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Abstract

Background: Tracking and predicting the growth performance of plants in different environments is critical for predicting
the impact of global climate change. Automated approaches for image capture and analysis have allowed for substantial
increases in the throughput of quantitative growth trait measurements compared with manual assessments. Recent work
has focused on adopting computer vision and machine learning approaches to improve the accuracy of automated plant
phenotyping. Here we present PS-Plant, a low-cost and portable 3D plant phenotyping platform based on an imaging
technique novel to plant phenotyping called photometric stereo (PS). Results: We calibrated PS-Plant to track the model
plant Arabidopsis thaliana throughout the day-night (diel) cycle and investigated growth architecture under a variety of
conditions to illustrate the dramatic effect of the environment on plant phenotype. We developed bespoke computer vision
algorithms and assessed available deep neural network architectures to automate the segmentation of rosettes and
individual leaves, and extract basic and more advanced traits from PS-derived data, including the tracking of 3D plant
growth and diel leaf hyponastic movement. Furthermore, we have produced the first PS training data set, which includes
221 manually annotated Arabidopsis rosettes that were used for training and data analysis (1,768 images in total). A full
protocol is provided, including all software components and an additional test data set. Conclusions: PS-Plant is a powerful
new phenotyping tool for plant research that provides robust data at high temporal and spatial resolutions. The system is
well-suited for small- and large-scale research and will help to accelerate bridging of the phenotype-to-genotype gap.
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Introduction

Quantitative and accurate methods are required to aid strate-
gies for predicting plant growth performances in our change-
able natural environments. Such tools are critical for calibrat-
ing predictive models in the face of a changing global climate
and our growing global population [1–6]. Computer vision is an
evolving technology that is helping to drive advances in plant
phenotyping in both fundamental research and agriculture [7–
10]. Reflecting its considerable promise, effort has been directed
toward automated ground vehicles [11, 12], satellite [13], drone
[14], and gantry-style platform imaging of field plants [15], and
automated phenotyping of greenhouse- [16, 17] and laboratory-
grown plants (the challenges are different for field and indoor
phenotyping) [18, 19]. While there have been significant ad-
vances, problems associated with high cost, automated data
capture, large data sets, and variable visual and temporal res-
olutions have created barriers to the uptake of these technolo-
gies. These challenges are currently being addressed in the next
generation of plant phenotyping tools.

Above ground growth is a strong indicator of plant yield, and
therefore 3D imaging of vegetative growth is a very active area of
phenotyping research [20–25]. A number of excellent 2D imag-
ing systems have been developed [26–28]; however, while they
represent a qualitative improvement on manual data capture,
they have limited capacity to resolve plant architecture at high
resolution. For example, leaf area measurements are affected
by blade curvature, leaf angle, and movement, making accurate
estimations of plant growth challenging using 2D methods [9,
29]. Several 3D imaging methods have been developed that over-
come some of the limitations of 2 dimensions. These can be
classified as passive and active 3D imaging approaches and are
briefly outlined below.

Passive 3D imaging approaches capture plant architecture
without introducing new energy (e.g., light) into the environ-
ment [30]. Methods and technologies using this approach in-
clude multi-view stereo [31, 32], of which the most common is
binocular stereo [33, 34], structure from motion [35], light-field
(plenoptic) cameras [36], and space-carving approaches [37]. Pas-
sive approaches that use ≥2 sensors or have moving parts (e.g.,
robot arm or gantry systems) often encounter difficulties in
identifying and aligning the same points in different images
(i.e., the so-called correspondence problem), which can result
in imprecise reconstruction of 3D shapes [38]. Plant leaves and
canopies can be particularly challenging because they often rep-
resent large homogenous areas with little salient texture. Im-
precise 3D reconstructions can be smoothed but at the expense
of plant surface detail [39]. Space carving overcomes the corre-
spondence problem but requires many different views of an ob-
ject and may still fail to reconstruct crowded areas (e.g., over-
lapping leaves) [37]. To our knowledge, only light-field cameras
have been utilized successfully for capturing 3D plant growth
throughout the diel (day-night) cycle [36, 40]. However, light-field
systems rely on expensive camera technology to capture high-
resolution data and, like other passive approaches, require con-
sistent and favourable lighting conditions.

Active 3D imaging approaches emit energy (e.g., light), which
can overcome several problems associated with passive ap-
proaches. Structured light [41] and laser scanners [42–44] are
active technologies that rely on triangulation to determine the
point locations in a 3D space. Both methods can provide high-
quality 3D reconstructions of plant canopy architecture, but
structured light approaches require very accurate correspon-
dence between images while laser scanners can be slow and can

potentially heat or even damage plants at high frequencies [45].
Furthermore, triangulation techniques are susceptible to occlu-
sions (e.g., other objects in the environment or leaf overlap) that
can reduce data quality. Time-of-flight cameras (e.g., light detec-
tion and ranging [LiDAR]) comprise another active 3D imaging
approach that determines the distance of a point directly from
the time delay between an emitted light pulse and its reflec-
tion. However, the resolution of time-of-flight cameras is still
relatively low, which has tended to limit their use to imaging
larger plants [46, 47]. Although both passive and active 3D imag-
ing approaches can significantly improve the accuracy of plant
growth measurements and even expand on the architectural
traits available to capture compared with 2D imaging, existing
3D imaging techniques still lack in several crucial areas such as
speed, availability, portability, spatial resolution, and cost [25].

Photometric stereo (PS) is an active imaging technique that
is low-cost and can achieve high image resolutions and fast cap-
ture speeds [48]. This approach has been applied only recently
to plant phenotyping and has shown significant promise [49].
PS relies on a set of images of an object captured under con-
trolled, varied, and directional illumination (Fig. 1; Supplemen-
tary Information S1). The obtained images are then used to gen-
erate a dense surface normal (SN) map of matching resolution,
where each pixel represents a normal vector’s components (i.e.,
the orientation in 3 cardinal directions—x, y, and z) that allows
the overall orientation of the object to be determined. Prior work
has shown that plant leaf SN data acquired by PS can be captured
at high resolutions (4.1 megapixels) and thus has significant ad-
vantages in encoding complex 3D morphology to aid challeng-
ing automated recognition and quantification tasks, such as the
extraction of plant growth data [49, 50].

