on our 

VSs relatively similar to those researchers working on real-world 
datasets (e.g., cryptic target species, lowly experienced observers) 
usually face: specifically, the “detection.probability” value in the 
“convertToPA” function from the “virtualspecies” package was set to 
0.75 for the Alpine, Mediterranean, and Generalist VSs, and to 0.9 
for the Restricted one. The higher detection probability chosen for 
the Restricted VS aimed at making its Pres-Abs datasets containing 
few false absences; indeed, a high number of false absences would 
have further decreased its sample prevalence, which was likely a 
priori lower than that of the other VSs given its limited extent of 
occurrence.

2.3  |  Model fitting and projection

First, for each combination of VS * retained variable * grid resolution, 
we computed between-version pairwise r on each Pres-Abs sample 
to preliminary assess whether diverging input values between the 
two Worldclim versions could differently influence the climate-
occurrence relationships estimated in the corresponding HSMs.

Then, we investigated for each VS the possible presence of spa-
tial autocorrelation (SAC) affecting the simulated Pres-Abs data. 
Indeed, occurrence records and associated environmental data 
usually show spatial dependence structures (i.e., nearby sites host 
more similar environmental conditions than distant ones) which, if 
disregarded when fitting HSMs, frequently lead to biases in the es-
timation of model parameters and prediction error (Dormann, 2007; 
Roberts et al., 2017). In particular, if HSMs are validated on randomly 
withheld data being environmentally close to the training ones due 
to underlying SAC, estimates of model predictive performance 
will be inflated (Veloz, 2009). As mentioned above, we needed our 
estimates of model accuracy to be not biased as they were later 
used for model selection. Thus, we implemented a cross-validation 
scheme which takes advantage of geographically designed blocks 
to split train and test data accounting for SAC. To this aim, we fit-
ted “full-data” HSMs (i.e., using all the Pres-Abs points from each 
sample) for each VS * Worldclim version * grid resolution combina-
tion using Generalized Additive Models (GAM; Guisan et al., 2002) 
and Generalized Boosted Regression Models (GBM), also known 
as Boosted Regression Trees (Elith et al., 2008), respectively, im-
plemented through the “gam” (Hastie, 2019) and “gbm” (Greenwell 
et al., 2020) R packages. GAM and GBM emerged in previous studies 
among the best performing algorithms in terms of both interpolation 
and extrapolation accuracy (Heikkinen et al., 2012; Qiao et al., 2019). 
Residuals of predictions from these “full-data” HSMs were then used 
to derive, through the “ncf” (Bjornstad, 2020) R package, correlo-
grams showing variations in residuals-based Moran's index (I) at 
increasing inter-point distance: the distance after which Moran's I ap-
proaches 0 indicates the SAC range (Roberts et al., 2017). In order to 
improve the spatial independence of test data from training ones, the 
size of spatial blocks should be greater than the SAC range (Roberts 
et al., 2017). Thus, a specific block size was selected for each VS by 
increasing the SAC range visually estimated from the corresponding 



8 of 20  |     CERASOLI et al.

correlograms by 100 km. Then, we used the “blockCV” (Valavi et al., 
2019) R package to design spatial blocks of the chosen block size: 
for each VS * Worldclim version * grid resolution combination, the 
obtained blocks were grouped in two folds through a checkerboard 
blocks-to-fold assignment, which ensures a more equal distribution 
of the environmental space across folds compared to contiguous 
or random blocking, avoiding excessive extrapolation when HSMs 
predict on test folds (Roberts et al., 2017). Successively, we fitted 
new HSMs upon training data from each of the two obtained folds, 
taking advantage of the “biomod2” (Thuiller et al., 2020) R platform 
and using four algorithms: in addition to GAM and GBM, we also 
used Generalized Linear Models (Guisan et al., 2002) and Random 
Forests (RF) (Breiman, 2001), two of the most widely implemented 
algorithms in HS Modeling. This way, a total of 2400 HSMs were fit-
ted for each VS (2 Worldclim versions * 3 grid resolutions * 50 Pres-
Abs samples * 4 algorithms * 2 blocks-to-folds assignments). Details 
about model parameterization are provided in Appendix Note S2. 
Although fine-tuning of the single algorithms based on the specific 
climatic niche, simulated distribution and “virtual sampling” of each 
VS could have led to a better calibration of some HSMs (Hao et al., 
2020), we chose the “biomod2” ensemble modeling platform, with 
commonly used parameterization settings for all the VSs, because 
we intended to investigate the extent and determinants of between-
version discrepancies in Worldclim-based HSMs under modeling 
protocols which have been vastly implemented in the ecological lit-
erature in the past two decades (Hao et al., 2019).

