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Abstract

This paper describes the use of multiple models and model averaging for considering dose—
response uncertainties when extrapolating low-dose risk from studies of populations with high
levels of exposure. The model averaging approach we applied builds upon innovative methods
developed by the U.S. Food and Drug Administration (FDA), principally through the relaxing of
model constraints. The relaxing of model constraints allowed us to evaluate model uncertainty
using a broader set of model forms and, within the context of model averaging, did not result

in the extreme supralinearity that is the primary concern associated with the application of
individual unconstrained models. A study of the relationship between inorganic arsenic exposure
to a Taiwanese population and potential carcinogenic effects is used to illustrate the approach. We
adjusted the reported number of cases from two published prospective cohort studies of bladder
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and lung cancer in a Taiwanese population to account for potential covariates and less-than-
lifetime exposure (for estimating effects on lifetime cancer incidence), used bootstrap methods to
estimate the uncertainty surrounding the pg/kg-day inorganic arsenic dose from drinking water
and dietary intakes, and fit multiple models weighted by Bayesian Information Criterion to the
adjusted incidence and dose data to generate dose-specific mean, 2.5th and 97.5th percentile

risk estimates. Widely divergent results from adequate model fits for a broad set of constrained
and unconstrained models applied individually and in a model averaging framework suggest that
substantial model uncertainty exists in risk extrapolation from estimated doses in the Taiwanese
studies to lower doses more relevant to countries like the U.S. that have proportionally lower
arsenic intake levels.

Keywords

Model uncertainty; Model averaging; Dose—response modeling of epidemiological data; Inorganic
arsenic

1. Introduction

1.1. Background

This paper describes an approach that involves the use of dose-response model averaging
using multiple constrained and unconstrained models for evaluating model uncertainty.
Published studies of the risk of bladder cancer (Chen et al., 2010b) and lung cancer (Chen
et al., 2010a) within a large northeastern Taiwanese population that form the basis for the
WHO (2011) and FDA (FDA, 2016; Carrington et al., 2013) inorganic arsenic assessments
are used to illustrate the approach. The suitability of these Taiwanese studies for dose—
response2 analysis is uncertain due to questions around the ability to describe dose-response
from levels of inorganic arsenic intake estimated for this population, 0.85 ug/kg-day for the
reference groups and 2.0 ug/kg-day for the lowest exposure group (see Table 5) down to the
below 0.1 pg/kg-day background levels of inorganic arsenic estimated for other populations
such as the U.S. (see Section 2.4). The analysis we will describe uses dose—response model
averaging methods to evaluate confidence in extrapolation to the lower doses such as those
experienced in the U.S.

1.2. Overview of the Chen et al. (2010b; 2010a) studies

The prospective cohort studies of bladder (Chen et al., 2010b) and lung cancer risk (Chen
etal., 2010a) in 8,086 adult residents, aged 40 years and older, residing in four townships

in northeastern Taiwan afford several advantages that have enticed risk assessors (Carrington
etal., 2013; FDA, 2016; WHO, 2011) to use them as the basis for prominent dose—response
analyses:

. A large cohort exposed for large proportions of their lifespan, including
childhood, to a wide range of arsenic concentrations, principally from inorganic

2The methods we describe involve modeling the relationship between dose, estimated in terms of pg/kg-day inorganic arsenic intake,
and response. In this paper, the term “dose” generally represents what Zartarian et al. (2005) refer to as “intake dose” and represents
“the amount of agent that crosses a conceptual exposure surface over the nose and open mouth.”
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arsenic in drinking water; subjects were followed for a substantial period,
specifically 12 years plus 2 more years in a follow-up study by Yang et al.
(2013).

. The Northeastern Taiwanese population studied appeared to be adequately
nourished in contrast to high-exposure areas in south-eastern Taiwan where
nutritional insufficiency might have complicated the analysis of epidemiological
data.

. Exposure ranges were well documented (Chiou et al., 2001). Water
concentrations were measured from household wells serving over 85 percent
of the study subjects; concentrations were measured at study enrollment (1991-
1994), rather than relying on historical data.

