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Previous studies suggest there is a complex relationship between sexual and general affective stimulus processing, which varies
across individuals and situations. We examined whether sexual and general affective processing can be distinguished at the brain
level. In addition, we explored to what degree possible distinctions are generalizable across individuals and different types of sexual
stimuli, and whether they are limited to the engagement of lower-level processes, such as the detection of visual features. Data on
sexual images, nonsexual positive and negative images, and neutral images from Wehrum et al. (2013) (N = 100) were reanalyzed
using multivariate support vector machine models to create the brain activation-based sexual image classifier (BASIC) model. This
model was tested for sensitivity, specificity, and generalizability in cross-validation (N = 100) and an independent test cohort (N = 18;
Kragel et al. 2019). The BASIC model showed highly accurate performance (94–100%) in classifying sexual versus neutral or nonsexual
affective images in both datasets with forced choice tests. Virtual lesions and tests of individual large-scale networks (e.g., visual or
attention networks) show that individual networks are neither necessary nor sufficient to classify sexual versus nonsexual stimulus
processing. Thus, responses to sexual images are distributed across brain systems.
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The brain activation-based sexual image
classifier (BASIC): a sensitive and specific
fMRI activity pattern for sexual images
Sexual stimuli are generally believed to be associated
with the (co-)activation of positive affect. For instance,
the International Affective Picture System (IAPS), widely
used in emotion research, assigns positive valence to sex-
ual stimuli. Yet, psychophysiological and experimental
studies on sexual desire and arousal present a more com-
plex association between sexual responses and general
positive and negative affect (Peterson and Janssen 2007).
Also, neuroimaging findings suggest that parts of the
brain may respond to explicit sexual stimuli in the same

way as they do to nonsexual, disgust-inducing stimuli
(Borg et al. 2014). The association between responses
to sexual stimuli and positive and negative affect is
not static either, as the same sexual stimulus can be
appraised (i.e., assigned a meaning based on the stimulus
in context) differently by different individuals and in
different situations (Bancroft et al. 2003; Lykins et al.
2006; Brauer et al. 2009).

Visual sexual stimuli are commonly used to study
processes relevant to the activation and regulation
of sexual arousal. The level of sexual arousal such
stimuli induce, both subjectively and in terms of genital
response, varies, however, and depends on a number
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of factors, including stimulus content, intensity, and
duration (for an overview, see van’ t Hof and Cera
2021). Even though the presentation of sexual stimuli
does not always result in high levels of sexual arousal
(e.g., when presenting still images for a short duration),
studying brain responses to visual sexual stimuli does
provide insight into the initial appraisal of sexual stimuli,
including which brain processes might be shared or
distinct from those related to other affective stimuli.
Previous studies using backward masking have revealed
that the sexual content of a stimulus can be extracted
without the need for higher-level or conscious processes,
and subliminal presentations of sexual stimuli have
been found to prime genital responses in both men
(Janssen et al. 2000) and women (Ponseti and Bosinski
2010). A model by Janssen et al. (2000) proposes that
sexual stimuli may convey more than one meaning. This
(co-)activation of nonsexual affective responses to sexual
stimuli can also be elicited automatically (Brauer et al.
2012; Macapagal et al. 2011). For example, women
with a DSM-IV diagnosis of hyposexual desire disorder
displayed less positive (but not more negative) implicit
associations with sexual stimuli compared with sexually
functional women (Brauer et al. 2012).

Previous neuroscientific studies have predominantly
compared brain activation during sexual and neutral
visual stimuli using univariate neuroimaging analysis
methods. These studies demonstrated varying dis-
tributed brain activation patterns for sexual stimulus
processing (for meta-analysis and reviews, see Georgiadis
and Kringelbach 2012; Stoléru et al. 2012; Poeppl et al.
2016; Ruesink and Georgiadis 2017; Mitricheva et al.
2019). The results, combined, suggest that there is
not one “sex nucleus” but that a distributed network
of different areas is involved in sexual stimulus pro-
cessing. Studies comparing brain response to sexual
and general affective stimuli, specifically, both overlap
and differ in their results. Both Walter et al. (2008a)
and Wehrum et al. (2013) found activation in the
ventral striatum (VS), hypothalamus, anterior cingu-
late cortex (ACC), and superior parietal lobes (SPL).
However, Walter et al. (2008a) also found activation in
the dorsal medial prefrontal cortex (dmPFC), ventral
medial prefrontal cortex (vmPFC), precuneus, occipital
cortex, and superior parietal lobes (SPL), whereas
Wehrum et al. (2013) found additional activation in
the orbitofrontal cortex (OFC), the middle frontal gyrus,
precentral gyrus, and inferior temporal gyrus. Almost all
the regions that have responded more strongly to sexual
stimuli than to other affective stimuli in both studies
have been linked to processing a variety of emotions.
It thus remains unclear whether brain responses to
sexual stimuli are robustly and reproducibly different
from responses to general positive and negative affective
stimuli.

In order to arrive at a more conclusive answer
to the question of whether the processing of sexual
stimulus is distinct from general affective stimulus

processing, this study starts from the assumption that
we could benefit from shifting from studying separate
univariate activations to a more integrated multivariate
brain model approach. Brain models have been created
for many different complex psychological processes,
including emotions (Kragel and LaBar 2014; Chang et al.
2015; Wager et al. 2015; Saarimäki et al. 2016), pain
(Marquand et al. 2010; Wager et al. 2013), memory
(Norman et al. 2006; Harrison and Tong 2009), attention
(Rosenberg et al. 2015), and neurological and psychiatric
disorders (for reviews, see Arbabshirani et al. 2017;
Woo et al. 2017). These studies reveal a “many-to-
many” mapping between brain regions and psychological
processes. They also show that the brain processes
and systems necessary to differentiate one stimulus
category or psychological category from another are
distributed across brain regions, and often across
multiple large-scale systems. This advances findings
from traditional activation maps by quantifying how
accurately psychological categories can be “decoded”
from the brain and which brain regions/systems are
essential. In the field of sex research, Ponseti et al. (2012)
created a brain model that can distinguish preferred
from nonpreferred sexual stimuli, providing a promising
objective tool that may ultimately contribute to the
clinical diagnosis of pedophilia and an understanding
of its brain bases. While standard univariate approaches
have often led to structure-centric theories of complex
mental processes (e.g., amygdala is critical for fear,
anterior cingulate cortex for pain), meta-analyses have
revealed that a structure-centric view is insufficient,
as virtually every anatomical structure is involved in
a wide array of different cognitive functions (Yarkoni
et al. 2011). Multivariate approaches respect the many-
to-one mapping between brain structures and mental
states, allowing that populations of neurons within and
across brain regions work together to create neural
representations of mental states (Norman et al. 2006),
in line with a long and growing literature on population
coding in neuroscience (for a brief review, see Pouget
et al. 2000; Kragel et al. 2018). Multivariate models can
be tested for utility as neuromarkers, indicators of the
presence of a particular mental state or event, by testing
their sensitivity, specificity, and other measurement
properties. If specificity is tested, this approach can
also inform on the many-to-many mapping between
brain regions and categories of mental events, shedding
light on whether mental constructs can be empiri-
cally dissociated based on different multivariate brain
patterns.