The predictive performance of HSMs on test folds was as-
sessed through: (i) Root Mean Squared Error (RMSE), measuring the 
squared mean distance between the predicted HS and the Pres-Abs 
values; (ii) Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC) plot, contrasting sensitivity (i.e., true positive 
rate) versus 1-specificity (i.e., false positive rate) along a continuous 
gradient of binarization thresholds (Fielding & Bell, 1997); (iii) True 
Skill Statistic (TSS =  sensitivity +  specificity  −  1) (Allouche et al., 
2006), computed upon single-threshold-based binarized predic-
tions. Only the HSMs attaining at least AUC = 0.7 and TSS = 0.4 
when validated on the test data were retained for the subsequent 
phases: we chose these “relaxed” thresholds to feed the HSMs' pro-
jection process with a large enough number of better-than-random 
models for all the factor (i.e., VS, Worldclim version, grid resolution) 
combinations. If two or more HSMs were retained for a sample, a 
weighted ensemble model (hereafter EMwmean) was built using the 
“wmean” algorithm in biomod2, assigning weights to the single 
HSMs based on the corresponding attained AUC score (Marmion 
et al., 2009). Standardized importance scores (hereafter Std_Imp) of 
input predictors were computed for the single retained HSM (here-
after HSMunique) or for the EMwmean, depending on the considered 
sample, through the permutation-based algorithm-independent 
procedure implemented in “biomod2” (Thuiller et al., 2009). Then, 
EMwmean and HSMunique were projected throughout Europe under 
current climatic conditions as well as under the different future 
timeframe  *  GCM  *  emission scenario combinations, and median 
predictions across the projected models were computed for each 

combination. For current projections, we assessed between-version 
differences in median predicted HS as well as Pearson's correlation 
coefficient between median predicted HS and simulated occurrence 
probability (hereafter predicted-simulated r), while for future pro-
jections we only assessed between-version differences in median 
predictions.

2.4  |  Importance of modeling factors

We assessed the relative importance of the considered factors 
upon modeling outcomes fitting RF regression models (Santini et al., 
2021), with response variable iteratively set to: (i) Std_Imp of input 
variables; (ii) predicted-simulated r computed upon 50  samples 
for each factor combination, with each sample comprising 10,000 
randomly drawn pixels; (iii) between-version differences in median 
predicted HS under future scenarios, with difference values sam-
pled upon 10,000 randomly drawn pixels for each factor combina-
tion. RF models were fitted through the “randomForest” R package 
(Liaw & Wiener, 2002) upon 1000 trees, with the “mtry” parameter 
left as default (i.e. mtry =

number of predictors

3
). Standardized importance 

score of each factor was computed by applying the “biomod2” 
permutation-based procedure to the fitted RF models.

3  |  RESULTS

3.1  |  Input variables

Based on VIF analysis, seven bioclimatic variables were selected for 
model fitting: bio1 (annual mean temperature), bio2 (mean diurnal 
temperature range), bio4 (temperature seasonality), bio8 (mean tem-
perature of wettest quarter), bio15 (precipitation seasonality), bio18 
(precipitation of warmest quarter), and bio19 (precipitation of cold-
est quarter).