. Outcome ascertainment was very reliable. Clinical outcomes were based on the
9th revision of the International Statistical Classification of Diseases and Related
Health Problems (ICD-9) codes and histopathological review of cases identified
in the Taiwan National Cancer Registry. Information on important covariates was
gathered from all subjects, and relative risks were calculated with appropriate
covariate adjustment.

. Both studies reported clinician-diagnosed cancer incidence, which is preferred
over mortality data (generally collected from death certificates) for dose—
response analyses (U.S. EPA, 2005).

. The prospective cohort design of these studies is amenable to relatively
straightforward statistical analysis and dose—response modeling arising from the
(assumed) random nature of the cancer incidence in the preselected populations
with specified ranges of arsenic exposure. The studies are amenable to the use
of standard maximum likelihood methods to fit dose—response functions for
exploring model uncertainty.

The primary source of drinking water in the study area was arsenic-contaminated shallow
wells. Shallow wells were first installed in the affected areas in the 1940s, and most of

the study subjects reported that they drank well water either continuously from birth (63.5
percent) or began drinking well water after birth and continued until enrollment (34.3
percent). Arsenic concentration data were taken from the Chiou et al. (2001) study; well-
water arsenic measurements, the principal component of which is inorganic arsenic (WHO,
2011; Mendez et al., 2017), were collected from 3,901 households (85 percent of subjects)
at study enrollment in 1991-1994. The average duration of well-water consumption was
reported to be 40.7 years (Chiou et al., 2001). Water arsenic concentration data were not
provided for individual subjects, only the numbers of subjects in different exposure ranges.
Chiou et al. (2001) reported the range of arsenic concentration was < 0.15-3,843 pg/L. Of
the 6,888 subjects for whom water arsenic concentrations were available, approximately
33% were exposed to < 10 pg/L (referent group), approximately 30% were exposed to
between 10 pg/L and 50 pg/L, about 27% were exposed to between 50 pg/L and 300 pg/L
and about 10% were exposed to > 300 ug/L.
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Outcome measures (numbers of subjects and cases of bladder and lung cancer by exposure
stratum, raw and adjusted relative risks) as reported by Chen et al. (2010b) and Chen et

al. (2010a) were used as inputs to the dose—response analyses. Subjects in these cohorts
were followed for an average of 11.6 years after recruitment. The approximate average

age of subjects at recruitment was 59 years. This age and follow up period are considered
appropriate for this health outcome (though not necessarily all health outcomes) given the
potential contribution of early life exposures and the 4 to 5 decade latent period for bladder
cancer (Steinmaus et al., 2014) and the fact that the majority of this population was exposed
for their entire lifespan (Yang et al., 2013).

2. Methods for dose-response analysis

Model averaging approaches were used to estimate the relationship between lifetime bladder
and lung cancer probabilities (absolute risks) and intake dose in a large prospective cohort
study of residents in northeast Taiwan (Chen et al., 2010b; Chen et al., 2010a). Both

the bladder and lung cancer analyses employ a bootstrap methodology to incorporate
uncertainty in the estimation of adjusted outcomes (cases of cancer) and estimated daily
inorganic arsenic intake dose. The methodologies are similar to those employed by FDA
(FDA, 2016; Carrington et al., 2013) for the same endpoints and study population. For
our purposes, the differences of note have to do with model choice. Because our intention
is to assess the impact of model selection on extrapolating low-dose risk from studies of
populations with high levels of exposure, we considered a broader set of models, adding

a Multistage model and unconstrained versions of four of the models considered by FDA
(Weibull, log logistic, Gamma, and dichotomous Hill). The purpose and impact of these
additional models are discussed further in Sections 2.3 and 4).

2.1. Bootstrap simulation approach

The dose-response estimation is built around a “bootstrap” methodology (Fig. 1), which
uses reported variability in arsenic intake and in outcome measures to derive mean and 2.5th
and 97.5th percentile risk estimates. The steps in the analysis include:

. Selection of outcome variables. For these studies, the outcome variables were
cases of total bladder and lung cancer cases and adjusted relative risks, as
reported by Chen et al. (2010b) and Chen et al. (2010a) for varying levels of
reported water arsenic concentration.