Machine learning is now emerging as a promising field to
transform the automation of trait extractions from plant image
data sets [51, 52]. Work in the model plant Arabidopsis thaliana
(hereafter Arabidopsis) has revealed much about the molecu-
lar processes underlying the relationship between leaf area,
biomass, and yield [53], and several methods have been devel-
oped for automating data extraction from Arabidopsis images
[54–56]. Recently, significant advances have been made in the de-
velopment of artificial neural networks (NNs) for automated seg-
mentation of the rosette and individual leaves, and leaf count-
ing using 2D image data [57–59]. However, the performance of
NN approaches for leaf segmentation, for example, are still lim-
ited by a need for large annotated data sets for training because
models trained with small-scale databases typically generalize
weakly. To our knowledge, currently there are no NN models op-
timized for leaf segmentation using 3D data. A subsequent chal-
lenge is accurate object tracking to enable segmented leaves to
be tracked across different time points of a data set [60, 61].

Here we present a novel, low-cost imaging system called PS-
Plant that for the first time utilizes PS for monitoring the growth
and development of Arabidopsis in 3 dimensions. We compared
the accuracy of 3D vs 2D data from PS-Plant for estimating leaf
area, angle, and rosette growth against ground truth measure-
ments and showed comparable results to the state-of-the-art
3D light-field camera and laser scanning systems [36, 43, 44]. To
demonstrate the versatility of PS-Plant, we analysed growth un-
der a matrix of different conditions that illustrate the dramatic
effect of the environment on the 3D phenotype of a wild-type
Arabidopsis plant. Furthermore, we showed that 3D data from
PS-Plant can be used to train NN models for automated leaf seg-
mentation of a growing rosette, as an important first step in ex-
tracting plant features. Finally, we demonstrated that utilization
of machine learning for leaf segmentation and PS data can be
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Figure 1: Capturing dynamic plant growth traits using photometric stereo imaging. (A) PS comprises a circular arrangement of NIR LEDs with a central camera positioned
above the plant(s). Red dashed lines show the direction of light vectors. (B, C) Assembled PS-Plant system shown from side and top views. Each LED is attached to a
dedicated heatsink and angled at 30◦ using a custom 3D-printed bracket to minimize the light distribution across the field of view. Both the camera and light sources

are stationary.

combined to extract useful growth traits related to dynamic leaf
movement and rosette development.

Results
Photometric stereo imaging using PS-Plant provides
accurate spatial data for Arabidopsis plants

PS-Plant consists of a machine vision camera surrounded by 4
or 8 near-infrared (NIR) light-emitting diodes (LEDs) and a be-
spoke LED controller that allows rapid switching of the LEDs for
high temporal data acquisition (Fig. 1; Supplementary Data S1).
PS-Plant can acquire up to 40 2D images per second at a spa-
tial resolution of 2,048 × 2,048 pixels. The acquisition process
takes 125–225 milliseconds per set of PS images, followed by
∼5 s to process the 2D images to compute SN map estimations
and 3D surface integration (Supplementary Information S1 and
S2). An NIR filter positioned in front of the lens provides con-
sistent contrast and brightness for images captured through-
out the diel cycle. The camera provides a 17 × 17 cm field of
view that allows simultaneous tracking of ≤9 Arabidopsis plants
in 5 × 5 cm pots. Growth data sets for individual plants were
extracted from each master image experiment data set using
Python-based graphical user interface (GUI) software. Overall,
PS-Plant is portable and lightweight (∼7 kg without a personal
computer) and could be adjusted to fit in different growth en-
vironments including growth cabinets or greenhouse environ-
ments. At the time of manufacture, the total cost for PS-Plant
was approximately US$3200.

A key assumption in PS is that the surface of the imaged ob-
ject should exhibit Lambertian reflectance (i.e., it reflects light
equally in all directions, while the reflected intensity diminishes
according to Lambert’s cosine law) (Supplementary Information
S1) [48]. As the reflectance of the object deviates from the Lam-
bertian model, the subsequent estimation error increases ac-
cordingly. To verify whether PS-Plant could accurately estimate
the total area and angle of an object, we initially used rectan-
gular flat pieces of acrylic of known area (600 mm2) covered
in white matte paper, which achieved a close approximation
of Lambertian reflectance [62], and imaged with a black matte
background to facilitate image segmentation [63]. The acrylic
objects were placed on laser-cut wedges to allow imaging at a
range of known angles (Fig. 2A). The projected areas were es-
timated using 2D and 3D data obtained from PS-Plant. The 3D
data enabled us to estimate the object inclination angles, which
were compared with the ground truth (Fig. 2B). Using 3D data,

the area was estimated accurately up to 45◦ with a mean rela-
tive error (MRE) of 1.0% (see Supplementary Information S3 for
formulas). In contrast, estimates based on 2D data became inac-
curate at inclinations >10◦, with an MRE of 10.3% when all an-
gles were considered. Angle estimations consistently matched
the known angle for all inclinations tested with a mean absolute
error of 0.89◦. These results highlighted the accuracy of PS-Plant
in estimating the angle and area of a flat object in 3D space.