Between-version local Pearson's r varied across variables and 
grid resolutions (Appendix Figure S1a–c). At 2.5  min, values of 
bio1 were positively correlated within most European regions; 
correlation maps obtained for bio8, bio18, and bio19 showed wide 
extents of positive r in southern Europe, while scattered areas of 
negative correlation emerged mainly in central and north-eastern 
Europe; for bio2, bio4, and bio15, wide areas of negative correlation 
emerged across Europe. These trends persisted at coarser grid res-
olutions, although positively correlated areas were generally wider. 
Differently, between-version pairwise correlation computed on the 
50 sets of randomly sampled points exceeded r = 0.85 for all the 
variable  *  grid resolution combinations, without noticeable differ-
ences between “original” and resampled Wclim1.4-derived variables 
when compared to Wclim2.1-based ones (Appendix Figure S2). This 
suggests that the resampling of Wclim1.4-derived layers, necessary 
to conduct the subsequent spatially explicit comparisons of model 
predictions derived from the two Worldclim versions, did not sub-
stantially alter cell-by-cell values of Wclim1.4 variables. Similar to 
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what appeared from the maps of local Pearson's r, bio2 was the vari-
able with the lowest between-version pairwise correlation.

3.2  |  Virtual species

The Alpine VS was related negatively to bio1 and positively to bio2 
via sigmoid curves, while it was related to bio8 through a bell-
shaped curve peaking between 0°C and 5°C (Appendix Figure S3a); 
the Mediterranean VS was instead positively related to bio1 via a 
sigmoid curve showing a steep increase after 5°C, and negatively 
related to bio18 via a threshold-like function making suitability 
dramatically decrease after 100  mm (Appendix Figure S3b). The 
Generalist VS was primarily associated to the positive semiaxis of the 
first Principal Component (PrinComp1) to which bio4 contributed 
the most, followed by bio8 and bio18 (Appendix Figure S4a1); differ-
ently, the Restricted VS was mainly related to the negative semiaxes 
of both PrinComp1 and PrinComp2, to which bio2 contributed the 
most (Appendix Figure S4b1), followed by bio15 and bio1. As ex-
pected, density of occurrence within the PCA-derived 2D climatic 
space was far wider for the Generalist VS than for the Restricted 
one (Appendix Figures S4a2 and S4b2). Occurrence probability and 
Pres-Abs patterns properly reflected, for all the VSs, the realiza-
tion into the European geographic space of the climate-occurrence 
relationships we intended to simulate (Figure 3a,b). Prevalence of 
the VSs across Europe was: Alpine = 0.25, Mediterranean = 0.08, 
Generalist = 0.79, and Restricted = 0.01; median prevalence across 
the 50 Pres-Abs samples was relatively close to the prevalence 
across Europe for the Alpine (~0.4) and Generalist (~0.6) VSs, while it 
was noticeably higher than this latter for the Mediterranean (~0.36) 
and Restricted (~0.25) ones (Appendix Figure S5a). Between-version 
r of the selected variables upon Pres-Abs points was higher than 0.8 
for all the VS * grid resolution combinations, except for bio2 showing 
median r = 0.4 for the Restricted VS (Appendix Figure S5b).

3.3  |  Model fitting and evaluation

The species-specific block sizes chosen based on the SAC 
ranges estimated from the correlograms derived from residu-
als of the “full-data” HSMs (Appendix Figure S6a–d) were: 
Alpine = 1600 km; Mediterranean = 600 km; Generalist = 1600 km; 
Restricted  =  400  km. An example of the resulting checkerboard 
blocking is shown for each VS in Appendix Figure S7a,b.