. Adjustment of outcome (cases). To model lifetime bladder or lung cancer
probability (absolute risk) versus dose, the reported partial lifetime outcomes
(cases) must be adjusted to make them consistent with (1) the reported covariate
adjusted risks (described below) and (2) a full lifetime of observation (see
Supplemental Material, Section 1).

. Bootstrap outcome simulation. The distributions of adjusted lifetime cases of
lung and bladder cancer in each of the exposure group were characterized by
sampling 1,000 times from the derived distributions of covariate-adjusted cases.
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. Water arsenic concentration. Data from Chiou et al. (2001) were used to estimate
the best-fitting parametric (mixed lognormal) distribution to the grouped water
arsenic data.

. Estimation of inorganic arsenic intake from water. Daily inorganic arsenic
intakes from water were estimated by sampling from the derived arsenic
concentration (estimated in the previous step) and distributions of daily water
consumption. Daily water intake data for the Taiwanese adult population were
derived from health survey data summarized by the Taiwan Department of
Health (TDOH, 2007), adjusted for seasonality. Intake estimates were not
adjusted for potential early life (infant) exposures. This adds uncertainty to the
analysis given that a majority of the study population were exposed from birth
(Yang et al., 2013).

. Estimation of dietary inorganic arsenic intake dose. Dietary inorganic arsenic
intake dose for the adult study population was estimated from data on
food consumption and arsenic concentrations in Taiwan, as described in the
Supplemental Material, Section 2. Estimates were developed for foods consumed
in substantial amounts for which arsenic concentration data were available.

. Bootstrap estimation of total inorganic arsenic intake dose. Average total
inorganic arsenic intake dose (Jg/kg-day) from water and diet was estimated
by sampling 1,000 times from uncertainty distributions estimated for the
mean water arsenic concentration, the mean water consumption, dietary intake
of specific foods, arsenic concentration distributions in food, proportions of
inorganic arsenic in food, bioavailability and body weight in each exposure
stratum.

. Dose-response fitting of bootstrap samples. Data from each of the 1,000
bootstrap outcomes and inorganic arsenic intake samples were used as inputs
to 9 dichotomous models (model selection is described below). For each run, the
same “seed” was used; that is, in all runs, the same intake and outcome samples
were selected for fitting in each iteration. Outputs of the bootstrap included
estimates of goodness of fit (likelihoods), Bayesian Information Criteria (BIC)
values, and Bayes weights used in model averaging.

. Model-averaged estimates of bladder and lung cancer risk. The average BIC
weights from the bootstrap model were applied to estimate model-weighted
lifetime risk predictions across the range of estimated inorganic arsenic intake
doses. In this analysis, all models were assumed to have the same “prior”
probability; that is, no models were excluded, and all models were weighted
equally a priori.

Outputs from the bootstrap models consist of multiple risk estimates at specified inorganic
arsenic intake values. The output distributions from the bootstrap provide nonparametric
summaries of the overall uncertainty, incorporating reported variability in each input
parameter. This bootstrap incorporates the effects of both dose uncertainty (by simulations
using reported variability in intake measures) and estimated sampling uncertainty in the
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outcome (cases of cancer). As discussed in Section 3, not all key sources of uncertainty (e.g.,
the different contribution that early life [infant] exposure could make) could be incorporated
into the bootstrap simulation. Most importantly, the model iterations are performed based on
group mean dose and outcome distributions and, therefore, do not accurately capture other
potentially important sources of individual variability in response to inorganic arsenic dose.

2.2. Input data and data sources

The following sections describe the approaches used to represent the uncertainty in the input
variables to the bootstrap model.

Bootstrap estimation of water and dietary inorganic arsenic intake—Details
regarding data sources and methods used to derive inputs for the bootstrap exposure
and inorganic arsenic intake dose are provided as Supplemental Material (Section 2). To
summarize:

. Average adult inorganic arsenic water concentrations were estimated by fitting
a mixed lognormal distribution (Supplemental Material Section 2.3.2) to the
drinking water concentration data from the Chen et al. cohort (Chiou et al.,
2001). Distributions of drinking water consumption were estimated based on
age-specific survey data for adults 40 years of age and older from the Taiwan
Department of Health (TDOH, 2007).