The current study builds on previous research on the
connection between sexual and nonsexual positive and
negative affect, in that its general aim is to examine
whether we can distinguish sexual stimuli processing
from general affective processing. We tested whether
a binary multivariate classification model is capable of
distinguishing between processing of sexual versus other
types of (affective) stimuli in a manner generalizable
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across participants. For this purpose, we first reanalyzed
data from Wehrum et al. 2013; (N = 100), to date
the largest neuroimaging study that included sexual,
nonsexual affective (positive and negative), and neutral
stimuli. We used a conjunction across several multivari-
ate support vector machine (SVM) models to create the
brain activation-based sexual image classifier (BASIC)
model, which identifies a subset of regions critical for
distinguishing sexual from both nonsexual negative and
positive affect. We tested the sensitivity and specificity
of the BASIC model in cross-validated analyses on the
Wehrum et al. (2013) dataset (applied to new individuals
whose data were not used in model training) and in
a new, independent validation cohort that was tested
only once on the final BASIC model (N = 18; Kragel et al.
2019). The BASIC model showed strong sensitivity and
specificity for sexual stimulus processing, indicating
that the model showed a positive response to sexual
stimuli and a negative response to non-sexual affective
stimuli, respectively. We then further tested to what
degree the classification may be attributable to the
involvement of lower-level processes and the large-
scale networks to which they belong. This work shows
that the BASIC model can classify, based on brain data,
whether a participant was presented with a sexual or
nonsexual affective/neutral stimulus with high accuracy.
This pattern was generalizable across individuals and
contextual factors and distributed across large-scale
networks.

Materials and methods
Data from Study 1, published in Wehrum et al. (2013) and
Wehrum-Osinsky et al. (2014), were reanalyzed.

Participants
One hundred heterosexual, right-handed participants (50
women, 50 men, Mage = 25.4 years, STD = 4.8 years) with
normal or corrected-to-normal vision were recruited
to participate in the fMRI study. Participants with a
history of psychiatric or neurological disorders, current
psychotropic medication use, sexual dysfunctions, or
medication influencing attention or sexual appetence
were excluded. Twenty-six women were using oral
hormonal contraceptives and one was using vaginal
hormonal contraceptives. Of women without hormonal
contraception, women were asked to indicate the
beginning of their last menstrual cycle to assess duration
of their menstrual cycle and actual cycle phase. Eleven
women indicated that they were in the follicular phase,
eleven in the luteal phase, and one woman had an irreg-
ular cycle and therefore her phase couldn’t be assessed.
Written informed consent was obtained after the
complete procedure has been explained. The study was
conducted in accordance with the Declaration of Helsinki
and approved by the ethics committee of the German
Psychological Society.

Experimental design
Stimuli

A total of 120 images were selected, with 30 images for
each condition: sexual, positive, negative, and neutral.
Sexual and neutral images were selected from the inter-
net (for a detailed explanation of the selection procedure,
see Wehrum et al. 2013) and positive and negative images
were taken from the International Affective Picture
System (Lang et al. 2005). For corresponding IAPS picture
numbers, see Supplementary Information 2. Sexual
images depicted scenes with couples (always one man
and one woman) practicing vaginal intercourse, oral or
manual stimulation. Half of the sexual images depicted
genitals and half did not. Neutral images depicted men
and women in nonsexual interactions (e.g., during a
conversation). Positive images showed nonsexual scenes
typically rated as highly positively valent and medium
in arousal (e.g., sport scenes and people in funfairs).
Negative images showed scenes typically rated as highly
arousing and highly negative (e.g., mutilated bodies).
Both typically contained images of human bodies, as
did the sexual images.

Experimental design
For each participant, 30 images per condition were
assigned randomly to six blocks of five images each.
Each picture was presented for 3 s and the blocks were
presented in pseudorandomized order. After each block,
the participant rated valence, arousal, and sexual arousal
on a three-button keypad attached to the MRI Table.
The Self-Assessment Manikin (Bradley and Lang 1994)
was used to assess valence and arousal and a nine-point
Likert-type scale was used as a scale for sexual arousal.
The scales were presented for a maximum of 4 s, followed
by a fixation cross until the next block.

Image acquisition
The functional and anatomical images were acquired
with a 1.5 tesla whole-body MR tomography (Siemens
Symphony with quantum gradient system, Siemens
Medical Systems, Erlangen, Germany) with a standard
head coil. Structural image acquisition was conducted
prior to the functional session and consisted of 160
T1-weighted sagittal slices (1-mm slice thickness). Also
prior to the functional image acquisition, a gradient echo
field map sequence was acquired to obtain information
for unwarping B0 distortions. For functional imaging,
a total of 370 volumes were recorded using a T2∗-
weighted gradient echoplanar imaging sequence (EPI)
with 25 axial slices covering the whole brain (slice
thickness = 5 mm; gap = 1 mm; descending slice order;
TA = 100 ms; TE = 55 ms; TR = 2.5 s; flip angle = 90◦;
field of view = 192 × 192 mm; 64 by 64 matrix). The
orientation of the axial slices was paralleled to the OFC
tissue–bone transition to keep susceptibility artifacts
to a minimum. To minimize head movement artifacts,
participants’ heads were firmly fixated using the lateral
clamp motion suppression system (provided by Siemens
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for head imaging). The first three volumes of the EPI
sequence were discarded to allow for T1 equilibration
effects.

Preprocessing
Preprocessing and first-level analyses were carried
out using Statistical Parametric Mapping (SPM8, Wel-
come Department of Cognitive Neurology, London, UK;
2008) implemented in MATLAB 2007b (MathWorks Inc.,
Sherborn, MA, USA). Preprocessing included unwarp-
ing and realignment to the first volume (b-spline
interpolation), slice timing correction, coregistration
of functional data to each participant’s anatomical
image, normalization to the standard brain of the
Montreal Neurological Institute, and smoothing with
an isotropic three-dimensional Gaussian kernel with
a full width at half maximum of 9 mm. Two male
participants were excluded from further analyses
due to excessive head movements, as described in
Wehrum et al. (2013).

First-level analyses
Subject-level models were analyzed using the general
linear model (GLM), which is equivalent for SPM8 and
later versions to date (e.g., SPM12). Voxel time series
were modeled using onsets and durations of the four
experimental conditions: sexual, positive, negative, and
neutral image blocks. Rating phases as well as the six
movement parameters obtained from the realignment
procedure were also included in the general linear model
as covariates of no interest. Regressors were convolved
with the canonical SPM double-gamma hemodynamic
response function and a high-pass filter (256-s cutoff)
was applied to the data and design. Serial correlation
was modeled using SPM’s approximation to the AR(1)
model. Functional data were screened for outlier vol-
umes using a distribution-free approach with threshold-
ing for skewed data (Schweckendiek et al. 2013). Each
resulting outlier volume was later modeled within the
general linear model as a regressor of no interest. Custom
code, written in MATLAB (2018b, The MathWorks, Inc.,
Natick, MA) and available from the authors’ website
(https://canlab.github.io), was used to visually inspect
the preprocessed first-level activation parameter esti-
mate (beta) images for potential artifacts and calculate
Mahalanobis distance, a measure of multivariate dis-
tance of each first-level image from the group that can
indicate outliers. Data of one male participant exceeded
the threshold for Mahalanobis distance (P < 0.05, Bonfer-
roni corrected) and were therefore determined to be a
multivariate outlier and excluded from further analyses.