RMSE computed upon test blocks did not show clear between-
version differences across the VS  *  grid resolution combinations, 
although GBM and RF attained slightly lower median RMSE when 
fitted using Wclim2.1-derived variables, especially for the Restricted 
VS (Appendix Figure S8). Median RMSE was higher for the Generalist 
VS (~0.45) than for the others (~0.40) considering all the algorithms 
except GAM, which performed poorly (median RMSE =  0.65) for 
all VSs, suggesting that the used “biomod2” GAM parameteriza-
tion (“mgcv” algorithm with cross-validation-based selection of 

smoothing parameters) did not lead to a proper calibration of the 
corresponding HSMs.

While for the Alpine and Mediterranean VSs all the sampling 
replicates produced at least an HSM exceeding the chosen discrim-
ination thresholds, some replicates with no HSMs entering the pro-
jection phase emerged for the remaining VSs (Appendix Table S1), 
confirming higher difficulty of the HSMs fitted for these latter in 
retrieving the simulated climate-occurrence relationships.

3.4  |  Between-version differences

Between-version r across Europe in median predicted HS was very 
high, regardless of grid resolution, for the Alpine, Mediterranean 
and Generalist VSs, while it was somewhat lower for the Restricted 
one (Appendix Table S2). Looking at spatially explicit prediction dis-
crepancies for the Alpine VS, Wclim2.1-based projections resulted in 
higher median HS than Wclim1.4-based ones across Carpathians, in 
the central regions of Norway and Sweden, in some areas of north-
ern Finland, north-eastern European Russia, and north-eastern 
Turkey, while the opposite emerged across most of the Alpine arc, 
in eastern Iceland, south-western Norway, southern Finland, and 
some regions of north-western European Russia (Figure 4a). For the 
Mediterranean VS, Wclim2.1-based median HS exceeded Wclim1.4-
based one within eastern inland Iberia, southern French coasts, cen-
tral Tyrrhennian coasts and southern Adriatic coasts in Italy, as well 
as in some scattered regions of Anatolia, while the opposite emerged 
in north-western Iberia, at the southern Spain-France border, 
northern Corse, northern Tyrrhenian and Adriatic Italian coasts, in 
some territories of Peloponnese and northern Anatolia (Figure 4b). 
Between-version differences in median HS involved considerably 
wider extents for the remaining VSs: Wclim2.1-based projections 
for the Generalist VS resulted in lower median HS than Wclim1.4-
based ones for most of Iberia, central-northern Europe, southern 
European Russia and Turkey, while the opposite resulted for Iceland, 
most of the Italian peninsula and the Balkans (Figure 5a); consider-
ing the Restricted VS, Wclim2.1-based median HS was lower than 
Wclim1.4-based one across most of eastern Europe, with particu-
larly substantial differences in eastern Scandinavia and European 
Russia, while more mixed patterns emerged in eastern Iberia and 
central Anatolia (Figure 5b), the regions showing high simulated oc-
currence probability for this VS (Figure 3a). These trends were con-
sistent across the three grid resolutions, although between-version 
differences were somewhat milder as cell size increased.

Considering standardized importance scores (Std_Imp), HSMs 
fitted for the Alpine and Mediterranean VSs correctly retrieved 
as preponderant the predictors upon which HS was simulated 
(Appendix Figure S9). Indeed, bio1 attained the far highest im-
portance score (median Std_Imp =  75%–80%) for the Alpine VS, 
followed by bio8 (median Std_Imp =  5%–10%), as well as for the 
Mediterranean one (median Std_Imp =  55%–60%), here followed 
by bio18 (median Std_Imp =  15%–20%). Median Std_Imp of bio18 
reported for the Mediterranean VS from Wclim2.1-based HSMs 
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was higher than that resulting from Wclim1.4-based models across 
the grid resolutions, suggesting a better characterization of the 
simulated climate-occurrence relationships within Wclim2.1-based 
HSMs. Differently, bio19 emerged as the preponderant predictor for 
the Generalist (median Std_Imp = 35%–50%) and Restricted (median 
Std_Imp = 20%–45%) VSs, with Wclim1.4-based HSMs overestimat-
ing its importance compared to Wclim2.1-based ones. The fact that 
the variables mostly contributing to the PCA axes to which these 

latter VSs were primarily associated (bio4 for the Generalist VS, 
bio2 for the Restricted one; Appendix Figure S4) obtained far lower 
Std_Imp than bio19 across all the Worldclim version * grid resolution 
combinations suggests that the HSMs fitted for these VSs did not 
properly model their simulated climate-occurrence relationships.