. Consumption of foods identified as contributing substantially to total inorganic
arsenic intake were likewise obtained from the Taiwan Department of Health
survey data (TDOH, 2007). Inorganic arsenic concentration distributions (for rice
and leafy vegetables) or central tendency estimates (tubers, pulses, meats and
fish) were estimated from various studies of adults in Taiwan and other Asian
countries.

As shown in Fig. 1, the estimated inorganic arsenic intake doses from water and diet were
summed for each subject in each bootstrap iteration, and average total daily intake doses
were estimated across each exposure group. The 1,000 sets of group average inorganic
arsenic intake dose served as inputs, along with the outcome data sets, to the dose—response
estimation. The mechanics of the bootstrap intake dose sampling are discussed in detail in
the Supplemental Material, Section 2.5.

2.3. Model averaging approach for the estimation of lifetime probability (“Absolute” Risk)

For the modeling averaging, nine dose—response model forms were fit to each bootstrap
data set, as shown in Table 1. These models vary in the degree of complexity, numbers of
parameters, and ability to accommodate specific forms of the dose—response relationship.
The intent in including this diverse set of models was to cover “model space” as much

as was practical, and to explore “model uncertainty” as fully as possible. The models

are all standard forms for dichotomous endpoints that are included in EPA’s Benchmark
Dose Software (BMDS) package.3 In this analysis, models were estimated by maximizing
binomial likelihood with varying constraints (i.e., using models with both constrained and
unconstrained parameters), as discussed below; maximization was implemented using the
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R package for nonlinear minimizations subject to box constraints (n/minb) with default
convergence criteria.

Outputs from the bootstrap analysis included 1,000 sets of maximum likelihood parameter
estimates derived for each input data set. Log likelihoods also were saved for each model
and data set, and Bayesian Information Criteria (BIC) values were calculated in the usual
fashion (Allen et al., 2020b):

BIC = — 2 x log(likelihood) + k X In(n) o

where ks the number of parameters estimated in the model and s the number of
observations, (in this case five, corresponding to the number of exposure groups).

The weights employed in model averaging were based on the calculated average BIC

values for each model. Weighting allows multiple models to contribute to the dose-response
estimates, taking into account their overall goodness of fit (log likelihood), penalized
according to the number of estimated parameters. For each model (/), the Bayes weight
(posterior probability) was calculated as:

(= 0.5x BIC;))
Weight; =

- ; @
w9_ 1e( 05x BIC)

This approach assigns approximate relative posterior probabilities that the individual models
are “true” based on their penalized log likelihood (Neath and Cavanaugh, 2012). In all cases,
the “prior” weights for all models were assumed 1/9; that is, no models were assumed a
priorito be better or worse than any others were. This assumption could be changed if, for
example, quantitative mechanistic data become available that indicate one or more of the
models is inherently more or less biologically plausible than the others.

When applied individually to dose—response datasets, EPA generally recommends (U.S.
EPA, 2012) that four of the nine model forms explored in this analysis (Weibull, log
logistic, Gamma, and dichotomous Hill) have their slope or power parameters (“b” terms in
the Table 1 equations) constrained to be > 1.0. These parameters are constrained because
the individual unconstrained models can take on forms (e.g., supralinear at low doses

or nonmonotonic) that are biologically improbable. In the context of model averaging,
however, relaxing these constraints is unlikely to result in the extreme supralinearity (slopes
that approach infinity as dose approaches 0) that can be observed for some individual
models because the probability of multiple, diverse models predicting the same extreme
supralinearity is low. Further, relaxing constraints in a model averaging analysis can improve
overall model fits and benchmark dose (BMD) coverage by including more flexible curve
shapes that can better represent the data (and possibly biology) (Wheeler and Bailer, 2009).
Therefore, for our purposes (e.g., for evaluating model uncertainty using a broad set of