Next, we investigated Arabidopsis rosettes in PS-Plant and
observed that Arabidopsis leaves exhibited near-Lambertian re-
flectance under NIR light (Supplementary Information S1). We
hypothesized that longer wavelengths penetrate deeper into the
leaf and are then typically scattered, rather than specularly re-
flected at the leaf surface [64, 65]. Similarly to the object area and
angle estimation experiment, we imaged Arabidopsis rosettes in-
clined from 0◦ to 45◦ using a rotary inclination table and com-
pared the estimated areas using 2D and 3D data with ground
truth measurements of the imaged rosettes (Fig. 2C). Even with-
out inclination (i.e., at 0◦), estimates based on 3D data were more
accurate than those from 2D data, indicating that the former
was more capable of approximating areas for complex objects
that include a degree of surface topographic relief (e.g., an Ara-
bidopsis rosette). 3D data continued to outperform 2D data at in-
creased inclinations with an MRE of 4.5% and 18.1% for 3D and
2D estimations, respectively. The accuracy of 3D estimations did
decrease at angles >30◦ as a result of the increase in leaf (self-
) occlusion that occurred when the whole rosette was inclined
(Supplementary Information S4). When the accuracy of angle es-
timations was tested with selected individual leaves from the
Arabidopsis rosettes (Fig. 2D), PS-Plant achieved a mean absolute
error of 3.8◦ for leaf angle estimations. We observed that the es-
timated and known leaf inclination angle correlated in the mid-
range (10–30◦) but less so at lower and higher angles. This was
likely due to the natural curvature of Arabidopsis leaves com-
pared to a flat surface, as Arabidopsis leaf blades typically have a
convex shape when observed from above. Therefore, when the
leaves were not inclined (i.e., at 0◦), the estimated angles were
still >0◦ because they were calculated from the varying SN val-
ues across each leaf blade surface.

PS-Plant enables accurate 3D reconstructions of
growing Arabidopsis rosettes

Following validation, we assessed the accuracy and consistency
of PS-Plant in monitoring plant growth and mean rosette incli-
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Figure 2: Evaluating the accuracy of PS-Plant with 2D and 3D data. (A, B) The estimated area and inclination angle of a flat, matte object (600 mm2) from 0◦ to 45◦

at 5◦ intervals. Each data point represents the average of 30 randomly selected regional patches of varying size (35–600 mm2). (C, D) The area of 3 similarly sized
Arabidopsis whole rosettes (750 ± 13.5 mm2) and leaf inclination angles were estimated from 0◦ to 45◦ at 5◦ intervals. The dashed black lines indicate ground truth (GT)

measurements. Error bars represent SD of the means.

nation over time (Fig. 3). PS-Plant captured both 2D and 3D data
for Arabidopsis plants for 12 days, starting from 11 days after ger-
mination (DAG) in standard growth conditions (22◦C, 150 μmol
photons m−2 s−1, 12:12 h light:dark). The automated image cap-
ture program resulted in an SN map produced for each plant ev-
ery 30 minutes that was used to characterize rosette surface cur-
vature (Fig. 3A) as described in Supplementary Information S1.
Furthermore, SN data could be used to derive rosette surface in-
clination angles and concavity/convexity values. Such informa-
tion can be used, for example, in leaf developmental analysis to
evaluate perturbances in normal leaf abaxial/adaxial expansion
[66, 67].

Both 2D and 3D data sets produced exponential growth
curves for projected rosette area (PRA) that were typical for Ara-
bidopsis growth (Fig. 3B). However, 2D data consistently under-
estimated PRA and showed erroneous reductions in area esti-
mates consistent with rhythmic nastic leaf movements (Fig. 3C
and D; Supplementary Data S2). In contrast, 3D data accounted
for leaf curvature and movement (Supplementary Information
S1), such that PRA increased more smoothly over the time course
of the experiment. The small decreases observed for PRA from
3D data were associated with self-occlusion at high leaf inclina-
tion angles (as in Fig. 2). A number of studies have shown that

growing Arabidopsis leaves exhibit rhythmic movement that is
controlled by the circadian oscillator [68–71]. PS-Plant estima-
tions of rosette surface inclination (i.e., the total inclination of all
rosette leaf blades and petioles) is able to accurately record this
rhythmicity, which in our 12:12 h light:dark conditions achieved
an amplitude peak at 4–6 h after dusk (Fig. 3D) (calculated us-
ing BioDare2; see Materials and Methods). Interestingly, our data
showed that leaf rhythmicity appears to be anticipatory up to
16 DAG, after which it was strictly diurnal. Because older plants
have a higher proportion of mature leaves that are no longer
elongating, our data suggest that these leaves still exhibit rhyth-
mic movements but they are driven by the daily light-dark cycle
rather than the circadian oscillator. These data highlight the ca-
pability of PS-Plant not only to provide accurate area estimates
but to capture leaf movement rhythms that are regulated by the
circadian clock and the prevailing photoperiod.

Rosette architectural parameters derived from 2D data were
also obtained from PS-Plant, including circularity (or stockiness),
compactness, diameter, and perimeter (Fig. 3E-H) [36, 72, 54].
These data showed, for example, an increase in perimeter and
diameter that was consistent with plant growth, and a decrease
in compactness, which was associated with elongation of leaf
petioles as the rosette developed.
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Figure 3: Data outputs of PS-Plant for Arabidopsis. (A) Surface normal map (top) rendered for a wild-type Arabidopsis rosette used to derive models for surface inclination
(middle) and convexity (bottom). (B) Projected rosette area estimates captured for wild-type plants under standard growth conditions (22◦C, 150 μmol photons m−2 s−1,

12:12 h light:dark) for 2D and 3D data from the mean ± SE values of 13 biological replicates. (C) Percentage difference between 2D and 3D estimations. (D) Estimated
rosette mean inclination angles across the rosette surface. (E−H) Circularity, compactness, diameter, and perimeter estimates derived from 2D data.