Although overall correlation between median predicted HS 
and simulated occurrence probability was high for all the VSs ex-
cept the Restricted one (Appendix Table S2), median predicted 

F I G U R E  4 Spatially explicit difference 
between median Habitat Suitability 
(HS) predicted by the HSMs fitted using 
Worldclim 2.1-based variables (and 
selected for the projection phase) and 
median HS predicted by the HSMs fitted 
using Worldclim 1.4-based variables (and 
selected for the projection phase), for the 
(a) Alpine and (b) Mediterranean VSs
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HS did not tightly approach the 1:1 correspondence with simu-
lated occurrence probability for any VS * Worldclim version * grid 
resolution combination (Figures 6 and 7). Nonetheless, the 
Alpine and Mediterranean VSs showed a closer predicted-
simulated correspondence than the Generalist and Restricted 
ones, as a noticeably higher number of pixels with high median 
HS (although HSmax  =  0.7–0.8) corresponding to high simulated 
occurrence probability, as well as of pixels with low median HS 

corresponding to low occurrence probability, appeared for the 
formers. The Restricted VS showed very low predicted-simulated 
correspondence for Wclim2.1-based projections, and almost none 
for Wclim1.4-based ones (Figure 7b). Wclim2.1-based median 
projections showed lower overdispersion of pixels around the 
1:1 line than Wclim1.4-based ones at 2.5 min, particularly for the 
Mediterranean VS (Figure 6b), while this difference became milder 
at 5 min and 10 min.

F I G U R E  5 Spatially explicit difference 
between median Habitat Suitability 
(HS) predicted by the HSMs fitted using 
Worldclim 2.1-based variables (and 
selected for the projection phase) and 
median HS predicted by the HSMs fitted 
using Worldclim 1.4-based variables (and 
selected for the projection phase), for the 
(a) Generalist and (b) Restricted VSs
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Between-version differences in median predicted HS under the 
considered future scenarios were negligible for the Alpine VS re-
gardless of grid resolution (Figure 8a), while Wclim2.1-based median 
HS exceeded Wclim1.4-based one (median difference =  0.15–0.2) 
for the Mediterranean VS across all the timeframe * GCM * emis-
sion scenario * grid resolution combinations (Figure 8b). Wclim2.1-
based median projections mainly underpredicted HS compared to 
Wclim1.4-based ones under all future scenarios for the Generalist 
VS (Figure 9a), while the opposite emerged for the Restricted one 
(Figure 9b), although variability in between-version difference val-
ues was noticeably higher for these VSs than for the Alpine and 
Mediterranean ones. Some discrepancies among the selected GCMs 
emerged for the Alpine and Generalist VSs, with IPSL resulting in 
between-version differences somewhat diverging from the other 
GCMs. Moreover, in 2070, between-version differences for the 
Mediterranean and Restricted VSs were higher under Scen8.5 than 
under Scen4.5 within most GCM  *  grid resolution combinations. 

Focusing on grid resolution, between-version differences under fu-
ture climate were higher for 5 min than for 2.5 min and 10 min when 
looking at the Mediterranean and Generalist VSs, while higher dif-
ferences emerged for 10 min considering the Restricted VS.