Predictive model development
Custom MATLAB (MATLAB 2018b, The MathWorks, Inc.,
Natick, MA) code available from the authors’ website
(https://canlab.github.io) was used for the second-level
analysis, which consisted of multivariate predictive
modeling applied to first-level beta images. For the

development and testing of the model, three whole-brain
SVMs (Gramfort et al. 2013) were trained to predict, based
on brain response, whether participants were presented
with either a sexual versus 1) a positive affective, 2) a
negative affective, and 3) a neutral image. The three
SVMs were tested using 5-fold leave-whole-participant-
out cross-validation as well as an independent test
cohort. To interpret the models and help evaluate their
neuroscientific plausibility, we followed a recently pub-
lished protocol for interpreting machine learning models
(Kohoutová et al. 2020). We included analysis steps
for model development, feature-level assessment, and
model- and neurobiological assessment. The training
and validation are described further below.

We also considered models predicting self-reported
sexual arousal ratings as a continuous outcome, as par-
ticipants rated their sexual arousal levels after each
block of five images. However, this study did not manip-
ulate intensity of the sexual stimuli and was hence not
designed to create within-person variability. Accordingly,
these ratings had little variability (mean within-subject
variance was 1.05 points on a scale of 9 points). Therefore,
it was not feasible to predict continuous ratings using a
regression model.

Support vector machines and brain activation-based sexual
image classifier

Where univariate analyses take the brain response in
every voxel as the outcome of interest, multivariate anal-
yses use the sensory experience, mental events, or behav-
iors as an outcome. Here, linear SVM classifiers identi-
fied multivariate patterns of brain activity discriminating
sexual from neutral and nonsexual affective conditions.
We trained three separate binary classifiers, one discrim-
inating between sexual and positive affective stimuli, the
second between sexual and negative affective stimuli,
and the third between sexual and affectively neutral
images. We then combined these into a single, final sex-
ual versus nonsexual stimulus classifier. To estimate the
predictive accuracy for each model in Study 1, we used 5-
fold cross-validation blocked by participants (i.e., leaving
out all images from a particular participant together),
which produces an unbiased estimate of the models’
performance. The classifiers were trained on whole-brain
data masked with a gray matter mask. Each SVM model
includes a linear pattern of weights across voxels and an
intercept (offset) value.

Each of the three SVM classifiers resulted in a predic-
tive weight map. We combined them to create BASIC, a
model with a restricted set of brain features that differ-
entiate sexual images from each of the three comparison
conditions. We used bootstrap resampling (with 5000
bootstrap samples; e.g., Wager et al. 2013) to estimate
voxel-wise P-values for each SVM map. We then thresh-
olded each SVM map at P < 0.05 uncorrected and took the
intersection of all three classifier maps. The weights for
sexual versus neutral conditions masked by the overlap
(P < 0.05 uncorrected) constituted the final BASIC model.

https://canlab.github.io
https://canlab.github.io
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Note that this threshold is not intended to provide strong
inferences about individual voxels, but to select features
likely to capture selectivity to sexual stimuli relative
to multiple other conditions, and to increase the inter-
pretability of the final model. The intersection maps for
all three SVM classifiers at q < 0.05 FDR-corrected are
shown in Supplementary Figure 1 and include many of
the same regions. Performance of the final BASIC model
was validated on data from Study 2 (see below).

To validate the model and assess relationships with
other variables, we calculated model scores for each
image type (sexual, negative, etc.) for each individual
participant. We calculated these scores using the cosine
similarity metric, which calculates the weighted average
(the dot product) over a test data image from one
participant (where the SVM model constitutes the
weights) normalized by the product of the norms of
the SVM pattern and the data image. For vectorized v-
length SVM weight image w and v-length data image
d, where v is the number of voxels in each image,
cos(w, d) = 〈w, d〉/‖w‖‖d‖.〈〉indicates the dot product
and ‖‖ the L2-norm. Cosine similarity is thus equivalent
to the spatial correlation between the SVM pattern
and the data images, but without the mean-centering
operator included in the correlation. This allows overall
activation intensity to contribute to the classification but
normalizes the scale of each test data image.

Analysis of confounds

To examine if the brain model responses are independent
of sex and age, SVM model scores for all three classi-
fiers were regressed on sex and age. In addition, average
values for gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) were extracted from an eroded
anatomical tissue segmentation mask, and SVM model
scores were regressed on GM, WM, and CSF signals. We
also tested the classification performance of each of the
three models after CSF and WM were regressed out; it
was not meaningfully affected by controlling for these
covariates.

Model-level assessment: classification
performance
To examine the sensitivity, specificity, and generalizabil-
ity of the BASIC model, both forced-choice and single-
interval classification performance were assessed on
cross-validated model scores for Study 1, and on Study
2. In forced-choice classification, the BASIC scores for
two images (e.g., one sexual and one aversive) from an
individual person are compared, and the one with the
higher BASIC score is labeled as “sexual.” Classification
accuracy is the percentage of individuals for which
the BASIC model yields the correct decision. In single-
interval classification, the score for a single image is
compared with a threshold value (e.g., BASIC response
> 0.2), and scores above threshold are classified as
“sexual.” Forced-choice classification generally yields
higher accuracy, as comparing two images from the

same person matches on many sources of between-
person variability (e.g., between-person differences in
vasculature and brain morphometry). Single-interval
classification is affected by these sources of variability. As
in our previous work (Wager et al. 2013), we report both
measures, and report accuracy, specificity, sensitivity,
and effect sizes for all three classifiers.

For validation within Study 1, we applied whole-brain
SVM models obtained during training folds to held-out
participants’ data (5-fold cross-validated scores). We cal-
culated the cosine similarity between the BASIC and
brain images obtained under sexual and control condi-
tions for each of the three SVM models. Single-interval
classification requires comparing scores with a speci-
fied threshold; typically, SVM scores > 0 are classified
as “sexual” and scores < 0 classified as “control.” Here,
to obtain a single threshold for sexual versus negative,
positive, and neutral conditions, we calculated the cosine
similarity threshold with the optimal balanced error rate,
balancing sensitivity and specificity, for each of the three
comparisons, and used the highest of these three (the
one most favorable to specificity) as the cosine similarity
threshold for labeling a brain image as “sexual.” We use
this threshold for Study 1.

For prospective validation of the BASIC model, we
included a second dataset (Study 2) in the analysis, inde-
pendent from Study 1. This dataset consisted of neu-
roimaging data of 18 participants (10 females, Mage = 25)
presented with sexual, positive, and negative affective
images from the IAPS (Lang et al. 2005) and Geneva
Affective Picture Database (GAPED) (Dan-Glauser and
Scherer 2011). Aspects of this dataset were published
previously (Kragel et al. 2019), but with a substantially
different analysis goal. The images were presented for
4 s, with a jittered intertrial interval of 3–8 s presented
in randomized order.