PS-Plant reveals 3D growth traits for Arabidopsis plant
grown in different environments

We next wanted to establish whether PS-Plant could capture al-
terations in growth plasticity induced by changes in the exter-
nal light and temperature environment. Low levels of photosyn-
thetic active radiation are known to elicit a shade avoidance re-
sponse, where plants exhibit elongated stems and petioles, in-
creased hyponasty, and smaller and fewer leaves [73–75]. As high
temperatures to some extent target the same molecular path-
ways, heat also elicits a shade avoidance –type response [76, 77].
These studies illustrate that the growth strategy adopted by the
plant is strongly dependent on the surrounding light environ-
ment and the ambient temperature. To capture these morpho-
logical changes we tracked Arabidopsis plants under 9 conditions
that differed in temperature (17◦C [low temperature, LT], 22◦C

[medium temperature, MT], and 27◦C [high temperature, HT])
and light intensity (40 [low light, LL], 150 [medium light, ML],
and 300 μmol photons m−2 s−1 [high light, HL]) (Fig. 4A; Supple-
mentary Fig. S1; Data S3).

Plants grown in LL had small leaves, recorded as low PRA,
which was comparable in plants grown at different tempera-
tures. Increases in light levels led to a concomitant increase
in PRA; however, at light intensities of >150 μmol m−2 s−1 the
PRA was strictly temperature-dependent, with the highest PRA
achieved at the highest light and temperature levels (Fig. 4B). The
observed differences in PRA were reasonably consistent with
overall biomass accumulation at 24 DAG (Fig. 4C and D). No-
tably, in ML plants a shift from 17◦C to 22◦C led to an increase
in biomass, while a shift from 22◦C to 27◦C did not. Although we
have not measured leaf thickness, previous work has shown that
plants grown in high temperatures tend to have thinner leaves
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Figure 4: PS-Plant shows that Arabidopsis plants grown under different conditions show differences in growth architecture. (A) Wild-type Arabidopsis plants (24 DAG)
following growth under 9 different light and temperature conditions. (B) Estimated 3D projected rosette area growth of rosettes grown under the different environments.

(C–E) Estimated 3D projected area, fresh weights, and leaf count for rosettes at 24 DAG. (F–H) The average relative expansion rate (RER) during light and dark periods for
each growth condition (calculated from 15–18 DAG with a 4-hr sliding window). Values represent the mean ± SE values of ≥3 biological replicates. Asterisks indicate
significant differences between light and dark values for each condition based on Student’s t-test (P < 0.05). The colour legends in A are applicable to B, and F–H.

and a higher specific leaf area (the ratio of leaf area to dry mass)
[78, 79], which could explain the increase in area from 22◦C to
27◦C but no increase in biomass. HL and ML plants produced
more leaves at 22◦C than at 17◦C, signifying a larger investment
in vegetative growth. Growth at 27◦C induced flowering in HL
and ML plants, and so their final leaf number was slightly lower
than at 22◦C (Fig. 4E).

Together, these results could be explained by the thermo-
dynamic relationship between the dark reactions (e.g., ribu-
lose bisphosphate carboxylase/oxygenase [rubisco] activity and
the Calvin cycle) and light reactions of photosynthesis. The as-

similation rate of CO2 by rubisco is temperature-dependent,
such that increased temperatures (up to ∼30◦C) typically cor-
relate with increased CO2 assimilation in C3 plants grown un-
der non-limiting light conditions [80–82]. These photochemi-
cal processes most likely underlie the light- and temperature-
dependent changes in PRA and investment in leaf biomass pro-
duction. Contrasting with this, in LL the supply of adenosine
triphosphate and nicotinamide adenine dinucleotide phosphate
to the Calvin cycle by the light reactions may have constrained
CO2 uptake, and thus growth rates were not increased by higher
temperatures.
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PS-Plant also captured differences in petiole length. Analy-
sis of the ML and HL specimens illustrated that increased tem-
perature stimulated petiole elongation in these plants. This is
evident in PS-Plant measurements of plant compactness. How-
ever, these data also show that HL plants were generally more
compact than ML (Supplementary Fig. S2) and that temperature-
mediated differences in compactness were less evident in plants
grown in HL. This indicates that plants tend to invest more
in leaf expansion compared to petiole elongation under higher
light intensities.

We then compared the relative expansion rate (RER) based on
3D PRA data for different light-temperature conditions over the
diel cycle (Fig. 4F–H). RER data for Arabidopsis vary between dif-
ferent studies but generally have comparable rates within light
and dark periods for wild-type plants grown under standard
growth conditions [9, 36, 43, 83]. In the present study, RER in
the dark period was not significantly different across all growth
conditions tested (as determined by 1-way analysis of variance
[ANOVA] [P < 0.05], followed by Tukey’s honest significant differ-
ence [HSD] tests). This was not unexpected because the rate of
leaf starch turnover during the night is known to be maintained
over a wide range of environmental conditions and tempera-
tures in Arabidopsis [84, 85]. RER values during the light period
were comparable for plants grown in ML and plants grown in HL-
MT and HL-LT. In contrast, HL-HT plants showed an increased
RER in the light compared to the dark period. As HL-HT plants
also had the highest biomass accumulation (Fig. 4D), results ob-
tained with PS-Plant suggest that HL-HT plants were limited
more by carbon turnover than CO2 assimilation. All plants grown
in LL had a significantly decreased RER in the light compared
to the dark period. Notably, temperature had no impact on RER
in the light for LL plants, indicating that photosynthetic growth
was primarily limited by the low irradiance. Further studies on
carbon allocation and starch turnover should be carried out to
complement these observations and hypotheses generated us-
ing PS-Plant data.

The internal circadian clock in plants has a periodicity close
to 24 h that can be entrained by environmental cues [86]. Thus,
we next used PS-Plant to examine the rhythmicity of total leaf
movement (i.e., rosette surface inclination; see Fig. 3D) to com-
pare the capacity of entrainment of the clock to different growth
conditions (Fig. 5A–C; Supplementary Fig. S3) [68]. We compared
3 standard parameters: period, phase, and amplitude [86, 87].