3.5  |  Importance of factors

When included as factor in RF models fitted with either predicted-
simulated r or future between-version differences as response varia-
ble, the considered VS attained by far the highest average importance 
score (94.7% ±  3.7% for predicted-simulated r; 96.5% ±  0.2% for 
between-version differences in future projections). When fit-
ting RF models for each VS separately, average importance score 
of Worldclim version was clearly higher than that of grid resolu-
tion, considering Std_Imp (Figure 10a) or predicted-simulated r 
(Figure 10b) as response variable, for all the VSs except the Alpine 

F I G U R E  6 Hexagonal heatmaps (width of each hexagonal cell = 0.04) showing, for each Worldclim version * Grid resolution combination, 
the degree of correspondence between Simulated Occurrence Probability and Median predicted HS for the (a) Alpine and (b) Mediterranean 
VSs.; for each hexagonal cell, log10 of the number of pixels whose occurrence probability-median HS pair of values fall within the cell itself is 
reported in a blue-to-yellow scale; the dot-dashed diagonal red line shows theoretical 1:1 predicted-simulated correspondence; the dashed 
black line represents smoothed regression line from the linear model Simulated Occurr. Prob. ~ Median predicted HS, summarizing the trend 
emerging from the heatmap
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one; for this latter, grid resolution appeared more important than 
Worldclim version for predicted-simulated r, while the opposite re-
sulted for Std_Imp. Finally, grid resolution emerged for all the VSs as 
the preponderant factor influencing between-version differences in 
median HS under future climate, closely followed by GCM for the 
Alpine and Generalist VSs (Figure 10c).

4  |  DISCUSSION

The pervasive use of Worldclim during the last fifteen years to esti-
mate climate-occurrence relationships for a huge variety of taxa calls 
for the need to assess magnitude, location, and drivers of prediction 
discrepancies between models fitted using climate surfaces derived 
from the first version of this database (Worldclim 1.4) and those re-
lying upon the recently updated one (Worldclim 2.1). For instance, 
in recent years geographical predictions from HSMs implementing 

Wclim1.4-derived climate surfaces have frequently guided, at least 
partially, the identification of areas deserving attention as poten-
tially suitable for rare and endangered species (Console et al., 2020; 
Forrest et al., 2012; Iannella et al., 2018; Marini et al., 2009) or, on 
the other hand, for invasive ones (Cerasoli et al., 2019; Di Febbraro 
et al., 2019; Ficetola et al., 2009). In case prioritization measures 
are conceived based on these predictions, a priori knowledge about 
which areas will show the greatest changes in predicted suitability 
in case the updated Worldclim variables are used would be useful to 
refine such measures. Indeed, although climate databases based on 
quasi-mechanistic downscaling such as CHELSA (Karger et al., 2017) 
or remote sensing like MERRACLIM (G. C. Vega et al., 2017) may be 
more accurate than Worldclim in regions with scarce meteorological 
stations (e.g. polar regions or tropical rainforests) (Morales-Barbero 
& Vega-Álvarez, 2019), Worldclim interpolated climate surfaces rep-
resent an invaluable data source in station-richer regions as North 
America, south-eastern Africa and most of the Palearctic (Fick & 

F I G U R E  7 Hexagonal heatmaps (width of each hexagonal cell = 0.04) showing, for each Worldclim version * Grid resolution combination, 
the degree of correspondence between Simulated Occurrence Probability and Median predicted HS for the (a) Generalist and (b) Restricted 
VSs.; for each hexagonal cell, log10 of the number of pixels whose occurrence probability-median HS pair of values fall within the cell itself is 
reported in a blue-to-yellow scale; the dot-dashed diagonal red line shows theoretical 1:1 predicted-simulated correspondence; the dashed 
black line represents smoothed regression line from the linear model Simulated Occurr. Prob. ~ Median predicted HS, summarizing the trend 
emerging from the heatmap
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Hijmans, 2017). Here, we investigated how niche characteristics of 
the target species, grid resolution and projection scenarios influence 
between-version differences in Worldclim-based HSMs.

