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Abstract: In this paper, the measurement and modeling of optical properties in the terahertz (THz)
range of adipose tissue and its components with temperature changes were performed. Spectral
measurements were made in the frequency range 0.25–1 THz. The structural models of main
triglycerides of fatty acids are constructed using the B3LYP/6-31G(d) method and the Gaussian03,
Revision B.03 program. The optical density (OD) of adipose tissue samples decreases as temperature
increases, which can be associated mostly with the dehydration of the sample. Some inclusion of
THz wave scattering suppression into the OD decrease can also be expected due to refractive index
matching provided by free fatty acids released from adipocytes at thermally induced cell lipolysis. It
was shown that the difference between the THz absorption spectra of water and fat makes it possible
to estimate the water content in adipose tissue. The proposed model was verified on the basis of
molecular modeling and a comparison with experimental data for terahertz spectra of adipose tissue
during its heating. Knowing the exact percentage of free and bound water in adipose tissue can help
diagnose and monitor diseases, such as diabetes, obesity, and cancer.

Keywords: terahertz spectroscopy; molecular modeling; absorption spectra; adipose tissue; oleic
acid; water; dehydration

1. Introduction

Terahertz (THz) spectroscopy allows one to determine the complex refractive index of
the medium under study, which is important for creating a functional THz tomography
with high sensitivity to changes in the concentration of metabolites and accurate marking
of the boundaries of the pathological lesions. Therefore, the development of spectroscopic
methods for studying biological tissues in the THz frequency range, providing detection
and visualization of metabolic and pathological processes, has caused great interest in
recent years, especially as an additional channel for obtaining information in multimodal
systems in combination with the other approaches, such as using biosensors [1] and optical
coherence tomography, or polarized light imaging [2]. The contrast between healthy and
diseased tissues for THz wave probing is due to differences in their water content and
degree of tissue dehydration, for wax embedded tissue samples [3], as well as in optical
properties of tissues, such as muscle [4], liver [5], colon [6], and skin [7], and their structures.

THz waves can be utilized in spectroscopy and imaging in both transmission and
reflection modes [8]. In THz reflectance imaging, depth information is obtained using
the time delay and amplitude of the registered reflected wave. This method is used to
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determine the absorbance and phase shift by different types of tissues (normal tissues
and tumors) [9,10]. The penetration of THz waves into issues, depending on the amount
of fat and water content, can vary in the range of a few microns to a few millimeters
due to the absorption by polar molecules [11]. Although computed tomography (CT),
magnetic resonance imaging (MRI), and fluorescence imaging are widely used to identify
the boundary between healthy and malignant tissues, for some brain cancers, such as
glioma, tumor margins are not well detectable. The brain is a very high-lipid organ, and the
amount of lipid causes high contrast in THz imaging (THI). Cancerous tumors have higher
protein and lower lipid levels than healthy tissue, and the proteins are highly absorbing in
the THz spectral region. By performing THI in vivo, it was observed that the tumor border
was clearly determined [12]. Therefore, neurosurgeons can use THI in surgery to obtain a
high contrast image.

THz signals with a wavelength of approximately 300 µm provide a good balance
between penetration, deepness, and spatial resolution to identify a molecular biomarker
spatial distribution in tissue [13]. Biomarker detection can be helpful in the diagnosis of can-
cer. As different substances have different THz spectra (i.e., spectral “fingerprints”), THz
spectroscopy (THS) can be applied to realize fast and accurate identification of biomarkers
in cancer tissue. Furthermore, THS can be combined with various algorithms to realize the
quantitative analysis of cancer biomarkers, which may be a potential tool for rapid cancer
staging [14]. However, in most cases, various substances, such as water, proteins, lipids,
and other organic components, are also present in the tissue, and the cancer biomarker con-
centration is usually very low. These conditions result in a low spectral signal-to-noise ratio
(SNR), which gives rise to absorption peaks that cannot be readily identified [15]. Therefore,
current THz-based studies of biomarkers are mostly performed on pure biomarkers. If we
can construct THz images based on the resonance peaks of biomarkers, cancerous areas
can be identified more accurately. However, further development is required to realize this
objective as current imaging systems with high-power continuous-wave THz sources can
only generate THz waves at a fixed frequency, and pulsed THz sources cannot provide
enough spectral power. Thus, both THI and THS are limited by source energy, leading
to poor SNR in the spectral results. To address this issue, some researchers are working
to enhance the spectral SNR, which is expected to help detection of biomarkers in mixed
samples. THS can also accurately diagnose brain tissue lipid deficiency [16,17]. It should be
noted that the white matter has lots of myelin, whose sheath is a multi-layered membrane,
mainly consisting of lipids, whereas the gray matter of the brain has a higher content of
water and proteins, which provides higher signal intensities in THz images than the tissues
with high lipid content.