The content of sexual images in previous studies
varies. They vary in this study as well: The stimuli
do not only include nude couples engaged in sexual
acts (Study 1), but also nude couples or individuals or
nonexplicit images of dressed couples or individuals (e.g.,
Watts et al. 2017). To validate whether the BASIC model
generalizes to different types of sexual image content,
Study 2 included sexual IAPS images with content
distinct from Study 1. The content of the sexual images
consisted of a mix of nude heterosexual couples (with
one showing genitals explicitly), clothed heterosexual
couples, a naked man or woman (with one showing
genitals explicitly), or a happy-looking clothed man or
woman. This variation reduces the risk that the BASIC
classifier is driven by visual characteristics, as does the
location of contributing brain regions in multimodal
association cortices, but this could be explored further
in future studies.

All corresponding IAPS and GAPED picture numbers
for Study 1 and Study 2 are presented in Supplementary
Table 1. Two images in the positive condition and four
in the negative condition were the same in Study 1 and

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
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Study 2 (out of the 30 images per condition in Study 1
and 28 in Study 2). There was no overlap between sexual
images used in both studies. More specific information
about the participants, experimental design, and image
acquisition can be found in Kragel et al. (2019).

We calculated cosine similarity scores for the BASIC
model applied to sexual, positive, and negative condi-
tions from Study 2. We used these scores to estimate the
accuracy, specificity, sensitivity, and effect size for both
forced-choice and single-interval classification for [sex-
ual vs. positive] and [sexual vs. negative] comparisons
to assess the classification performance of the BASIC
model. While the threshold for sexual image classifi-
cation developed in Study 1 would ideally be applied
to Study 2, empirically the response in Study 2 was
not as high as in Study 1 (see Discussion of interstudy
differences below), so application of the same threshold
was not practical in this case. We thus validated the
BASIC model only for within-study comparisons, not for
absolute comparisons across studies.

Feature-level assessment: large-scale networks
One could argue that classification between sexual and
affective/neutral conditions is driven solely by, for exam-
ple, differences in visual features or in attention lev-
els. To examine if the classifications were driven by
one large-scale network, we applied a “virtual lesion”
approach. We retrained each of the three SVM classifiers
in Study 1 ([sexual vs. positive], and [sexual vs. negative],
[sexual vs. neutral]) seven times, each time excluding
voxels in one large-scale network from the training and
test images. We used seven large-scale cortical networks
defined based on resting-state activity in 1000 partici-
pants, including “visual,” “somatomotor,” “dorsal atten-
tion,” “ventral attention,” “limbic,” “frontoparietal,” and
“default mode,” based on Buckner et al. (2011).

In addition, we evaluated the spatial scale of infor-
mation coding by constructing predictive models using
signal averaged within each of 489 predefined “parcels,”
or macroscale regions, that covered the entire brain
(the “canlab_2018 2 mm” atlas; see https://github.com/
canlab/Neuroimaging_Pattern_Masks). The regions com-
prising the atlas are defined based on published papers
considered to be high-quality parcellations of specific
large-scale zones of the brain or anatomically defined
nuclei, including parcellations of the cortex (Glasser
et al. 2016), basal ganglia (Pauli et al. 2016), thalamus
(Morel et al. 1997; Krauth et al. 2010; Jakab et al. 2012),
subcortical forebrain (Pauli et al. 2018), amygdala and
hippocampus (Amunts et al. 2005), specific brainstem
regions (Zambreanu et al. 2005; Fairhurst et al. 2007;
Keren et al. 2009; Nash et al. 2009; Beliveau et al. 2015;
Bär et al. 2016; Sclocco et al. 2016; Brooks et al. 2017),
cerebellum (Diedrichsen et al. 2009), and brainstem
areas not otherwise covered by named parcels (Shen
et al. 2013). The atlas regions do not contain fine-grained
pattern information but do still allow classification based

on the relative activation across the 489 constituent
regions.

Overall, we compared classification accuracy for SVMs
trained on 1) whole-brain voxel-wise patterns, 2) whole-
brain patterns across parcel averages and 3) the voxel-
wise pattern within the most predictive single region in
the brain. This allowed us to test whether the informa-
tion required for classification was contained at whole-
brain scale (across multiple large-scale networks), within
individual networks, or within a single local region. Addi-
tionally, we tested whether fine-grained voxel-wise pat-
terns were necessary or whether parcel-wise averages
were sufficient.

Biology-level assessment
The neurobiological plausibility and validity of a model
should be regarded as an open-ended investigation that
requires long-term, collaborative efforts, multimodal,
and multilevel approaches (Kohoutová et al. 2020). To
start this evaluation, we summarized the BASIC pattern
weights as a function of 17 resting-state networks by
Schaefer et al. (2018) in a wedge plot. The pattern weights
in each local network were calculated with “pattern
energy,” related to the absolute magnitude of predictive
weights:

Er =
√(

wTw
)

V + 1

Er is the root-mean-square of weights in the network
mask r per cubic cm of brain tissue, w denotes the vector
of weights for in-region voxels, and V is the volume of the
region in cm3. As the variance of Er varies inversely with
network volume, the constant 1 is added to regularize
the volume and thus avoid noise-driven, large magnitude
estimates for small regions.

In addition, the classification performance of the
BASIC model was compared with performance of an
automated meta-analysis of previous studies investi-
gating sexual stimuli processing using neurosynth.org
(Wager et al. 2011; Yarkoni et al. 2011). An association test
map, which displays brain regions that are preferentially
related to the term ‘sexual’ based on an automated
meta-analysis of 81 studies, was downloaded from
neurosynth.org. Brain regions that were consistently
reported in tables of those studies were included in
this meta-analysis and maps were corrected for multiple
comparisons using a false discovery rate of 0.01 (for the
meta-analytic map, see Supplementary Figure 2). Note
that both activations and deactivations are included
in this map, as they are not separated by Neurosynth.
The voxels in the brain map were used as features in an
SVM classification between the sexual versus nonsexual
conditions in both Study 1 and Study 2. Classification
performance of this neurosynth “sexual” brain map
was assessed by calculating accuracy, sensitivity, and
specificity using both forced choice and single-interval
methods.

https://github.com/canlab/Neuroimaging_Pattern_Masks
https://github.com/canlab/Neuroimaging_Pattern_Masks
neurosynth.org
neurosynth.org
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
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Table 1. Classification performance for sexual versus neutral/affective conditions for Study 1.