Limiting the “virtual sampling” to a buffer around occurrence 
areas for the three climate-constrained VSs permitted to obtain 
sample prevalences matching the “safety range” (i.e. 0.1–0.9) recom-
mended by Jiménez-Valverde (2021) to get unbiased estimations of 
model discrimination capacity with presence-absence data. Thus, we 
can be confident that the HSMs selected for the model projection 
phase, and from which between-version differences in predicted HS 
were assessed under current and future time horizons, were actually 
the ones attaining a good predictive performance.

Contrasting the Generalist VS with the others, considerably 
fewer HSMs attained sufficient discrimination performance to 
enter the projection phase; this, coupled with higher RMSE, further 
corroborates mounting evidence about the difficulties in model-
ing the ecological requirements of euryoecious species (Cerasoli 
et al., 2017; Connor et al., 2018; Santini et al., 2021). On the other 
hand, the degree to which our HSMs properly estimated the sim-
ulated climate-occurrence relationships varied among the three 
climate-constrained VSs: indeed, the HSMs fitted for the Alpine and 

Mediterranean VSs succeeded in isolating the variables influencing 
their suitability while the models obtained for the Restricted one 
underestimated the influence of the variables (especially bio2) more 
directly favoring its occurrence. Such difference translated into the 
relatively high correspondence between median predicted suitabil-
ity and simulated occurrence probability emerging for the Alpine 
and Mediterranean VSs and into the almost absent correspondence 
characterizing the Restricted one. These patterns may be because 
suitability for the Restricted VS was simulated as dependent upon 
a combination of climatic conditions very poorly represented in 
Europe, resulting in the lowest prevalence among all the VSs, both 
across Europe and within Pres-Abs samples; this in turn forced the 
corresponding HSMs to estimate its climate-occurrence relation-
ships with few presences available and, arguably, to widely extrapo-
late when projected.

Generally, median predicted suitability more closely approached 
simulated occurrence probability when Wclim2.1-derived variables 
were used. This was somehow expected, as occurrence probability 
for our VSs was simulated using Wclim2.1-derived climate surfaces, 
at 2.5 min resolution, as reference layers. However, this between-
version difference was not equally apparent for all the VSs: while it 

F I G U R E  8 Boxplots showing between-
version difference (HSMs from Worldclim 
2.1 - HSMs from Worldclim 1.4) in median 
HS computed from HSMs' projections to 
the considered future climatic scenarios 
for the (a) Alpine and (b) Mediterranean 
VSs. Grey dots represent outliers
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was substantial for the Mediterranean VS, in the case of the Alpine 
one grid resolution contributed more than Worldclim version in de-
termining closeness of median predictions to simulated occurrence 
probability. Interestingly, the predicted-simulated correspondence 
did not worsen for any VS at increasing grain size (i.e., at 5 min and 
10 min). This result partially contrasts with previous studies sug-
gesting a deterioration of HSMs' predictions when fitted at coarser 
spatial resolution than that at which real-world species react to en-
vironmental changes (Seo et al., 2009; Vale et al., 2014) or at which 
VSs' suitability patterns are simulated (Connor et al., 2018), although 
these works also highlighted that such deterioration greatly vary 
across species and ratios of coarser-to-correct grid resolutions.

Between-version local correlation in values of the selected bio-
climatic variables was relatively high across most of Europe con-
sidering yearly (i.e., bio1) and seasonal (i.e., bio8, bio18, and bio19) 
temperature and precipitation averages, while climate surfaces 
from the two Worldclim versions showed a number of lowly cor-
related areas for variables representing diurnal (i.e., bio2) or yearly 
(i.e., bio4 and bio15) variability, particularly at 2.5  arc-minutes. 
This likely explains why model projections resulted in a major 
portion of Europe showing diverging suitability for the Restricted 

(primarily responding to bio2) and Generalist (mainly associated to 
bio4) VSs, while between-version discrepancies for the Alpine and 
Mediterranean VSs mainly involved scattered regions characterized 
by high occurrence probability for these latter and corresponding to 
relatively extreme average temperature/precipitation values. Thus, 
our results show that, at the European scale, HSMs fitted using 
Wclim2.1-derived climate surfaces may produce considerably diver-
gent spatial predictions compared to models fitted using Worldclim 
1.4 for species whose climate-occurrence relationships are driven 
by variability in temperature/precipitation regimes. Differently, for 
species mainly responding to yearly or seasonal average tempera-
ture/precipitation trends attention should be primarily paid to areas 
showing extreme values (e.g. mountainous massifs for bio1, south-
ern Europe for bio18).