3The dichotomous models available in the U.S. EPA BMDS software (https://www.epa.gov/bmds) were coded in the R statistical
package (https://www.r-project.org/) for use in the model averaging analysis (left plots in Figs. 2 and 3). The same models from the
latest version of BMDS, BMDS 3.2, were subsequently used to generate individual model plots (right plots in Figs. 2 and 3).
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reasonable model forms), model averaging was performed in two ways, using the EPA
preferred constraints for all nine models (referred to as the “constrained” analysis) and using
the same model suite with the power parameters of the Weibull, Log-logistic, Gamma and
dichotomous Hill models unconstrained (referred to as the “unconstrained” analysis).

The effects of different assumptions regarding constraints on the slope or power parameters
were investigated by calculating model-weighted risk estimate distributions with the
parameters constrained (as traditionally) to be greater than or equal to 1.0 and with no
constraint. Weighted estimates of lifetime bladder and lung cancer probabilities from the
Chen et al. (2010a, 2010b) were calculated for a series of doses from 0 to 40 pg/kg-day,
approximately corresponding to the range of mean total inorganic arsenic intakes observed
in the bootstrap data set corresponding the study population (see Section 3.2).

2.4. Estimation of lifetime extra risk

As described in the Supplemental Material, Section 3, the lifetime probability of disease
(“absolute” risk) was first estimated (Table 4) through model averaging of the full-life
adjusted cases/subjects (Table 2) vs estimated intake dose from all sources (Table 3). Then
extra risk estimates were calculated from these results using the risk estimated at an assumed
U.S. background intake level of 0.071 pg/kg-day as the background risk level (Table 5).
Extra risk (Table 6) is estimated as:

Extrarisk = (R(d) — R(bgd)/(1 — R(bgd)) @A)

where R(d) is absolute risk at dose d and R(bgd) is the risk predicted at the background
arsenic intake level. The U.S. background intake level was estimated by assuming zero
arsenic intake from air exposures and summing the median U.S. background dietary
inorganic arsenic intake of 0.05 pg/kg-day (Xue et al., 2010) with a background drinking
water inorganic arsenic intake of 0.021 pg/kg-day, derived by assuming that a typical adult
water intake of 0.014 L/kg-day (U.S. EPA, 2011) and a typical drinking water arsenic
concentration of 1.5 pg/L (Mendez et al., 2017).

3. Results

3.1. Bootstrap modeling of outcomes and inorganic arsenic intake

The third and fourth columns of Table 2 show the outcome metrics, “Observed cases”

and ”Covariate-adjusted relative risk,” reported by Chen et al. (2010b) for bladder cancer
and by Chen et al. (2010a) for lung cancer. The bootstrap method considers simulated
sampling uncertainty in outcomes by assuming that each subject in each exposure group
represents a Bernoulli trial (Papoulis, 1984), with individual probabilities of getting cancer
defined by the average adjusted lifetime probability of cancer in the group. Count data were
adjusted to account for two important factors: 1) the effects of covariates (demographics,
education level, smoking, and alcohol consumption) and 2) the lessthan-lifetime follow-up
period reported in the study (see Supplemental Material, Section 1).

Table 3 shows estimates of the mean inorganic arsenic intakes from all sources in the five
Chen et al. (2010b) exposure groups from a single bootstrap iteration. The estimates include
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contributions from both direct water ingestion and cooking water (for rice and vegetables)
as well as dietary contributions from rice, vegetables, pulses (lentils), meat, and fish. The
estimates span a large range, from approximately 0.85 pg/kg-day in the 0 to 10 pg/L group
to 38.8 ug/kg-day for the > 300-ug/L group, whose estimated mean water concentration
exposure is approximately 840 ug/L. As expected, total inorganic arsenic intake for the
lowest exposure groups are primarily through diet, while the proportion of intake associated
with water ingestion (direct and through cooking water) accounts for the bulk of inorganic
arsenic intake in the high-exposure groups. In this analysis, inorganic arsenic concentrations
in specific food items are assumed to be independent of water exposure levels; that is,
while cooking water intake is modeled as a function of selected for calculating extra risks
using the model averaging results from these studies was set to the estimated arsenic