The polarization sensitive optical imaging and THI may be combined to provide useful
information for the differentiation of healthy and cancerous tissues (nonmelanoma skin
cancer [18,19], colon cancer [20]). There is a difference in bound and free water contents
between normal and cancerous tissues, such as benign: seborrheic keratosis, pigmented
nevi; malignant: malignant melanoma, basal cell carcinoma [21], tumor bearing tissue
from rat livers [22]. Due to higher water content, cancer exhibits higher absorption relative
to normal skin and therefore leads to a lower remitted signal and consequently lower
reflectivity of cancerous areas [23].

The presence of water in adipose tissue is a sign of diabetes [24], obesity [25], and
cancer [26]. The water content in adipose normal and pathological specimens was seven
to ten times as great as the protein content [27]. Almost all the remainder of the fat pads
consists of lipids. Normal abdominal adipose tissue of mice contains 84–91% fat and 8–14%
water. In diseased tissue, the water content may increase to more than 30% with simul-
taneous reduction of the fat content. Since cancer cachexia promotes an increase in body
water content, researchers speculated that the enlargement mesenteric and retroperitoneal
adipocytes was caused at least in part by water retention, as opposed to an increase in
lipid [28,29]. The complex anatomic structure of the breast, represented by an association
of closely juxtaposed fat and glandular and fibrous connective tissues, breast cancers are
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always surrounded by tissues with heterogeneous conductivity [30]. For example, the main
component of the breast in young patients is breast gland, with little adipose tissue. How-
ever, the main component is adipose tissue in old patients. Furthermore, the percentage of
water in breast carcinoma is more than that in breast tissue and adipose tissue [31].

Lipids attenuate THz radiation less strongly than polar molecules. The absorption
rate for all lipids increases with frequency and reaches a maximum for about 2 THz [32–35].
The difficulty of interpreting results of measurements and the transition from these mea-
surements to in vivo diagnostics is caused by an uncontrolled environment, e.g., diffusion
into a sample of saline during tissue storage, changes in the level of hydration during the
measurement, effects of scattering, etc. [36].

Choe et al. [37] demonstrated in vivo the distribution of different water types (i.e.,
tightly hydrogen bound, strongly hydrogen bound, weakly hydrogen bound and unbound)
in the human stratum corneum (SC) which is rich in lipids. Strongly bound water (double
donor–double acceptor, DDAA–OH) and weakly bound water (single donor–single accep-
tor, DA–OH) were shown to represent more than 90% of the entire water content of SC,
while tightly bound water (single donor–double acceptor, DAA) and free water molecule
types represent the remaining < 10%.

The absorption coefficients of skin dermis and epidermis are given as 70% and 20%
of the absorption coefficient of water, respectively [38]. For subcutaneous tissues, ap-
proximately 40% and 60% of absorption coefficient of lipids and water are characteristic,
respectively [39,40]. It is important to notice that at ex vivo skin topical application of
the hyperosmotic optical clearing agent (OCA), free water, and weakly bound water are
displaced, causing tissue dehydration [41]. Enhanced free water content in SC can be
provided at increased humidity of the environment [42].

Approximately 60–85% of the weight of white adipose tissue is lipid, with 90–99%
being triglyceride. Small amounts of free fatty acids, diglyceride, cholesterol, and phospho-
lipid and minute quantities of cholesterol ester and monoglyceride are also present. In this
lipid mixture, six fatty acids make up approximately 90% of the total, and these are myristic,
palmitic, palmitoleic, stearic, oleic, and linoleic acids. The remaining weight of white
adipose tissue is composed of water (5–30%) and proteins (2–3%) [43]. For example, for
adipose tissue in mesenteric and subcutaneous depots, total water volume was 14 ± 1.4%
with extracellular component of 11 ± 1.1% [44].

The SC can be used as a model for adipose tissue water balance prediction as it
contains a large amount of lipids [37], normally of about 30% in the upper layers with rest
of proteins and water [41]. The protein-to-lipid ratio in the adipose tissue is one of the
important parameters [45].

Guo et al. [46] demonstrated that the THz digital holographic imaging system can
be utilized to investigate natural dehydration processes in adipose tissue. The authors
showed that from THz images of biological specimens, distinctive water content as well as
dehydration features of adipose tissues can be obtained. As shown in the paper, the degree
of dehydration of porcine samples was about 70–80%. The experimental results imply that
dehydration features of adipose tissues in different animal bodies have some discrepancies,
including the decay time constant and variation extent of THz absorption.

The external mechanical pressure on the biological tissue can cause free water to come
out of the tissue first and then bound water [38]. Osmotic pressure acts in a similar way,
and it leads to the loosening of weakly bound water. Presumably, the picture in adipose
tissue should be qualitatively similar, the differences can be at the percentage level. Our
hypothesis is that adipose tissue heating can lead to similar processes with free and bound
water. Namely, to cause tissue dehydration.