Condition Method Accuracy (%) Specificity (%) Sensitivity (%) Effect size
SE CI CI

Sex vs. Neu FC 100 0.0 100 100–100 100 100–100 3.29
SI 98 1.0 97 93–100 99 97–100 3.06

Sex vs. Pos FC 100 0.0 100 100–100 100 100–100 4.03
SI 96 1.3 97 93–100 96 92–99 2.61

Sex vs. Neg FC 100 0.0 100 100–100 100 100–100 3.25
SI 95 1.5 96 92–99 95 90–99 2.22

Note: The accuracy with standard error (SE), specificity, and sensitivity with confidence interval (CI) are presented to demonstrate the performance of the
three cross-validated and bootstrapped (5000 iterations) SVM classifications of Study 1 for both forced choice (FC) and single-interval (SI) classification
methods. Effect size indicates Cohen’s d. Condition abbreviations: sex = sexual, neu = neutral, pos = positive, neg = negative.

Self-reported data
Differences between conditions in self-reported valence,
arousal, and sexual arousal were calculated with one-
way repeated measures ANOVA in R studio 2018 (RStudio
Team, Boston, MA, USA) for all participants.

Results
Model development
Support vector machines and brain activation-based sexual
image classifier

Using forced choice classification, all three classifiers
performed with 100% accuracy, meaning that the cross-
validated SVM scores were higher for sexual than other
image types (negative, nonsexual positive, and neutral)
for all 100 individuals in Study 1. Using single-interval
classification, the sexual versus neutral performed with
98% accuracy, sexual versus positive with 96%, and
sexual versus negative with 95%. Specificity, sensitivity,
effect size, and accuracy for both forced choice and
single-interval methods are presented in Table 1.

Corrected and uncorrected predictive weight maps of
all three classifiers are presented in Supplementary Fig-
ure 1. Accuracy was significantly above chance (50%),
as assessed with a binomial test, P < 0.0001 for all mod-
els. The intersection of the three thresholded predictive
weight maps (P < 0.05) was used to create the BASIC
model, with weights from the sexual versus neutral clas-
sifier retained only for voxels significant in all three
models. The predictive weights map of the BASIC model
is presented in Figure 1 and the included brain regions
are listed in Supplementary Table 3.

Model-level assessment

The BASIC model was assessed by examining the clas-
sification performance between sexual and nonsexual
conditions in Study 1 and Study 2. Cosine similarities
between the BASIC and the sexual (M = 0.34, SD = 0.0059,
P < 0.001, d = 5.84), neutral (M = −.043, SD = 0.0093, P < 0.001,
d = −.47), positive (M = 0.00020, SD = 0.0095, P = 0.98,
d = 0.0021), and negative (M = 0.12, SD = 0.0071, P < 0.001,
d = 1.75) conditions from Study 1 are presented in
Figure 2A. The classification accuracies for sexual versus
positive, negative, and neutral conditions were signifi-
cant (P < 0.001) for both forced choice and

single-interval methods. Accuracy, specificity, and sen-
sitivity for these classifications are presented in Table 2.
The performance of the BASIC model on the sexual
versus positive and sexual versus negative classification
of Study 1 is presented in ROC plots in Figure 3A.

The highest threshold calculated with the optimal
balanced error rate was 0.25 for the classification of
sexual and negative images of Study 1. The threshold
for the classification of both [sexual vs. positive]
and [sexual vs. negative] images in Study 2 was 0.06
and did therefore not exceed the threshold from
Study 1. Cosine similarities between the BASIC and
sexual (M = 0.11, SD = 0.15, P < 0.001, d = 1.87), positive
(M = 0.0093, SD = 0.014, P = 0.50, d = 0.16), and negative
(M = 0.0092, SD = 0.014, P = 0.52, d = 0.16) conditions in
Study 2 are presented in Figure 2B.

The classifications of both [sexual vs. positive] and
[sexual vs. negative] conditions from Study 2, for both
forced choice as well as the single-interval method,
were significant (P < 0.001) and results are presented
in Table 2. The performance of the BASIC model on
the sexual versus positive and sexual versus negative
classification of Study 2 is presented in ROC plots in
Figure 3B.

Analysis of sex differences, age, and global signal
confounds

No significant correlations between the three classi-
fiers and age (sexual-neutral r = −.00, sexual-positive
r = 0.00, sexual-negative r = 0.00) or gender (sexual-
neutral r = −.05, sexual-positive r = 0.04, sexual-negative
r = −.22) were found.

For all four conditions and all three contrasts, there
was significant global activation in both CSF space/ven-
tricles and in white matter, indicating potential global
signal increases for sexual versus other image types. In
each of the three models, SVM model scores with CSF and
WM regressed out showed classification performance
similar to that of the SVM models without nuisance
regression (for forced choice: 100% accuracy, specificity,
and sensitivity, effect size sexual versus neutral d = 4.55,
sexual versus positive d = 4.10, sexual versus negative
d = 3.64). The global signal thus did not contribute to the
classification process and is therefore unlikely to be a
confound.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data


Sophie R. van’t Hof et al. | 3021

Fig. 1. Predictive weight maps of the BASIC model. These brain maps represent the contribution of each voxel for the classification between sexual and
neutral/affective conditions. The color bar thus represents the predictive weight value. The MNI-space anatomical underlay is adapted from Keuken
et al. (2014). Upper left image represents the right hemisphere. The image next to that represents the left hemisphere.

Fig. 2. Cosine similarity between the BASIC and all conditions of Study 1 (A) and Study 2 (B). Lines connect data points from individual participants. The
threshold calculated with optimal balanced error rate was 0.25 for Study 1 and 0.06 for Study 2. ∗∗ = P < 0.01, ∗∗∗ = q < 0.05 FDR.

Feature-level assessment: large-scale networks
Feature-level assessments included 1) “virtual lesion”
analyses that retrained classifiers omitting voxels in a
single large-scale network and 2) tests of information
coding at multiple spatial scales using retrained models
and comparison of accuracy using randomly selected
voxels in each single network, all voxels in each single
network, all voxels averaged within parcels (see Materials
and Methods), and all voxels. The latter evaluated
information encoded at multiple spatial scales (see
Fig. 4) and shows the highest model performance for

all voxels across the whole brain (the original model).
A whole-brain model averaging within parcels (“All
Parcels” in Fig. 4) performed equally well, indicating that
information was likely coded in the pattern of activation
across gross anatomical regions (parcels) rather than
fine-grained pattern information. These results were
consistent across classification of sexual versus neutral,
positive, and negative conditions (see Supplementary
Figure 3).

For the “virtual lesion” of each of the seven Buckner Lab
large-scale cortical networks (dorsal attention, default,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
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Table 2. Performance of BASIC between sexual versus nonsexual conditions in two datasets.

Dataset Condition Method Accuracy (%) Specificity (%) Sensitivity (%)
SE CI CI

Study 1 Sex vs. Neu FC 100 0.0 100 100–100 100 100–100
SI 100 0.0 100 100–100 100 100–100

Sex vs. Pos FC 100 0.0 100 100–100 100 100–100
SI 99 0.7 99 97–100 99 97–100

Sex vs. Neg FC 100 0.0 100 100–100 100 100–100
SI 97 1.2 97 93–100 97 93–100

Study 2 Sex vs. Pos FC 94 5.4 94 81–100 94 82–100
SI 78 6.9 78 58–95 78 55–95

Sex vs. Neg FC 100 0.0 100 100–100 100 100–100
SI 78 6.9 78 56–95 78 58–95

Note: The accuracy with standard error (SE), specificity, and sensitivity with confidence interval (CI) are presented to demonstrate the performance of the
BASIC model for both forced choice (FC) and single-interval (SI) classification methods. Condition abbreviations: sex = sexual, neu = neutral, pos = positive,
neg = negative.