dose encountered by the general U.S. drinking water concentration, inorganic arsenic
concentrations in foods do not vary with modeled inorganic arsenic concentration. It is
assumed that no inorganic arsenic in the raw food is lost during cooking. Because the intake
statistics in Table 3 are derived from a single bootstrap iteration, they incorporate the large
variability and uncertainty to be expected when the individual intake estimates are derived
through Monte Carlo sampling from multiple exposure factors. The mean total inorganic
arsenic intake doses for the five exposure groups are very similar to those estimated by
FDA (FDA, 2016), who used slightly different data sources and methods from this analysis
(Supplemental Material Section 2).

3.2. Model averaging results

The results of model averaging analyses for the Chen et al. (2010b) bladder cancer and
the Chen et al. (2010a) lung cancer data are summarized in this section. The Supplemental
Material sections 3 and 4 provide additional details regarding the model averaging analyses.

3.2.1. Lifetime probability and extra risk of lung and bladder cancer—Both
unconstrained and constrained model parameters were successfully fit to all 1,000 bootstrap
iterations (the likelihood maximization routine successfully achieved specified convergence
criteria). Model BIC weights varied slightly depending on whether the power parameters
were constrained.

For bladder cancer, the relatively flexible dichotomous Hill model received the highest BIC
weights, from 0.24 (constrained) to 0.42 (unconstrained). Roughly equivalent BIC weights
were obtained for the quantal linear, log logistic, Weibull, Gamma and Multistage 2 models
for both constrained and unconstrained runs. The probit, logistic, and log probit models
received low BIC weights (< 0.05) for both constrained and unconstrained runs, perhaps
because these model forms could not fit the slightly convex (upward) curve of the bladder
cancer data.

For the lung cancer data, when power parameters were constrained, the dichotomous Hill
model was assigned the highest BIC weight (0.19), and the weights assigned to the quantal
linear, Probit, and logistic were between 0.14 and 0.17. When the power parameters were
un-constrained, seven of the nine models (Hill, quantal linear, Probit, logistic, log-logistic,
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and Weibull) were assigned weights with a relatively narrow range (0.11-0.15). The log-
Probit and Multistage 2 models received low BIC weights (< 0.1).

Weighted estimates of the lifetime probability of contracting bladder and lung cancer in the
Chen et al. (2010a, 2010b) study population (northwestern Taiwanese cohort), derived from
the constrained and unconstrained models, are summarized in Table 4. It can be seen that,
within the range of the data (approximately 1-40 pg/kg-day), the predicted mean risks, 2.5th
and 97.5th percentiles derived from the unconstrained and constrained models are similar.
At lower doses (below the range of the data), the weighted risk estimates derived from

the unconstrained models curve sharply downward compared to those from the constrained
models (Figs. 2 and 3; lower plots).

Table 5 presents the estimated lifetime extra risk estimated for bladder cancer and

lung cancer, respectively, for various intake dose levels and equivalent drinking water
concentrations. While the differences in lifetime probability (absolute risk) predicted by
the constrained and unconstrained models are relatively small, the resultant differences in
extra risk predicted by the constrained and unconstrained models are substantial for both
bladder and lung cancer, particularly in the low-dose range. This is because “background
risk™# from which extra risks are calculated is lower for both health outcomes when the
slope or power parameters are unconstrained.

4. Discussion

We have conducted a case study on the use of model averaging for the evaluation of

model uncertainty. For illustrative purposes, we have performed dose—response analysis of
inorganic arsenic intake doses associated with exposures reported in two studies (FDA,
2016; WHO, 2011) of lung and bladder cancer incidence in the northeast Taiwanese
population (Chen et al., 2010b; Chen et al., 2010a). We used a model averaging approach
that is similar to the approach used by FDA (2016) modified to suit our goal of examining
model uncertainty. Notably, we expanded the number of models considered to include a