The main goal of this study is to create a model of absorption properties of adipose
tissue in the THz range, allowing for analysis of the role of free and bound tissue water
and its comparison with experimental data received for different tissue temperatures. The
hydration model of adipose tissue is based on a quantum-mechanical atomistic simulation
method in the framework of the density functional theory (DFT), which allows one to
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compute a wide variety of properties of almost any kind of atomic system including tissue
molecular structures [47]. Moreover, we aimed to show that the proposed model of fat
with different ratios of free and bound water can be considered as a model for the various
pathological conditions of adipose tissue.

An addition, we present a brief review of experimental data for the absorption and
dispersion of adipose tissues and their components in the THz range.

2. Materials and Methods
2.1. Materials

Abdominal porcine adipose tissue samples were used in this study. A total of eight
samples were investigated. The thickness of the samples was approximately 1.5 mm, and
their area amounted to 1 cm2. In advance, samples of adipose tissue frozen at a temperature
of −20 ◦C were cut into pieces with a thickness slightly above 2 mm. Then, using a
cylindrical punch with an inner diameter of 9 mm, a cylindrically shaped sample was cut.
This sample was thawed, placed inside a metallic holder with a fixed height of 1.25 mm,
and excess adipose tissue was removed by a scalpel. To evaluate THz wave attenuation
(absorption) coefficient, rather precise knowledge of sample thickness is needed. Therefore,
thickness measurements were provided for each sample placed between two glass slides,
and measurements were performed at several points of the sample. Metallic holder height
measurements were measured using the micrometer “MK 0–25 mm”, model 102 (Plant
“Caliber”, Russia). The error of each measurement was approximately 10 µm. The obtained
thicknesses were averaged.

OD of H2O and oleic acid at different thicknesses was measured in THz range at room
temperature. Oleic acid was chosen because its percentage in adipose tissue is the highest
(45%) [48].

2.2. Methods of Measurement

To monitor changes in adipose tissue, the temperature was varied from 25 ◦C to
70 ◦C in increments of 1 ◦C. For the heating of samples, a laboratory DC power supplier
(YIHUA-305D) was used, the heating ability of which was controlled by changing the
applied voltage (Figure 1a). The dependence of the temperature inside the sample holder
on the current passed through the heater (nichrome resistor wire gauge) was obtained
for reliable measurements (see Figure 1c). Under normal conditions, a thermocouple was
placed inside the sample holder with tissue, and the electric current was slowly raised with
a step of 0.2 A. At each step, a time interval of 2 min was maintained, sufficient for the
temperature inside the sample holder to stop changing. This approach made it possible to
minimize the effects of a temperature gradient.

A prototype of a heating element was developed (Figure 1b) consisting of a metal
base (1) with a thickness of 2 mm, in which a through round hole 1 cm in diameter was
made. Taking into account the diameter of the laser beam (3.5 mm), the hole diameter is
sufficient for spatial scanning in several points. The base included two parts. The first
plate was square, with a hole for the laser beam to pass through. The second plate was
similar to the first, but with the presence of a protrusion, namely a leg (2) for fixing on
the table of the THz spectrometer. Fluoroplastic (3) 2 × 2 cm in size and 0.5 mm thick
was glued to the bases for tightness. A washer (4) with an inner diameter of 1.5 cm and a
thickness of 1.25 mm was placed in the center of the fluoroplast, which serves as a sample
holder. The measurement accuracy of the washer thickness was 10 µm. The inner hole of
the washer was 9 mm. It also had a 0.5 mm slot for wires. A wire (the number of turns
was 2) (5) approximately 9 cm long was placed along the inner edge of the hole in the
washer in a spiral shape. Both ends were connected to wires through terminals connected
to a laboratory DC power supply. The tungsten wire was coated with a special thermally
conductive electrical insulating varnish. The wire was insulated from the sample. At the
edges, the metal bases were pulled together with four screws (6) and tightened with nuts.
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Figure 1. Prototype of a heating element used in experimental studies. (a) photo heating element
connected with laboratory DC power supplies; (b) heating element diagram, where 1-metal base,
2-ledge plate, 3-fluoroplast, 4-washer, 5-wire, 6-screw; (c) calibration curve; (d) optical micrograph of
the sample.

THz spectral measurements were made using a real-time T-SPEC terahertz spectrom-
eter (EKSPLA, Vilnius, Lithuania) working in the frequency range 0.25–1 THz with a
software THz Spectrometer 2D. A photoconductor antenna illuminated by ultrashort laser
pulses was used for the generation of THz radiation and its detection. The pumping laser
provided pulses of 10–150 fs at 1050 ± 40 nm wavelength with power of about 100 mW
and 30–100 MHz pulse repetition rate. For more efficient collimation and focusing of
THz radiation, a substrate lens fabricated from high resistance silicon was attached to the
backside of each antenna. The sample holder was placed in the optical path. Atmospheric
air was in the optical path, and the cover of the device was open to ensure the outflow of
excess heat from the outer part of the sample holder. There were no advantages in using
the nitrogen in the range from 0.2 to 1 THz compared to atmospheric air. The reference
THz signal was the signal of THz wave passed through the cuvette without a sample, i.e.,
through two fluoroplastic plates, each 0.5 mm thick.