Fig. 3. Receiver Operating Characteristic (ROC) plot for the BASIC model performance on sexual-positive (A) and sexual-negative (B) classification of data
from Studies 1 and 2, both forced choice (FC) and single interval (SI) classification methods. The numerals 1 and 2 in the legend indicate cross-validated
performance in Study 1 and generalization performance in Study 2, respectively.

frontoparietal, limbic, somatomotor, ventral attention,
and visual), the forced-choice classification between
sexual and nonsexual conditions from Study 1 were
significant (P < 0.001), with perfect or near-perfect cross-
validated accuracy in each case (see Supplementary
Table 4 for accuracy, specificity, and sensitivity). This
indicates that accurate classification did not depend on
voxels in any single large-scale network.

Biology-level assessment
Examining weights in established large-scale networks
yielded selective profile across networks, with weights
concentrated in a few networks (see Fig. 5). BASIC predic-
tive weights were positive in “default A,” “dorsal attention
A & B”, and “ventral attention A & B” networks (pink
wedges in Fig. 5), and negative in “somatomotor A & B,”
“visual peripheral B,” “default C,” and “tempo-parietal”
networks (purple wedges in Fig. 5).

Performance of the neurosynth “sexual” map was bet-
ter in classifying between sexual and the nonsexual con-
ditions in Study 1 (forced choice accuracy for [sexual
vs. positive] is 77%, P < 0.001, [sexual vs. negative] is
57%, P = 0.22, and [sexual vs. neutral] is 84%, P < 0.001)
than Study 2 (forced choice accuracy for [sexual vs. pos-
itive] is 50%, P = 1.00, and [sexual vs. negative] is 56%,
P = 0.81, with chance at 50%). For detailed accuracy, sen-
sitivity, and specificity, see Supplementary Table 2. The
BASIC model thus outperformed the neurosynth “sexual”
map in classifying between all contrasts in Study 1 and
Study 2.

Self-reported data
For an overview of means and standard deviations of
self-reported valence, arousal, and sexual arousal levels,
see Wehrum-Osinsky et al. (2014). Omnibus tests for the
ANOVA show general arousal levels were significantly

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
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Fig. 4. Spatial scale evaluation for classification between sexual and
neutral conditions (for [sexual vs. positive] and [sexual vs. negative], see
Supplementary Figure 3) from Study 1 on whole-brain, all parcels, and
individual parcel levels, based on large-scale networks (Buckner, Krienen,
Castellanos, Diaz, and Yeo 2011). This reveals that whole-brain models
performed better than single-network models. In addition, the model
based on brain-wide within-parcel (region) averages performed as well
as the model based on voxel-level patterns, indicating that fine spatial
scale pattern information is not needed for accurate performance.

different between all four conditions (P < 0.001), with the
highest score for the negative condition. Valence levels
between all four conditions, except sexual versus neutral,
were significant (P < 0.001). Sexual arousal levels were
only significant between sexual and other conditions
(P < 0.001).

Discussion
Sexual stimulus processing is a core component of
human affective and motivational systems, and part of a
fundamental repertoire of motivations conserved across
nearly all animal species. Previous work using sexual
stimuli has made important advances (e.g., Georgiadis
et al. 2006; Walter et al. 2008b; Abler et al. 2013; Borg
et al. 2014; Stark et al. 2019), but these studies have
generally included small sample sizes and have focused
on characterizing responses in individual brain regions
using standard brain-mapping approaches. Findings
have been variable across studies (for meta-analyses, see
Stoléru et al. 2012; Poeppl et al. 2016), and it remained
unclear whether brain responses to sexual stimuli are
robustly and reproducibly different from responses to
nonsexual positive or negative affective stimuli.

Here, we employed a multivariate predictive model
grounded in population-coding concepts in neuroscience
(Pouget et al. 2000; Shadlen and Kiani 2007; Kragel
et al. 2018) and systems-level characterization, based on
growing evidence that various psychological processes
are grounded in distributed networks rather than local
regions or isolated circuits (Kamitani and Tong 2005;

Kuhl et al. 2012; Arbabshirani et al. 2017). We identified a
generalizable pattern of brain responses to sexual stimuli
whose organization is conserved across individual
participants, but which is distinct from responses to
other conceptually related (nonsexual) affective images.
We used cross-validated machine learning analyses to
identify a brain model, which we termed the BASIC model
(for purposes of sharing and reuse), that can classify
sexual from neutral, positive, and negative affective
images with nearly perfect accuracy in forced-choice
tests, including an independent validation cohort tested
on a different population (US vs. Europe), scanner, and
stimulus set from those used to develop the model.
Together with previous smaller-sample analyses that
differentiate multivariate brain responses to romantic
or sexual stimuli from responses to other types of
affective and emotional events (Kassam et al. 2013;
Kragel et al. 2019), our results suggest that sexual stimuli
are represented by a relatively unique brain “signature”
that is not shared by other types of affective stimuli.

Furthermore, our virtual lesion analysis suggests that
the classifications of sexual versus neutral/affective con-
ditions are not solely due to differences in visual or atten-
tion processing, as predictions are intact even leaving out
large-scale cortical networks devoted to attention and
vision. In addition, the spatial scale evaluation demon-
strates that whole-brain level classification (both voxel-
and parcel-wise) shows the highest model performance
compared with individual large-scale network parcels.
The BASIC model shows effects not only in subcortical
but also in cortical areas, in line with previous human
(for meta-analyses, see Stoléru et al. 2012; Poeppl et al.
2016) and animal research (for meta-analysis, see Pfaus
2009). From a basic biological perspective, this might be
surprising. Evolutionarily relevant key features of sexual
signals in nonhuman primates may include sex calls,
pheromones, and the presentation of genitals. The sex-
ual signals presented here are, in comparison, highly
complex visual scenes containing a variety of sexual
content, triggering valuation processes accompanied by
neural activity on the cortical level. Even though our
and previous research shows strong evidence for large
cortical involvement, there still seems to be a bias in
picking brain areas for region of interest (ROI) analy-
ses toward subcortical regions. This is reflected in the
neurosynth “sexual” brain map, based on an automated
meta-analysis that includes coordinates from a priori
ROI analyses. For example, the study with the highest
loading on the term “sexual” in neurosynth (Strahler et al.
2018) used ROI analyses that included almost exclusively
subcortical areas.