2nd degree Multistage model and Weibull, log logistic, Gamma, and dichotomous Hill
models that are unconstrained with respect to their power parameters, and we weighted

all models equally a prior. The Multistage model was included because it is viable model
and is EPA’s preferred model for evaluating cancer data, particularly animal bioassay data
(U.S. EPA, 2012). The use of unconstrained power models has been discouraged when using
an approach that involves selecting a single model from a suite of adequate model fits to
avoid the selection of models with a biologically unreasonable, infinite slope at the origin
(U.S. EPA, 2012). However, the European Food safety Authority (EFSA, 2017) does not
recommend constraining models, based largely on the work of Slob and Setzer (2014) who
argue that there is no biological reason to reject the unrestricted models. For the purposes

of our analysis, unconstrained models have been included primarily because a) it has been
shown that, in a model averaging context, augmenting the model space with supra-linear
dose-response models can substantially improve BMD coverage (Wheeler and Bailer, 2009)

4Because this ‘background risk’ is based on the modeling estimate from the Chen study of Taiwanese persons, it does not represent
background disease incidence in a U.S. population. U.S. background incidence may be different, even in the absence of arsenic
exposure, owing to genetic differences or other factors.
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and b) because our model averaging results using unconstrained models did not result in
extremely steep supra-linear dose—response curves (Figs. 2 and 3). Nevertheless, as can be
seen from the plots of individual model runs (Figs. 2 and 3, right plots), the differences
we observe between models are not restricted to the unconstrained models as there are
substantial differences in the modeling results even within the constrained models (black
plots).

Arsenic exposures from drinking water were well-documented in these studies.
Measurements were obtained directly from wells providing drinking water to the subjects’
households. While water arsenic concentrations were measured at enrollment, and the
exposure estimates do not take into account natural variations in arsenic exposure (including
across lifestage, since the cohort was exposed from birth but estimates only reflect adult
intakes) or changes due to mitigation, approximately 97 percent of the subjects, reported
they had either started drinking well water at birth and still drank it or started at a later age
but still obtained water from tube wells (Chen et al., 2010b). The average duration of well
water consumption was estimated to be 40 years in the study cohort.

Outcome ascertainment (numbers of cases of lung and bladder cancer) was based on

data from the Taiwan National Cancer Registry, linked to specific ICD-9 codes. Detailed
information on exposure history and important covariates (demographics, education level,
smoking, and alcohol consumption) was gathered from all subjects. Covariate-adjusted
relative risks were used to estimate covariate-adjusted cases of cancer for use in the
bootstrap simulation. The data used in our analysis of the Chen et al. (2010b; 2010a)
studies were obtained after 12 years of follow-up, with the study by Yang et al. (2013)
providing information on cancer incidence after two additional years, and reported incidence
separately for smokers and nonsmokers. While the basis for the selected exposure group
bounds was not clearly explained and the numbers of cancer cases were relatively low in
some exposure groups, uncertainty in the outcome estimates was modeled by treating every
hypothetical “subject” in the bootstrap as a Bernoulli trial that “got cancer” based on the
covariate-and whole-life adjusted probability of cancer for each exposure group.

In contrast to many published analyses that assess the relationship between exposures (e.g.,
water concentrations) and responses, we have based this analysis on the relationship between
estimated total intake dose of inorganic arsenic from water and diet and responses. Because
dietary sources can account for a large proportion of total intake at low drinking water
levels, incorporating dietary intake is necessary to afford accurate representation of dose—
response relationships where water exposures are small. Here, we used data related to food
consumption and arsenic concentration developed by the Taiwanese Department of Health
(TDOH, 2007) and from other literature sources, to derive simulation estimates of inorganic
arsenic intake from water and important dietary sources. The bootstrap simulation included
both direct ingestion of drinking water and water used in the cooking of rice and vegetables
(Supplemental Materials Section 2.5).