The cell with the sample without a thermocouple was placed in the optical path of the
T-SPEC spectrometer and measurements were carried out as follows:

1. The THz spectrum was measured at room temperature at 4 points with a vertical and
horizontal step of 0.4 mm. This was performed by moving the cuvette by means of a
stepper motor.

2. Voltage was applied to raise the temperature by 5 ◦C according to the calibration curve
(Figure 1c). Time was kept for more than 2 min. The THz spectrum was recorded at
4 points with a vertical and horizontal step of 0.4 mm.

3. The voltage was raised, and the next temperature point was taken.

2.3. Methods of Modelling

The structural models of five triglycerides of fatty acids (oleic, linoleic, palmitic,
stearic, α-linolenic) are constructed using B3LYP/6-31G(d) method and the Gaussian03,
Revision B.03 program from [49]. The vibrational wavenumbers and intensities in the IR
spectra were calculated. The molecular model of porcine fat was constructed basing on
five models of triglycerides of fatty acids. The IR spectra of porcine fat are simulated using
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the supermolecular approach. The content of these fatty acid triglycerides in the models
is shown in Table 1. The halfwidth of all Lorentzian profiles was taken to be 10 cm−1.
For better agreement with the experiment, the calculated vibrational wavenumbers were
corrected using linear frequency scaling [50].

Table 1. Melting temperatures of porcine fat (triglycerides) and free fatty acids (FFA) and their
concentrations in % by mass [48].

Porcine Fat
(in Solid State)

Melting
Temperature, ◦C

FFA, Melting Temperature, ◦C
(Concentration, % by Mass)

Palmitic Stearic Oleic Linoleic Linolenic

Triglycerides 36–45 63 (27%) 70 (14%) 16 (45%) −5 (5%) −11 (5%)

3. Results
3.1. Review of the Optical Properties of Water, Lipids and Fatty Acids in the THz Range

Refractive indices and absorption coefficients of water [2,51–69], fat [3,4,10,36,52–
57,61–64,66,69–81], lipids [61,82], and main fatty acids [83] from the available literature are
summarized in Figure 2.
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Figure 2. Refractive indices and absorption coefficients of water (a,b) [2,51–69], fat (c,d) [3,4,10,36,52–
57,61–64,66,69–81], lipids (e,f) [61,82] and fatty acids (g) [83].

Table 2 shows the values of the refractive index and absorption coefficient of biological
tissues for frequencies from 0.5 to 2.0 THz.

Table 2. The refractive index and absorption coefficient of main component of adipose tissue for
frequencies 0.5, 1, 1.5 and 2 THz.

Object

Refractive Index
Absorption Coefficient, cm−1 References

Comments
0.5 THz 1 THz 1.5 THz 2 THz

Water
2.4

157.8
2.2

220.3
2.1

270.6
2.0

316.9
[51] *

Water samples were laboratory
grade purified and deionized, and
studied at room temperature and

atmospheric pressure

2.3
16.5

2.1
23.4

2.0
28.9

2.0
33.6

[23]

2.2
187.9

2.1
253.6

2.0
299.1

2.0
339.0

[54]

2.2
181.8

2.0
236.3

2.0
284.9

1.9
343.6

[60]

2.4
200.6

2.2
269.4

2.1
329.3

2.1
396.8

[61]

2.3
189.4

2.1
272.3

2.0
328.5

2.0
395.1

[58] *
Distilled at room temperature and

normal pressure2.3
196.6

2.16
272.8

2.1
326.1

2.0
396.6

[62]

2.3
163.2

2.1
255.5

2.0
348.5

2.1
-

[59] ** Liquid state
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Table 2. Cont.

Object

Refractive Index
Absorption Coefficient, cm−1 References

Comments
0.5 THz 1 THz 1.5 THz 2 THz

Fat

1.6
36.3

1.6
63.3

1.5
80.0

1.5
93.5

[3]

Human

1.6
44.5

1.6
72.5

1.6
98.7

1.6
123.3

[23]

2.7
27.1

2.3
37.1

2.2
46.3

2.0
54.3

[52]

1.6
37.2

1.6
59.7

1.6
81.7

1.5
90.7

[80]

1.6
42.6

1.6
75.5

1.6
100.7

1.6
115.6

[81]

1.5
14.8

1.5
28.5

1.5
37.8

1.5
44.4

[54] Human, ex vivo

1.6
46.5

1.6
73.6

1.6
98.8

1.6
115.4

[77] Human, at room temperature

1.6
38.7

1.6
63.3

1.6
78.0

1.5
92.7

[61] Fresh

1.4
68.7

1.4
78.6

1.3
41.2

1.3
6.1

[75] Pork

1.6
36.3

1.6
60.7

1.6
80.5

1.6
93.7

[79] Fresh, bovine

Lipids

1.5
6.1

1.5
12.3

1.5
18.3

1.5
21.7

[60] Beef tallow, pure lipids from beef

1.5
6.1

1.5
12.0

1.5
17.6

1.5
20.7

[82]
Lard, pure commercially

available lipid

* Additional data provided by the authors. ** More detailed data are not available.