As expected, all conditions showed a similar period for leaf
movement of ∼24 h (P < 0.05) because all plants were grown
in a 12:12 h light:dark cycle (Fig. 5D). However, phase and am-
plitude differed between growth conditions. Through all con-
ditions peak phase occurred during the night, with the gen-
eral observation that incremental increases in light intensity led
to a phase delay in the peak. A possible exception is that in
17◦C HL rhythms peaked at the end of the day. It is noteworthy
that the 17◦C ML and HL leaf rhythm traces are very low ampli-
tude, most likely because these plants had very limited petiole
growth. We also found that temperature affected the phase of
the rhythm across all light conditions. For example, in both ML
and HL growth at 27◦C advanced the peak phase compared to
22◦C.

Monitoring plant behaviour through time revealed the im-
pact of light and temperature through development (Supple-
mentary Fig. S3). A common trend is that warm temperatures
increase mean rosette leaf inclination angle, or hyponasty, al-
though the threshold for this response varied in the different
light treatments. Another notable feature is that hyponasty and
rhythm amplitude dampen over time. Our data show that un-

der LL the leaf movement rhythms were more sinusoidal and
higher amplitude rhythms than in ML and HL. Leaf movement
rhythm waveforms of ML and HL were also quite different from
LL, with some evidence of tracking dawn and dusk. Interestingly
in HL the rhythm at 17◦C was clearly in antiphase with 22◦C and
27◦C. Through time the 17◦C rhythm dampened to high leaf hy-
ponasty, while 22◦C/27◦C leaf rhythms dampened to a low leaf
angle. In both cases this effect seems to arise from a gradual re-
duction in rhythmic regulation during the night period. Overall,
these data illustrate that PS-Plant was able to extract quantita-
tive data on a large range of traits associated with rhythmic leaf
growth that are typically challenging to capture.

Use of PS-Plant data and machine learning for accurate
leaf segmentations

Our next goal was to examine the capacity of PS-Plant to track
the phenotypic behaviour of individual leaves on a growing Ara-
bidopsis rosette. To achieve this, we labelled individual leaves in
221 images of ML-MT rosettes (Supplementary Information S5)
and used machine learning approaches to segment leaves [88].
We compared 2 available NN architectures, the end-to-end re-
current neural network with recurrent attention (RNN) [58] and
the Mask R-convolutional neural network (R-CNN) [89], to exam-
ine the suitability of PS-Plant data for NNs designed for instance
segmentation using RGB (colour) images. We focused on ML-
MT plants because their growth was more uniform across dif-
ferent individuals compared to other growth conditions, which
allowed the models to converge faster and achieve better results
during the training process. The data set was split into 179 and
42 images (∼80:20 ratio) for training and validating the models,
respectively. To avoid overfitting the model, we manually parti-
tioned plant images for training and validation data sets to en-
sure that all time-series images of a single specimen appear in
either training or validation data sets but not both.

PS-Plant produces a range of different data: from greyscale
images to SN maps (e.g., Fig. 3). We trained the RNN and R-CNN
architectures from initial random weights, while R-CNN was
also pre-trained using transfer learning weights generated using
the Common Objects in Context (COCO) data set [90]. The RNN
and R-CNN architectures were trained using 3 different types of
PS data to compare for segmentation accuracy: (i) composite (SN
in x and y direction, and albedo for RGB layers), (ii) greyscale,
and (iii) albedo images. All data used for training, including the
raw PS-Plant data and rosette masks, are available as outlined
in Supplementary Information S5. The obtained leaf segmenta-
tions were compared to the ground truth images using symmet-
ric best dice (SBD; score of the accuracy of leaf instance segmen-
tation) and foreground-background dice (FBD; score of the accu-
racy of rosette segmentation) evaluation formulas (Supplemen-
tary Information S3) [91].

The type of PS data used did not significantly influence SBD
or FBD scores, suggesting that the accuracy of RGB-based mod-
els was not affected by the different types of PS-based data.
The most accurate leaf segmentation results were achieved
with models based on the R-CNN architecture using pre-trained
weights (Fig. 6; Table 1), resulting in SBD scores that ranged
from 0.806 (composite image) to 0.814 (albedo). In comparison,
the RNN architecture resulted in lower SBD scores ranging from
0.440 (composite image) to 0.560 (albedo). The pre-trained R-
CNN model also achieved the most accurate rosette segmen-
tation results, with FBD scores that ranged from 0.940 (albedo)
to 0.946 (greyscale). In contrast, FBD scores for the RNN model
varied from 0.798 (composite image) to 0.891 (albedo), indicating
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Figure 5: Arabidopsis plants grown under different conditions show differences in circadian movement. (A-C) The relative rosette surface inclination (i.e., rosette surface
inclination following baseline detrending and alignment to the mean) for plants grown in high, medium, and low light from 15 to 18 DAG (see Supplementary Figure
S3 for full data sets). (D) Period, phase, and amplitude calculated by the MFourFit method [87] using data from 11–24 DAG. Values are the mean ± SD of measurements

made on ≥3 biological replicates. Values within each column followed by different letters are significantly different from each other and values followed by the same
letter are not (P < 0.05) as determined by ANOVA followed by Tukey’s HSD tests.

Table 1: Performance comparison of leaf instance segmentation for 2 different machine learning architectures

Image type

Mask R-CNN RNN

Random weights Pre-trained weights Random weights

SBD FBD SBD FBD SBD FBD

Greyscale 0.813 0.942 0.812 0.946 0.556 0.866
Albedo 0.758 0.913 0.814 0.940 0.560 0.891
Surface normal
map

0.789 0.922 0.806 0.941 0.440 0.798

The Mask R-CNN [89] and RNN [58] architectures were trained with composite (SN in x and y direction, and albedo for RGB layers), greyscale, or albedo images. The
training procedure for the RNN architecture was the same as proposed by the authors [58], while the Mask R-CNN was as follows: head layers for 10 epochs at 10−2

learning rate (LR); all layers for 30 epochs at 10−2 LR, 30 epochs at 10−3 LR, 30 epochs at 10−4 LR, and head layers for 10 epochs at 10−4 LR. The Mask R-CNN was trained
both from initial random weights and from pre-trained model weights, while RNN was only trained from initial random weights. SBD: symmetric best dice; FBD:
foreground-background dice.

that the relative performance of the RNN architecture was worse
for both leaf and rosette segmentation with our data sets when
compared to the R-CNN approach.