Many types of validation are beyond the scope of this
study, but we were able to provide validation of several
key elements. First is the application to a new cohort with
different population characteristics, equipment, and
paradigm details, with large effect sizes for sexual versus
nonsexual affective images. Second, we investigated the
effects of globally distributed signal in white matter and

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab397#supplementary-data
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Fig. 5. Cortical network profile for BASIC model. Pattern energy in resting-state cortical networks by Schaefer et al. (2018) is distributed unevenly. Wedges
represent positive (pink) and negative (purple) weights and corresponding networks are presented for the networks with the highest and lowest average
weights.

ventricle spaces, which can capture complex effects
of head movement and task-correlated physiological
noise and have been found to drive some multivariate
predictive models in the past. Lack of relationships with
these non–gray matter areas, along with significant con-
tributions to the model in known affective/motivational
systems, increases confidence that the model is driven by
neuroscientific relevant systems. Third, we investigated
whether the model showed differential effects for male
versus female subgroups or varied with age. It did not,
supporting the notion that despite individual differences
there is a generalizable brain response across individuals
(note, this study did not include nonheterosexual, noncis
individuals, and individuals of different age groups). This
is in line with the findings of previous neuroimaging
meta-analyses that revealed common “unisex” brain
responses to sexual stimuli (Poeppl et al. 2016; Mitricheva
et al. 2019).

Interpretation of a machine learning–based model is
complex because the classification is not explained by

one region or network, but by a combination across
regions. One set of regions may encode one aspect, for
example the positive valance aspect, another set may
encode the arousal aspect, and yet another set the con-
cept of personal closeness. All these sets then jointly
contribute to the overall discrimination of sexual from
general affective images. The studies we analyzed do not
have sufficient information to link specific brain areas
to specific component processes underlying response to
sexual images, but we do evaluate our model in light
of previous neuroscientific literature here to examine
the neurobiological plausibility of the model (Kohoutová
et al. 2020).

Brain areas included in the BASIC model are also
present in the most recent meta-analytical model
of brain responses to sexual stimuli (Stoléru et al.
2012), although the BASIC model presents a more
comprehensive and precisely specified set of hypotheses
about which voxels, with which relative activity pattern
across them, to test and validate in future studies.
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In terms of resting-state networks (see Fig. 5), we see
positive and negative weight effects emerge: negative
weights (relative decreases in activity associated with
sexual image processing) in somatomotor networks and
positive weights (relative increases) in dorsal and ventral
attention networks. In addition, weights in the default
mode network (DMN) are near-zero when averaging
across the entire DMN. However, when looking at default
mode subnetworks, DMN A (ventral medial PFC and
posterior cingulate areas) shows strong positive weights,
whereas DMN C (hippocampal and more posterior
occipital areas) shows strong negative weights. This
relates to previous research linking DMN to drug,
gambling, and food craving and their regulation, which
generally involve DMN A regions, and the vmPFC and
NAc in particular (Hare et al. 2009; Kober et al. 2010;
Hutcherson et al. 2012; Kearney-Ramos et al. 2018;
Aronson Fischell et al. 2020; Schmidt et al. 2020). Both
these areas are involved in the BASIC model, in line
with previous research linking these areas to sexual
stimuli. For instance, previous studies have reported
significant vmPFC activation during sexual compared
with monetary rewards (Schmidt et al. 2020), and neural
reactivity to sexual stimuli in the NAc was positively
correlated with sexual arousal ratings (Klein et al. 2020).
In addition, activation of both regions to food and sex
cues has been found to predict subsequent risky sexual
behavior (Demos et al. 2012).

The BASIC model included positive weights (a higher
likelihood that the image was sexual with increasing
activity) in several additional regions thought to be
important for sexual responses: the hypothalamus,
amygdala, somatomotor cortices, and insula. The
hypothalamus is a small area near the ventricles and
sinus spaces, and this likely introduces substantial
variability. A preliminary study by Walter et al. (2008b)
using ultra high-resolution imaging at 7 T, which is likely
to have superior ability to detect hypothalamic activity,
found signal dropouts in ventral subcortical structures
such as the hypothalamus. Similar dropout may have
limited sensitivity in the hypothalamus in this study.
However, findings of hypothalamic activation in sexual
stimulus processing have varied across studies. The
meta-analysis by Stoléru et al. (2012) found that 37.8% of
studies reported hypothalamic responses to visual sexual
stimuli. A motivational role for hypothalamus is included
in the model of Stoléru et al. (2012) as well, although this
has only been found in animal studies. Responses of the
hypothalamus have been related to the regulation of
autonomic responses, and in particular the physiological
aspect of sexual arousal (Ferretti et al. 2005). Here, we
did not measure genital responses and can therefore not
know if the stimuli triggered a physiological response.
Further research, including genital response measures,
could therefore shed more light on the role of the
hypothalamus in sexual behavior.

The amygdala and somatomotor cortices are part
of the emotional component of the model of sexual

stimuli processing by Stoléru et al. (2012). All these
show positive weights in the BASIC model. Within
the amygdala, positive weights were found in the
corticomedial division, in contrast from emotions more
generally, which most often show central nucleus and
sometimes basolateral activation (Wager et al. 2008;
Yarkoni et al. 2010). The insula has previously been
reported to sex, food, and drug craving (Pelchat et al.
2004; Yokum et al. 2011; Murdaugh et al. 2012; Tang
et al. 2012), as well as interoception (Paulus and Stewart
2014). The insula is, however, large and heterogeneous
region. Within the insula, the BASIC model included
positive weights in two areas: the right ventral anterior
insula and posterior insula PoI2 (from Glasser et al.
2016). The posterior insula is held to be important for
somatosensory representations, multisensory informa-
tion, and pleasant touch (Olausson et al. 2002; Cera et al.
2020). The anterior insula seems to play a role in visceral
information processing and subjective feelings (Craig
2002; Uddin 2015). However, the ventral anterior insula is
distinct from the dorsal anterior insula identified in most
studies and has stronger associations with ventromedial
prefrontal and subcortical structures including the
amygdala, and functional associations with emotion and
gustation (Chang et al. 2013; Wager and Barrett 2017).

In addition, another subcortical region little discussed
in the Stoléru et al. (2012) meta-analysis but involved
in the BASIC model is the midbrain periaqueductal gray
(PAG). The PAG is best-known for its role in pain and
defensive behaviors, but animal literature also shows
effects of lesions on sexual behavior (Lonstein and Stern
1998), particularly lordosis. Many PAG neurons express
estrogen receptors, and areas where these neurons are
concentrated are targeted by inputs from the hypothala-
mus (Bandler and Shipley 1994). This and related path-
ways through the PAG are thought to be involved in sex-
ual readiness (Holstege and Georgiadis 2004). In humans,
nearby areas of the midbrain are activated during male
ejaculation (Holstege et al. 2003; Georgiadis et al. 2009),
though precise localization is difficult, and other studies
have related human PAG activity more to bonding than
sex (Ortigue et al. 2010).

The overlap of areas in BASIC model with some drug-
and food-cue reactivity studies, but not others, suggests
that different types of appetitive stimuli and responses
may activate dissociable systems in some cases. Explor-
ing these differences in depth is beyond the scope of
this study but very interesting for future studies. An
interesting next step, for instance, would for example
be to test BASIC model on a different set of rewarding
stimuli.