3.2. Experimental Data

The temperature dependence of the spectrum absorption averaged over all samples
and all measurements is shown in Figure 3. The scattering contribution can be estimated by
applying Mie theory for spherical particles [84,85]. The approach essentially separates the
independent contributions of true absorption and scattering losses, and thus determines
the total extinction for different sizes of particles modelling various materials. However, in
the THz range, scattering is not high in comparison to absorption for any tissue [85].

The refractive index temperature dependences for all samples and all measurements
are shown in Figure 4. It should be noted that there are some discrepancies with the
literature data (see Table 2), according to which the refractive index is about 1.6 in the THz
region [54,86]. This difference can be attributed to the high water content of commercial
pork fat. The effect of reflectance on an “air–tissue” boundary is excluded simply when we
use relative measurements by dividing useful signals on a signal measured at reference
conditions. The latter usually correspond to empty cuvette or tissue at initial conditions.



Diagnostics 2022, 12, 2395 9 of 20

Diagnostics 2022, 12, 2395 9 of 23 
 

 

*Additional data provided by the authors.** More detailed data are not available. 

3.2. Experimental Data 
The temperature dependence of the spectrum absorption averaged over all samples 

and all measurements is shown in Figure 3. The scattering contribution can be estimated 
by applying Mie theory for spherical particles [84,85]. The approach essentially separates 
the independent contributions of true absorption and scattering losses, and thus deter-
mines the total extinction for different sizes of particles modelling various materials. How-
ever, in the THz range, scattering is not high in comparison to absorption for any tissue 
[85]. 

 
20 30 40 50 60 70 80

1

2

3

4

5

6 0.5 THz

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

, c
m

-1

T, oC

 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 
 

(a) (b) 

 

20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

9

10 1.0 THz

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

, c
m

-1

T, oC

 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)

 
 (c) 

Figure 3. (a) Temperature dependence of the absorption spectrum in THz range; (b) for 0.5 THz; (c) 
for 1.0 THz. The measurements were carried out for eight samples (1)–(8). 

The refractive index temperature dependences for all samples and all measurements 
are shown in Figure 4. It should be noted that there are some discrepancies with the liter-
ature data (see Table 2), according to which the refractive index is about 1.6 in the THz 
region [54,86]. This difference can be attributed to the high water content of commercial 
pork fat. The effect of reflectance on an “air–tissue” boundary is excluded simply when 
we use relative measurements by dividing useful signals on a signal measured at refer-
ence conditions. The latter usually correspond to empty cuvette or tissue at initial condi-
tions. 

Figure 3. (a) Temperature dependence of the absorption spectrum in THz range; (b) for 0.5 THz;
(c) for 1.0 THz. The measurements were carried out for eight samples (1)–(8).

Diagnostics 2022, 12, 2395 10 of 23 
 

 

  
(a) (b) 

Figure 4. Temperature dependence of the refractive index (a) on 0.5 THz; and (b) on 1.0 THz. The 
measurements were carried out for eight samples (1)–(8). 

The THz spectra for the OD of H2O for layers of various thicknesses are shown in 
Figure 5, while the absorption spectrum of oleic acid at 28°C is shown in Figure 6. The 
obtained spectra agree with the results presented by other authors [34,35,82]. The THz 
absorption spectra of adipose tissue and oleic acid, presented in Figures 2 and 5, are prac-
tically similar in this spectral range, which is due to the fact that oleic acid predominates 
in porcine adipose tissue (see Table 2). 

  

Figure 4. Temperature dependence of the refractive index (a) on 0.5 THz; and (b) on 1.0 THz. The
measurements were carried out for eight samples (1)–(8).

The THz spectra for the OD of H2O for layers of various thicknesses are shown
in Figure 5, while the absorption spectrum of oleic acid at 28 ◦C is shown in Figure 6.
The obtained spectra agree with the results presented by other authors [34,35,82]. The
THz absorption spectra of adipose tissue and oleic acid, presented in Figures 2 and 5, are
practically similar in this spectral range, which is due to the fact that oleic acid predominates
in porcine adipose tissue (see Table 2).
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Figure 5. OD of liquid H2O for layers of various thicknesses in THz range. 
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Figure 6. Absorption spectra of oleic acid at temperature of 28 ◦C. Experimental data-dots, approxi-
mation curve-line (y = 0.155 + 3.656x + 3.07x2).