Using PS-Plant data for dynamic tracking of individual
leaf growth and movement

We next investigated the performances of 4 different approaches
for tracking leaves using the segmented image data sets (e.g.,

Fig. 6): (i) kernelized correlation filters [92], (ii) optical flow [93],
(iii) multiple-instance learning tracker [94], and (iv) a particle fil-
ter [95]. Object tracking, especially with partially or even com-
pletely occluded objects, is one of the most challenging areas in
computer vision [60, 61]. Tracking Arabidopsis leaves over time
is particularly challenging owing to changes in both shape and
movement during growth together with associated occlusions
(Supplementary Information S4). The best results were achieved
with a particle filter based on leaf instance centroid location
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Figure 6: Automated segmentation of individual Arabidopsis leaves using PS-Plant data. Examples are shown based on the Mask R-CNN architecture for plants grown
in ML at 3 different temperatures. (A) Composite input images are composed of surface normals in x, y directions and albedo data. (B) Manually labelled images

(ground truth) used for training. (C) Mask R-CNN output images showing automated leaf segmentation. For ground truth images and Mask R-CNN outputs each leaf
was assigned a unique arbitrary colour.

and velocity across the time-series images (Fig. 7). Leaf over-
lap remained a limitation, as an occluding leaf was sometimes
assigned the label of an occluded leaf. However, erroneous la-
belling was found to be infrequent and straightforward to man-
ually correct post hoc, resulting in a robust semi-automated leaf
tracker (Supplementary Data S4).

Once we were confident that we could reliably track individ-
ual leaves using PS-Plant, we separated leaf blades and petioles
by applying a morphological opening function with a predefined
radius (3–11 pixels based on the leaf size) to the leaf binary mask.
The point of differentiation (PB) is the mean x and y coordinates
of the leaf blade and petiole (Fig. 8A). This enabled separate ex-
aminations of leaf blade and petiole traits. We then derived sep-
arated tissue-specific data including leaf blade area and inclina-
tion angle, and leaf blade and petiole length. The angle of leaf
blade inclination was estimated using 2 different methods: (i) a
point-based approach where leaf blade angle was determined
using SN data across the line from PB to the leaf tip (PT), and (ii)

the mean surface inclination of the whole leaf blade. Both meth-
ods produced similar results (Supplementary Fig. S4). However,
we chose to use the latter (ii) because the PB was not always vis-
ible owing to leaf occlusions or the petiole being too small to be
distinguished (e.g., maturing leaves or leaves grown in low tem-
perature).

To demonstrate our approach, we tracked leaves 1–4 of plants
grown in ML at 3 different temperatures from 15 to 18 DAG.
Leaves 1–4 were chosen as representative examples of matur-
ing (1 and 2) and immature (3 and 4) leaves (Fig. 8; Supple-
mentary Data S5A–D). Consistent with our findings for PRA un-
der different growth conditions (Fig. 4; Supplementary Fig. S1),
the leaf blade areas of maturing and immature leaves from HT
plants were significantly larger than leaf blades from MT and LT
plants (as determined by 1-way ANOVA [P < 0.05], followed by
Tukey’s HSD tests; Fig. 8B). The latter results confirmed that the
increased PRA observed using PS-Plant for plants grown in HT
was specifically associated with an increase in leaf blade area.
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Figure 7: Automated tracking of leaf labels from segmented Arabidopsis rosettes. (A) Three consecutive frames for labelled leaves produced using the trained Mask
R-CNN architecture (as in Fig. 6). (B) Tracked leaves retained the same colour after application of label tracking (see Rich Media 4). The particle filter allowed calibration
of a variety of parameters, including span (the velocity of ”span + 1” recent frames), search radius (the farthest distance [in pixels] an object may travel between

frames), frame memory (the maximum number of frames a seen/tracked object that is absent will be remembered), and filter (the minimum number of frames in
which an object must be seen/tracked to be included). The following particle filter settings produced the best results: span (10), search radius (30), frame memory (3),
and filter (100). (C) Example of leaf tracking using leaf centroid locations. Each coloured line represents the movement of the centroid location of an individual leaf

from 11 to 24 DAG.

Figure 8: Analyses of growth and movement for individual leaves. (A) Key landmarks for leaf analysis: rosette origin (PO), leaf base/leaf blade and petiole intersection
point (PB), and leaf tip (PT). Data are shown from plants grown in ML at 3 different temperatures (17◦C [LT], 22◦C [MT], or 27◦C [HT]). (B, C) Leaf blade area and mean
surface inclination of a maturing leaf (leaf 1) and an immature leaf (leaf 4) from 15 to 18 DAG. Error bars represent the mean ± SE of 3 separate leaves. (D) Period, phase,

and amplitude values of the leaf blade from immature leaves (leaves 3 and 4; n = 6 leaves). Letters above the error bars indicate significant differences within each
data type (P < 0.05) as determined by ANOVA followed by Tukey’s HSD tests. Data sets with the same letter are not significantly different. (E) The ratio of leaf blade
to petiole length for leaves 1–4 (L1–L4). Values represent the mean ratio over 24 h (17–18 DAG) for 3 separate leaves. Letters indicate significant differences (P < 0.05)
within each leaf data set for different temperatures (i.e., L1, L2, L3, and L4).