Two aspects of the dataset that potentially limit its use for extrapolating to doses typically
encountered in U.S. populations are that the numbers of cases in the low exposure groups
are small and the estimated average inorganic arsenic intake dose associated with the lowest
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exposure group (0.85 pg/kg-day) is considerably above estimated typical U.S. inorganic
arsenic intake dose (on the order of 0.07 pg/kg-day) experienced by individuals living

in areas with low drinking water concentrations; see Section 3.2. A number of other
considerations beyond the scope of this article have implications for the use of the results
from this analysis to estimate potential risks in other populations outside of northwestern
Taiwan, including the U.S. These include differences in both the baseline disease incidence
and the relationship between arsenic intake and disease that can be caused by factors

such as differences in smoking patterns, dietary differences and nutritional factors, and
genetic variations affecting both the pharmacokinetics and pharmacodynamics of response
to inorganic arsenic exposure.

As reflected in Figs. 2-5, our model averaging analyses indicate substantial model
uncertainty in extrapolating from the inorganic arsenic doses estimated for the Taiwan
cohort (Table 3) to doses in the range of the estimated U.S. background dose of 0.071
ug/kg-day. The 0.85 pg/kg-day dose associated with the reference group and 2.0 pg/kg-
day dose associated with the lowest exposure group of the Chen et al. (2010b; 2010a)
studies (Table 5) are 12-fold and 28-fold higher, respectively, than the U.S. background
estimate of 0.071 pg/kg-day. At a 0.19 pug/kg-day dose, the dose associated with the 10
ug/L U.S. drinking water standard, our model averaging analyses indicates that there is

a 4-fold and 8-fold difference between constrained and unconstrained model estimates of
lifetime extra risk for bladder and lung cancer, respectively, with much greater differences
estimated from the individual models (see Figs. 2 and 3). The model uncertainty increases
as one approaches background; at 0.12 pg/kg-day the difference between constrained and
unconstrained lifetime extra risk estimates for bladder and lung cancer was roughly 5-fold
and 13-fold, respectively (Tables 4 and 5).

5. Conclusions

We have conducted a model averaging dose—response analysis using a broad range of
constrained and unconstrained models. The case studies for this analysis were lung and
bladder cancer risks associated with intake doses associated with inorganic arsenic exposure
in the northeast Taiwanese population studied by Chen et al. (2010b; 2010a). A broad range
of models was applied to investigate whether model choice would have a large impact on
attempts to extrapolate risk estimates from the relatively high dose levels of Chen et al.
(2010b; 2010a) to doses more relevant to countries like the U.S. that have proportionally
lower arsenic exposure levels. The reported analyses further extends and refines previous
analyses of the same data sets conducted by WHO (2011), and the FDA (FDA, 2016;
Carrington et al., 2013) by evaluating, to the extent practical, important sources of intake
and outcome variability and uncertainty in the data set. Limitation of the analysis include
the lack of early life (infant) exposure information and that only aggregate (grouped) data
related to individual adult exposures, outcomes, and covariate distributions were available
for modeling.

The extrapolation of risk from high Taiwanese doses to doses experienced by U.S.
populations involves considerable model uncertainty as indicated by the substantial model
dependence in the estimation of lifetime probabilities (Table 4) and extra risk (Table 5).
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For these reasons, it will be important to consider alternative approaches for the estimating
risk at low inorganic arsenic doses, such as those encountered in U.S. populations. One

such approach that allows for the consideration of dose—response information from multiple
studies is the application of Bayesian meta-regression methods (see Allen et al., 2020a, b for
a case study applying such approaches to the inorganic arsenic evidence base).

This paper demonstrates the value of a model averaging approach using a broad spectrum
of constrained and unconstrained models in situations where there is uncertainty in the
extrapolation of risk from a study population to a different, target population. In this case,
the results of such a model averaging analysis of the Chen et al. (2010b; 2010a) studies
indicate that other approaches, such as Bayesian meta-regression analyses, that have the
potential to better inform dose—response in the low dose region may be warranted for
more reliable estimation of lung and bladder cancer risk at U.S.-relevant inorganic arsenic
exposure levels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 2.

M%del average (left) and individual model (right) results for predicted lifetime probability
(absolute risk) of bladder cancer vs. all doses (upper plots) and low doses (lower plots) using
constrained (black) and unconstrained (U; red) versions of four models compared to adjusted
incidence from adjusted relative risks reported in Chen et al. (2010b).
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