3.3. Molecular Modelling

Spatial configurations of the lowest energy conformers of five triglycerides of fatty
acids (oleic, linoleic, palmitic, stearic, α-linolenic) are shown in Figure 7. Theoretical
THz spectra of five triglycerides of fatty acids, taking into account their concentrations in
porcine fat, are shown in Figure 8. The THz spectrum of porcine fat model, built using
the supermolecular approach, is shown in Figure 9, and its interpretation is presented in
Table 3. At the same time, only those vibrations that make a significant contribution to the
formation of vibrational bands were taken into account.

Table 3. Interpretation of the theoretical THz spectra of porcine fat in the frequency range from 0 to
2.5 THz.

Frequency (THz) Interpretation

0.72 Deformation (bending) oscillation of the left chain of palmitic acid triglyceride
1.20 Deformation (torsion) oscillation of the left chain of oleic acid triglyceride

1.41 Deformation (torsion) oscillation of the central chain of palmitic acid triglyceride and
mixed deformation (torsion) oscillation of the side chains of oleic acid triglyceride

1.92 Deformation (bending) oscillation of the right chain of palmitic acid triglyceride and a
similar oscillation of the central chain
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Figure 7. Spatial configurations of different triglycerides of fatty acids: linolic (a), oleic (b), α-
linolenic(c), stearic (d) and palmitic (e) acids [87], where the white ball is a hydrogen atom; the red
ball is an oxygen atom; and the gray ball is a carbon atom.
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Figure 8. Absorption spectra of different triglycerides of fatty acids and H2O. 

To model the dehydration process as a generalized fat model, we used oleic acid tri-
glyceride (Figure 7b). A confirmation of the correctness of the obtained local spatial con-
figurations of intermolecular complexes (Figure 9) is the absence of negative values in the 
calculation of wave numbers. Almost all water molecules in our model are hydrogen 
bonded to the oleic acid triglyceride, with the exception of the water molecule, which acts 
as a binder between two water molecules forming hydrogen bonds with the carbonyl 
groups of the triglyceride (Figure 9c). This is due to the relatively large distance between 
the carbonyl groups, which does not allow the creation of a bound water dimer between 
them (Figure 9b). Taking this fact into account, the number of molecules in the first hy-
dration shell was nine. For this case (Figure 9i), the number of formed hydrogen bonds 
was 15, and their length ranged from 1.8 to 2.8 angstroms. 

  

Figure 8. Absorption spectra of different triglycerides of fatty acids and H2O.
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Figure 9. A model of fat with bound water in different percentages: (a) with one water molecule 
(2.0% by mass); (b) with two water molecules (3.9% by mass); (c) with three water molecules (5.8% 
by mass); (d) with four water molecules (7.5% by mass); (e) with five water molecules (9.2% by 
mass); (f) with six water molecules (10.9% by mass), (g) with seven water molecules (12.5% by mass), 
(h) with eight water molecules (14.0% by mass), (i) with nine water molecules (15.5% by mass). The 
dotted lines show hydrogen bonds. The white ball is a hydrogen atom; the red ball is an oxygen 
atom; and the gray ball is a carbon atom. 

A double-stranded linear complex consisting of 28 water molecules was chosen as a 
free water model (Figure 10). Due to the significant chain length, this model has a certain 
range of oscillations in the terahertz range. Therefore, the linear model is convenient to 
use when modeling the terahertz spectrum. 

It should be noted that the percentages of bound water shown in Figures 9 and 11 
only apply to the selected fat model. If one selects a different model, these values will 
change. For example, for triglycerides of oleic and palmitic acids, these values decrease 
by approximately 2.5 times. 

  

Figure 9. A model of fat with bound water in different percentages: (a) with one water molecule
(2.0% by mass); (b) with two water molecules (3.9% by mass); (c) with three water molecules (5.8%
by mass); (d) with four water molecules (7.5% by mass); (e) with five water molecules (9.2% by
mass); (f) with six water molecules (10.9% by mass), (g) with seven water molecules (12.5% by mass),
(h) with eight water molecules (14.0% by mass), (i) with nine water molecules (15.5% by mass). The
dotted lines show hydrogen bonds. The white ball is a hydrogen atom; the red ball is an oxygen atom;
and the gray ball is a carbon atom.

To model the dehydration process as a generalized fat model, we used oleic acid
triglyceride (Figure 7b). A confirmation of the correctness of the obtained local spatial
configurations of intermolecular complexes (Figure 9) is the absence of negative values in
the calculation of wave numbers. Almost all water molecules in our model are hydrogen
bonded to the oleic acid triglyceride, with the exception of the water molecule, which
acts as a binder between two water molecules forming hydrogen bonds with the carbonyl
groups of the triglyceride (Figure 9c). This is due to the relatively large distance between the
carbonyl groups, which does not allow the creation of a bound water dimer between them
(Figure 9b). Taking this fact into account, the number of molecules in the first hydration
shell was nine. For this case (Figure 9i), the number of formed hydrogen bonds was 15, and
their length ranged from 1.8 to 2.8 angstroms.