Looking at future scenarios, differences in climate-occurrence 
relationships guided between-version mismatch in predicted suit-
ability: predictions derived from the two Worldclim versions ap-
pear convergent for species inhabiting mountainous areas and high 
latitudes (Alpine VS), Wclim2.1-derived HSMs mainly underpredict 
suitability compared to Wclim1.4-derived ones for euryoecious 
species (Generalist VS), while the opposite emerge for species 

F I G U R E  9 Boxplots showing between-
version difference (HSMs from Worldclim 
2.1 - HSMs from Worldclim 1.4) in median 
HS computed from HSMs' projections 
to the different considered future 
climatic scenarios for: (a) Generalist VS; 
(b) Restricted VS. Grey dots represent 
outliers
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inhabiting southern Europe (Mediterranean and Restricted VSs). 
Interestingly, HSMs fitted at 5  min for the Mediterranean and 
Generalist VSs led to higher between-version differences in fu-
ture suitability compared to models fitted at 2.5 min and 10 min, 
while higher differences resulted at 10 min for the Restricted VS. 
Since across-resolution differences did not clearly emerge under 
present conditions, these results suggest that possible changes in 
correlation among predictors under future scenarios (Mesgaran 
et al., 2014; Zurell et al., 2012) may interact with grid resolution in 

influencing prediction discrepancies between models derived from 
the two Worldclim versions. Moreover, the overall change in the sign 
of between-version differences for the Restricted VS contrasting 
the current scenario (Wclim1.4-derived HS higher than Wclim2.1-
derived one across wide extents of eastern Europe) with the future 
ones (Wclim1.4-derived HS lower than Wclim2.1-derived one within 
most of the pixels sampled across Europe) suggests that discrepant 
changes between the two Worldclim versions in the values of some 
climate surfaces from current to future scenarios, combined with 

F I G U R E  1 0 Average (± standard 
deviation, red bars) importance, for 
each VS, of the considered factors upon 
modelling outcomes, computed through 
the permutation-based (n = 5) procedure 
implemented in the ‘biomod2’ R package 
and applied to Random Forests regression 
models fitted with response variable set 
to: (a) standardized importance scores of 
input variables within the HSMs exceeding 
the chosen AUC and TSS thresholds; (b) 
correlation between median predicted HS 
and the simulated occurrence probability 
of the considered VS; (c) between-version 
differences in median predicted HS under 
the considered future climatic scenarios
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the presumably extensive extrapolation that the HSMs faced due 
to the limited calibration area, made predictions for this VS partic-
ularly sensitive to the chosen climate data source. Translated into 
real-world situations, this result should further warn about the need 
to attentively analyze predictions of future potential distributional 
shifts from climate-based HSMs fitted for currently narrow-ranging 
species (Santini et al., 2021). Quite reassuringly, neither the specific 
emission scenario nor the chosen GCMs dramatically influenced 
between-version differences in future projections.

In conclusion, implementing the virtual ecologist approach, we 
highlighted that, depending primarily on the species' climatic toler-
ances and secondly on the grain size of the climate surfaces, predic-
tion mismatches between HSMs fitted on bioclimatic variables from 
the two Worldclim versions considerably vary across Europe, pro-
viding useful information to re-evaluate results of previous works 
based on Worldclim data. We invite researchers to replicate and 
possibly improve, for instance including also instances of species-
climate disequilibrium, our simulations within other continents to as-
sess if our findings change under different baseline climate gradients 
and density of meteorological stations.
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