Thus, future validation for BASIC model can involve
testing it on many other types of stimuli but our work
already shows that based on brain data, we can dis-
tinguish sexual from general affective processing. Previ-
ous research has associated sexual stimuli with positive
affect, as the wide use of IAPS, where sexual images are
placed under positive affect, indicates. This strong link
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between positive affect and sexual stimuli might be the
result of the assessment method of affect. Most studies
have used a bipolar scale (i.e., negative to positive affec-
t/valence) but when using to separate unipolar scales,
both positive and negative affect have been reported
during sexual stimuli (Peterson and Janssen 2007). Here,
we show that the BASIC model has the highest cosine
similarity with the sexual condition as expected (see
Supplementary Figure 1) but shows more cosine similar-
ity to the negative condition in Study 1 than the pos-
itive condition. Hence, in line with previous research,
this work therefore demonstrates that the intuitive link
between positive affect and sexual stimuli is much more
complicated.

In addition to the link between sexual stimuli and
general affect, we were able to gain some insight into
whether the BASIC model captures general arousal or
valence. To examine the role of general arousal and
valence in the prediction of BASIC model, we adopted
two strategies. First, we measured valence and arousal
in Study 1 and performed a sensitivity analysis, testing
whether the BASIC model was sensitive to valence and
arousal of nonsexual images. Second, we applied the
BASIC model to an independent test dataset (Study 2),
in which sexual and nonsexual images were matched
on valence and arousal. Regarding the first strategy,
the self-reported data showed that sexual images
had a significantly lower arousal than the negative
images, but significantly higher BASIC responses. In
addition, positive images had a higher valence than
neutral or negative images but did not produce higher
BASIC responses. Regarding the second strategy, the
BASIC model responded more strongly to sexual than
nonsexual images matched on valence and arousal
and did not respond to either positively or negatively
valenced nonsexual images. In addition, the strong
classification performance was replicated in both Study
1 and Study 2 despite differences in the content of
sexual images (Study 1 showed explicit sex scenes with
couples, whereas Study 2 showed both clothed and naked
couples and individuals) and likely general arousal levels.
Together, these findings indicate that it is not sensitive
to general arousal and valence per se but is instead
sensitive to sexual content. This is in line with a previous
study by Walter et al. (2008a), demonstrating that
during a sexual stimulus, activation patterns modulated
by general emotional arousal differed from activation
patterns modulated by sexual stimulus intensity.

Sexual stimuli have often been used by researchers to
study sexual arousal, although it is unclear if a state of
sexual arousal is elicited by short visual sexual stimuli
and therefore whether it was present during conditions
used in BASIC model. In Study 1, the sexual images con-
sisted of heterosexual couples engaged in sexual interac-
tions, and self-reported sexual arousal was significantly
higher in the sexual conditions versus the other con-
ditions. Based on these results, we might suspect that
the images, although presented for a short duration,

might have induced a certain level of sexual arousal, at
least at the subjective self-report level. However, in Study
2, participants were presented not only with couples,
but also sexual or romantic images of an individual
man or woman. Assuming that not all participants were
bisexual, participants were presented with sexual images
depicting both individuals consistent and inconsistent
with their preferred sex. Thus, even though the images
might not have induced high levels of sexual arousal in
all participants, we can distinguish sexual from general
affective processing in the brain, which was the aim of
our study. For future research, it would be interesting to
examine whether the BASIC model can also differentiate
between longer visual sexual stimuli, whether sexual
arousal is more likely to be induced by long than short-
duration, and whether the BASIC model responds to
sexual stimuli of other modalities, for example, sensory
(genital stimulation), cognitive (fantasy), or auditory.

Ponseti et al. (2012) conducted one of the few studies
on sexual stimulus processing that used multivariate
analysis. They classified preferred and nonpreferred
(e.g., child nudity vs. adult nudity) sexual stimuli
based on brain data in participants with and without
pedophilia using nude frontal images of adults and
children. This classification might be more linked to
sexual arousal, although it is still hard to evaluate
whether sexual arousal was induced. In order to gain
additional insight into sexual arousal specifically, future
research could examine if sexual arousal is elicited
during sexual image presentation, and to identify the
brain processes generating it, multivariate analysis could
be used to predict sexual arousal ratings based on
brain data collected during sexual image presentation.
In our study, this was not possible due to a lack of
within-subject variability in the sexual arousal ratings
during the sexual image blocks. Parada et al. (2016)
presents large variability of sexual arousal ratings
and, using a parametric modulation analysis, found
various subregions of the parietal cortex that showed
significant changes in activation corresponding to the
degree of self-reported sexual arousal with no gender
differences. Future studies could further examine role
of the parietal cortex in the subjective experience of
sexual arousal.

Besides self-reported sexual arousal, genital responses
are often assessed in psychophysiological studies to
examine sexual arousal (Rosen and Beck 1988; Janssen
and Prause 2016). The assessment of genital response
in neuroimaging studies is sparse (Arnow et al. 2009;
Parada et al. 2018). Parada et al. (2018) presents several
brain regions (supramarginal gyri, frontal pole, lateral
occipital cortex, and middle frontal gyri in men; same
regions plus the ACC/PCC, right cerebellum, insula,
frontal operculum, and paracingulate gyrus) to be
correlated with changes in genital response, with a
stronger brain–genital relation in women compared with
men in several regions. Assessment of genital response
during fMRI research could improve our understanding
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of the interaction between brain and genital and the
gender differences between this interaction. In addition,
multivariate analysis could be used to predict genital
arousal levels and self-reported sexual arousal based
on brain data, and these patterns could be compared.
This type of study design would allow for a mediation
analysis, which could give more insight into the brain
organization by examining the distributed, network-level
patterns that mediate the stimulus intensity effects on
sexual arousal (Geuter et al. 2020).

A limitation of this study is that although the BASIC
model can accurately classify sexual and nonsexual
images with forced choice tests, we did not identify one
absolute threshold that could be used as a quantitative
measure across studies. Future studies thus have to
establish a threshold in a study-specific manner and
make relative comparisons across conditions within-
study, which is a limitation. However, we do show that the
BASIC model can be generalized to individuals studied in
other research centers with forced choice tests, though
the absolute scale of the response is likely to vary across
studies as a function of scanner field strength, signal-to-
noise ratio, and other signal properties.

To summarize, in this study, we applied multivariate
neuroimaging analyses to investigate sexual stimulus
processing in the brain. This approach allowed for the
development of the BASIC model, which can accurately
classify sexual versus neutral and positive and nega-
tive affective images in two separate datasets, consist-
ing of different types of sexual stimuli and individuals.
The BASIC model includes a precisely specified pattern
of cortical and subcortical areas, some of which have
received relatively little attention in the literature on
human sexual responses (e.g., cortical networks). Some
may be shared across other appetitive responses (e.g.,
vmPFC and NAc for drug cues), but the BASIC model may
also diverge from studies of other appetitive responses as
well (e.g., in the insula). The work gives insight into the
complex processing of sexual stimuli and supports the
notion that processing sexual stimuli is a neurologically
complex, potentially unique mental event that involves
multiple networks distributed in the brain. There are
many avenues open for future validation and further
development, such as testing the BASIC model to nonsex-
ual rewarding stimuli or sexual stimuli of other modali-
ties, and linking the work to sexual arousal.
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