A double-stranded linear complex consisting of 28 water molecules was chosen as a
free water model (Figure 10). Due to the significant chain length, this model has a certain
range of oscillations in the terahertz range. Therefore, the linear model is convenient to use
when modeling the terahertz spectrum.
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The model of fat dehydration process is shown in Figure 11.  
  

Figure 10. Linear structure of 28 water molecules, where the white ball is a hydrogen atom; the red
ball is an oxygen atom. The dotted lines show hydrogen bonds.

It should be noted that the percentages of bound water shown in Figures 9 and 11
only apply to the selected fat model. If one selects a different model, these values will
change. For example, for triglycerides of oleic and palmitic acids, these values decrease by
approximately 2.5 times.

The model of fat dehydration process is shown in Figure 11.
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Figure 11. Absorption spectra of model fat with different ratios of free and bound water. The red 
arrow indicates the direction of the change in the percentage ratio between free and bound water in 
fat during dehydration. 

It can be seen from Figure 12 that the shape of optical density curves of fat (theoretical 
and experimental data) and oleic acid is similar, as evidenced by correlation analysis 
(Spearman’s rank correlation coefficient is equal to 1). 

  

Figure 11. Absorption spectra of model fat with different ratios of free and bound water. The red
arrow indicates the direction of the change in the percentage ratio between free and bound water in
fat during dehydration.

It can be seen from Figure 12 that the shape of optical density curves of fat (theoretical
and experimental data) and oleic acid is similar, as evidenced by correlation analysis
(Spearman’s rank correlation coefficient is equal to 1).
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Figure 12. Theoretical and experimental THz spectra of porcine fat and approximation curve for 
experimental data of oleic acid (from Figure 8). 

4. Discussion 
Basing on the literature data for the absorption spectra of adipose tissue in the THz 

range, there are no pronounced bands in the range of 0.25–1 THz [34,57,88], which is con-
sistent with the results of our study. Figure 3a shows the temperature dependence of ab-
sorbance at 1 THz. With temperature increasing, there is a decrease in the optical density, 
which is possibly explained by the decrease in scattering of the sample. Fat tissue typically 
consists of approximately 60–85% lipids and 15–30% water [43,89,90]. According to simple 
calculations, if absorption would decrease due to tissue dehydration, then absorption 
would decrease to 0.75 (and a decrease to 0.4 was obtained).  

In our studies, the temperature of the sample was slowly raised using a heating ele-
ment, and the effect of terahertz radiation on the temperature change of the sample was 
not observed. The complex, inhomogeneous structure of adipose tissue, consisting of cells, 
septa, and capillaries with different thermal properties, can lead to inhomogeneous heat 
propagation during laser heating [91]. However, in our case, with slow heating, the prop-
agation of heat in the adipose tissue could be considered homogeneous.  
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Figure 12. Theoretical and experimental THz spectra of porcine fat and approximation curve for
experimental data of oleic acid (from Figure 8).

4. Discussion

Basing on the literature data for the absorption spectra of adipose tissue in the THz
range, there are no pronounced bands in the range of 0.25–1 THz [34,57,88], which is
consistent with the results of our study. Figure 3a shows the temperature dependence of
absorbance at 1 THz. With temperature increasing, there is a decrease in the optical density,
which is possibly explained by the decrease in scattering of the sample. Fat tissue typically
consists of approximately 60–85% lipids and 15–30% water [43,89,90]. According to simple
calculations, if absorption would decrease due to tissue dehydration, then absorption
would decrease to 0.75 (and a decrease to 0.4 was obtained).

In our studies, the temperature of the sample was slowly raised using a heating
element, and the effect of terahertz radiation on the temperature change of the sample
was not observed. The complex, inhomogeneous structure of adipose tissue, consisting of
cells, septa, and capillaries with different thermal properties, can lead to inhomogeneous
heat propagation during laser heating [91]. However, in our case, with slow heating, the
propagation of heat in the adipose tissue could be considered homogeneous.

Some inclusion into the OD decrease of the suppression of THz wave scattering at
refractive index matching by free fatty acids released from adipocytes caused by thermally
induced cell lipolysis (optical clearing effect) can be expected.

The fat cell size is in the range of 15–250 µm. The majority of the adipose tissue lipids
are triglycerides. The size of its molecule, containing polyunsaturated fatty acids, is 1.5 nm.
Triglyceride molecules can form various polymorphic forms. The most common forms are
termed α, β’, and β in order of increasing melting point, packing density, and stability. The
α form is the least stable and easily transforms to either the β’ form or the β form [88,92].
Adipose tissue can be represented as a quasi-ordered structure due to the crystal nature of
triglycerides. Since quasi-ordered media have scattering properties from both random and
ordered structures, it is important to account for even a small local order of particles when
estimating the scattering properties. For the quasi-ordered structures, more comprehensive
approaches, such as generalized Mie solution or T-matrix formalism, should be applied [85].
It was shown that crystal triglycerides are less than 40 µm in size in free form [88]. Sizes
in the order of tens of micrometers are comparable in scale to the range of wavelengths
in the THz range, and so the precise sizing of the crystals has a large effect on the optical
properties of tissue in the THz range [93].