Leaves that emerged prior to the start of the experiment at 11
DAG (i.e., leaf 1) showed an increase in leaf blade area in HT

plants compared to MT and LT plants (Fig. 8B). However, leaves
that emerged after 11 DAG (i.e., leaf 4) had an even more dra-
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matic growth response to increased temperatures. For example,
the blade area for leaf 1 and 4 at 17 DAG was 40% and 130% higher
in HT compared to LT, respectively. Similarly, the mean surface
inclination of leaf blades was higher in HT (Fig. 8C). The latter
result was also consistent with our findings for whole rosette
surface inclination at higher temperatures (Figs 3 and 5; Supple-
mentary Fig. S3).

We then calculated parameters associated with diurnal
movement for individual leaf blades (Fig. 8D). We targeted
immature leaf blades because their movement patterns were
clearer and more consistent than those of maturing leaf blades.
Period or phase measurements from immature leaf blades were
generally similar between growth conditions and comparable to
values for whole rosettes (Fig. 5). In contrast, measurements of
immature leaf blade amplitude were significantly enhanced at
MT and HT and generally higher than values for whole rosettes.
This was not unexpected because immature leaves are more
active than older leaves and contribute more to overall whole
rosette amplitude (see Supplementary Data S3 and S5). Further-
more, the observed temperature-associated increases in am-
plitude and leaf hyponasty were consistent with whole-rosette
data (Fig. 5D; Supplementary Fig. S3B). Thus, we concluded that
measurements of periodic rhythms can be performed reliably
with PS-Plant data using whole rosettes or individual leaf blades.
The values obtained in the present study for period and phase
are comparable to those reported for wild-type plants under
standard growth conditions by other automated top-down sys-
tems for monitoring leaf movement, such as OSCILLATOR [96].

Finally, we used PS-Plant to reveal whether petiole elonga-
tion showed a response to temperature similar to that of the
leaf blade by comparing the ratio of leaf blade and petiole length
from maturing and immature leaves (Fig. 8E). Petioles have been
shown to elongate faster at higher temperatures [76, 79, 97].
In the present study we observed that leaves from MT and LT
plants had a blade-to-petiole length ratio that ranged from 2:1
to 4:1. Immature leaves did not have a detectable petiole under
LL; thus, only maturing leaves were included at LT. In contrast,
HT plants had ratios of approximately 1:1 for both maturing and
immature leaves, indicating that HT resulted in an increased
petiole elongation relative to leaf blade growth under ML. Fu-
ture work should examine this ratio at different light intensities
because petioles and leaf blades are known to have different re-
sponses to light. For example, petioles are known to elongate
faster under LL while leaf blades grow more slowly [77, 98].

Conclusion

In this article, we have introduced an adaptable and low-
maintenance platform for affordable, advanced image-based
phenotyping. A key goal was to ensure accessibility to the re-
search community. In this regard, PS-Plant can be considered
a powerful, alternative solution to 3D systems based on laser
scanning and light-field camera technologies [36, 43], which is
particularly well-suited for setup in low-income or developing
countries. Our system exploits the richer data provided by PS-
Plant with a combination of traditional image processing and
machine learning techniques to extract rosette and leaf-level
measurements in an automated manner. Here, we have demon-
strated that PS-Plant is able to accurately monitor several growth
traits and diurnal rhythms of different phenotypes of Arabidop-
sis plants produced in response to varied environments. This
provides credibility that future work with PS-Plant will produce
robust data for a wide variety of mutant phenotypes. Addition-

ally, the concomitant quantification of overall growth, leaf traits,
and circadian rhythms can facilitate a better understanding of
the relationships among environment, plant yield, and internal
molecular networks. Previous work has also highlighted that PS
can capture high-resolution 3D surface details of leaf surface
structures, such as leaf curvature and trichomes, which could
be used to investigate dynamic changes in leaf development [50].
Research in plant phenotyping needs to focus on increasing ac-
cessibility and instituting effective data standards and manage-
ment practices to assist with improving plant productivity and
genetic gain [99, 100]. To help accelerate the latter, we have pro-
vided the PS training imaging data set from this study for com-
munity access (Supplementary Information S5) and a detailed
protocol for software usage and data analysis with a test ex-
perimental data set (Supplementary Information S6). In its cur-
rent design, PS-Plant is optimal for measuring growth traits in
rosette-shaped plants such as Arabidopsis. However, we believe
it can also be used during the seedling stage of other eudicot
species (e.g., tomato, cabbage, oilseed rape) to analyse circadian
rhythms by observing the rhythmic movements of cotyledons.
Future work with PS-Plant will focus on improvements in leaf
tracking [101], integration with spectral information [102], and
incorporation of a low-cost depth camera to combine the high
resolution of PS with a lower resolution depth map to character-
ize whole plants with more complex architectures.

Materials and Methods
Plant materials

Arabidopsis (Arabidopsis thaliana [L.] Heynh. Col-0) wild-type
seeds were stratified for 2–3 days at 4◦C. Each seed was placed
in a square pot (50 mm) containing F2+S compost (Levington,
Frimley, UK) covered in acrylic black felt fabric with a central
hole (5 mm) and germinated at 22◦C under white light (150 μmol
photons m−2 s−1 at the plant level) in 12:12 h light:dark for 10
days in a Percival growth cabinet (SE-41AR2, CLF Plant Climat-
ics, Wertingen, Germany). For the plant area validation experi-
ment, the plants were kept in this cabinet for 22 DAG. For imag-
ing with PS-Plant, the seedlings were transferred to a Snijders
growth cabinet (Microclima MC1000, CEC Technology, Helens-
burgh, UK).