In addition, Figure 3 shows experimental THz spectra of the samples of porcine fat at
different temperatures. It can be seen that with increasing temperature, the frequency of
deformation vibrations of the chains of triglycerides of fatty acids increases. The explanation
for this process may be as follows. Molecules of triglycerides of fatty acids are able to hold
a certain number of water molecules on their surface using hydrogen bonds. These bonds
are formed with oxygen atoms that are part of carbonyl groups and glycerol crosslinking
of fatty acid triglycerides. When fatty acids are heated, the probability of breaking these
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hydrogen bonds increases. This leads to the fact that the weight of the chains decreases and
their mobility increases. This, in turn, leads to an increase in the frequency of deformation
vibrations of the chains of triglycerides of fatty acids.

In addition, the ability of fatty acids to retain water was considered when constructing
a model of porcine fat. The influence of the amount of water associated with fatty acids on
their theoretical THz spectra was investigated. We can hypothesize about the likely loss of
water in a tissue sample at the beginning of heating (a decrease in the extinction coefficient
due to a decrease in absorption). Then, free water first leaves the sample before bound
water (see Figure 11). In this case, the non-monotonous behavior of the extinction coefficient
on temperature is possible. And at the end of heating, the extinction coefficient decreases
due to a decrease in scattering during immersion of the cells with the resulting fatty acids
(lipolysis). The obtained simulation data (26.6% for bound water) are in good agreement
with the literature data, according to which the maximum percentage of water in healthy
adipose tissue is 30%, supposing that this is amount of bound and free water [43]. The
model of fat with different ratios of free and bound water (see Figure 11) can be considered
as a model for various pathological conditions of adipose tissue.

Because adipose tissue contains less water than muscle tissue, total body water tends
to decrease with age. Older people have a higher percentage of body fat and are especially
prone to dehydration. The proposed method for monitoring the water content in adipose
tissue is objective in comparison with the traditional diagnosis of obesity and concomitant
diseases. It is known that the ratio of lipids and water in tissues is a marker for diagnosing
and monitoring inflammatory changes in adipose tissue at the cellular level in obesity, even
when the standard body mass index is within the normal range [94].

The developed adipose tissue model can also be useful for predicting the level of obe-
sity in diagnosing the risk of non-alcoholic fatty liver disease in people with obesity [95,96].
The proposed technique for measuring the water content in adipose tissue can be used on
ex vivo biopsy material. Although biopsy is currently the gold standard for diagnosis, there
is a need to increase the speed of analysis of tissue samples and use less invasive meth-
ods [97]. At the present time, rapid analysis of biopsy material with a reliable prediction
can be implemented using terahertz spectroscopy and imaging [66]. In vivo, noninvasive
studies of adipose tissue water content using a multimodal approach in combination with
ultrasound, CT, and MRI will be the subject of our further research.

In general, despite the attractiveness, the methods of THz medical diagnosis are
still far from practice [98]. The challenging problems of THz technologies, restraining
their transfer to a clinical practice, are well-known and include the absence of robust
contractions of waveguides for the THz-wave delivery to hardlyaccessible tissues and the
limited depth of THz-wave penetration in biological tissues and liquids. Possible risks in
the application of the proposed method caused by the stimulation of positive or negative
biological effects in adipose tissues [99] can be avoided by choosing a proper THz intensity
and exposure time. The proposed diagnostic approach is applicable in the case of taking
a biopsy, when the excised tissue is examined, in the study of the surface layer of tissue
in vivo by reflectance spectroscopy, and when using the immersion optical clearing method.
Each of these methods reduces the effect of water absorption and contributes to an increase
in the signal-to-noise ratio due to tissue dehydration, which, however, cannot always be
well controlled.

5. Conclusions

The measurement and modeling of optical properties of adipose tissue and its compo-
nents with temperature changes in the terahertz range were performed. The optical density
of adipose tissue samples was shown to decrease as temperature increased, which can be
associated mostly with the dehydration of the sample. Some inclusion into the optical
density decrease of the suppression of THz wave scattering at refractive index matching
by free fatty acids released from adipocytes caused by thermally induced cell lipolysis can
be expected. Using complex molecular simulation of the adipose tissue at temperature
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change using classical molecular dynamics and quantum chemistry, we found correlations
between the results of measurements and modeling. The exact percentage of different types
of water (free and bound) in adipose tissue can be considered as a marker for diagnostics
of such diseases as diabetes, obesity, and cancer.
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