PS-Plant hardware

PS-Plant consists of a machine vision NIR monochrome camera
(Grasshopper3 GS3-U3–41C6NIR-C, FLIR Systems, Wilsonville,
USA) with a 16-mm fixed focal length lens (Kowa 1”SC LM25SC,
Kowa Company Limited, Yokohama, Japan) with an NIR filter at-
tached (LP920, MidOpt, Illinois, USA), 4 or 8 NIR LEDs (Power-
Star IR 940 nm, Intelligent LED Solutions, Thatcham, UK), and an
in-house–designed LED controller that allows rapid switching of
LEDs using an Arduino platform (MKRZero, Arduino, Ivrea, Italy).
The camera and LEDs were fixed on a square acrylic sheet (44 ×
44 cm) and positioned at a height of 40 cm above the imaging
plants (Fig. 1B and C). The camera was positioned centrally in
the sheet and the LEDs were positioned around the camera at
45◦ angle increments. The LEDs were tilted at a 30◦ angle to il-
luminate the area under the camera field of view (Fig. 1B). The
base of the rig was painted matt black to limit the introduc-
tion of specularities from the background. A laptop computer
(K501UQ-DM050T, AsusTek Computer Inc., Taipei, Taiwan) was
used to control LED illuminations and acquire, store, and pro-
cess images using GUI software written in Python. Details on rig
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assembly and the LED controller design are outlined in Supple-
mentary Information S2.

Leaf movement rhythm analysis

The leaf movement rhythm analysis was performed using the
mean inclination angles (whole rosette or individual leaf blade)
as an input for BioDare2 beta [103]. The data were treated with
baseline detrending prior to period, phase, and amplitude esti-
mations, which was done using the MFourFit algorithm [87].

Availability of source code and requirements

Project name: PS-Plant-Framework
Project home page: https://github.com/g2-bernotas/PS-Plant-Fr
amework
Operating system(s): Platform independent (tested on Windows
7/10, Ubuntu 16.04)
Programming language: Python
Other requirements: Python v3.5, Python interpreter (Miniconda
and Pyzo are suggested) and FlyCapture camera software pack-
ages (see Supplementary Information 6 for details)
License: GNU GPLv3 License
SciCrunch RRID:SCR 017032

Availability of supporting data and materials

The training data set supporting the results of this article is
available in an Edinburgh DataShare repository (https://datash
are.is.ed.ac.uk/handle/10283/3280) and outlined in Supplemen-
tary Information S5. This data set represents approximately 0.4%
of the 50,625 images captured during the “matrix” growth exper-
iment (see Fig. 4A). A user protocol is available in Supplemen-
tary Information S6 to assist with software installation, and a
test data set is available in the Edinburgh DataShare repository
(https://datashare.is.ed.ac.uk/handle/10283/3279). Images of our
training set and code, including other supporting data, are avail-
able in the GigaScience repository, GigaDB [88].

Additional files

Supplementary Information S1. Overview of 2D image data pro-
cessing captured using PS-Plant.
Supplementary Information S2. Overview of the PS-Plant hard-
ware.
Supplementary Information S3. Formulas.
Supplementary Information S4. Area estimation errors.
Supplementary Information S5. PS-Plant training data set de-
scription.
Supplementary Information S6. PS-Plant protocol.
Supplementary Figure S1. Rosette and individual leaf growth
analysis.
Supplementary Figure S2. Rosette compactness for plants
grown in different conditions.
Supplementary Figure S3. Mean rosette surface inclinations for
all growth conditions separated by light treatment.
Supplementary Figure S4. Estimated leaf inclination of leaf 1 in
medium light and 27◦C.
Supplementary Data S1. Interactive 3D model of the PS-Plant
system. The model is provided as an .stl file (Rich Media 1.stl),
and a zoomable, colour version can be found at https://bit.ly/2
GXNhLy.
Supplementary Data S2. Comparison of Arabidopsis growth from
2D and 3D data. The graph (top) includes standard deviation of

PRA data for 3 plants growing under conditions outlined in Fig. 3.
Examples of plant growth are shown below for 2D (albedo; bot-
tom left [see Supp. Info. 1 for details]) and surface normal map
data (bottom right).
Supplementary Data S3. Arabidopsis plants grow and move dif-
ferently under different light and temperature conditions. Ex-
amples of (A) surface normal models or (B) greyscale images
for plants of the same age under each of the growth conditions
tested (see Fig. 4) are shown from 11 to 24 DAG.
Supplementary Data S4. Automated tracking of individual Ara-
bidopsis leaves. Example of leaf label tracking following rosette
segmentation of an ML-MT plant shown from 15 to 18 DAG. Note
that leaves retained the same colour after tracking (right).
Supplementary Data S5. Using PS-Plant for automated tracking
of individual Arabidopsis leaf movement in 3 dimensions. Four
videos illustrate leaf blade tracking of leaves 1–4, respectively,
for a plant grown in ML-MT from 15 to 18 DAG. Each video shows
a trail of leaf blade centroid movement (red dots) on an albedo
2D video (top left). Blue dots illustrate leaf blade movement on
2D x-y (bottom left) and y-z projections (bottom right), and a 3D
x-y-z graph (top right).

Abbreviations

2D: 2-dimensional; 3D: 3-dimensional; ANOVA: analysis of vari-
ance; COCO: Common Objects in Context; DAG: days after ger-
mination; FBD: foreground-background dice score; GUI: graph-
ical user interface; HL: high light; HSD: honest significant dif-
ference; HT: high temperature; LED: light-emitting diode; LiDAR:
light detection and ranging (distance measurement method us-
ing pulsed laser light); LL: low light; LR: learning rate; LT: low
temperature; ML: medium light; MRE: mean relative error; MT:
medium temperature; NIR: near-infrared; NN: neural network;
PB: leaf base point, or intersection point between leaf blade and
petiole; PO: rosette origin point; PRA: projected rosette area; PS:
photometric stereo; PT: leaf tip point; R-CNN: Mask R-CNN NN
architecture; RER: relative expansion rate; RGB: red, green, and
blue channels, or a colour image; RNN: end-to-end instance seg-
mentation with recurrent attention NN architecture; rubisco:
ribulose bisphosphate carboxylase/oxygenase; SBD: symmetric
best dice score; SD: standard deviation; SN: surface normal.
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