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Mitochondria participate in a variety of physiologic processes, such as ATP production, lipid metabolism, iron-sulfur cluster
biogenesis, and calcium buffering. The morphology of mitochondria changes dynamically due to their frequent fusion and division
in response to cellular conditions, and these dynamics are an important constituent of apoptosis. The discovery of large GTPase
family proteins that regulate mitochondrial dynamics, together with novel insights into the role of mitochondrial fusion and fission
in apoptosis, has provided important clues to understanding the molecular mechanisms of cellular apoptosis. In this paper, we
briefly summarize current knowledge of the role of mitochondrial dynamics in apoptosis and cell pathophysiology in mammalian
cells.

1. Introduction

Apoptosis, also called programmed cell death, is a crucial
physiologic process in the development and homeostasis of
multicellular organisms [1]. Perturbation of this vital process
leads to a range of diseases, such as ischemia, cancer, neuro-
degeneration, and autoimmunity [2]. The mitochondrial
outer membrane (MOM) serves to coordinate mitochondrial
function with extra mitochondrial signaling and participates
in the regulation of mitochondrial homeostasis. Mitochon-
dria have a central role in the initiation of apoptosis trig-
gered by intrinsic death signals such as DNA damage (the
mitochondrial pathway) by releasing cytochrome c and other
apoptogenic factors stored in the intermembrane space
(IMS) into the cytoplasm [3, 4]. Cytochrome c complexed
with Apaf-1 activates caspase 9, which leads to the activation
of downstream caspases [5].

Mitochondrial morphology changes dynamically by con-
tinuous fission and fusion to form small units or intercon-
nected mitochondrial networks, and the balance of these
dynamic changes is essential for counteracting deleterious
mitochondrial processes. Mitochondrial fusion allows for
complementation of damaged mitochondrial DNA and other
contents (e.g., lipids, proteins, or metabolites) with the com-
ponents of healthy mitochondria, thus maintaining normal

mitochondrial activity. Mitochondrial fission, on the other
hand, plays an important role in the quality control of mito-
chondria, facilitating the removal of damaged mitochondria
to maintain cellular homeostasis [6–10]. Compromise of this
quality control system induces cell death, which results in
various degenerative disorders [9]. Mitochondrial fission is
also essential for the distribution of mitochondria in res-
ponse to the local demand for ATP or calcium buffering [10].
In addition to these fundamental roles, the dynamic mor-
phologic changes of mitochondria are closely associated with
the initial process of apoptosis. The rate of fission increases
markedly when cells become committed to apoptosis; apop-
totic stimuli such as DNA injury, UV radiation, endoplasmic
reticulum (ER) stress, oxygen radicals, or cytokine with-
drawal trigger extensive mitochondrial fission accompanied
by cristae disorganization and permeabilization of the mito-
chondrial outer membrane (MOMP), which in turn induces
the release of IMS-stored proapoptotic factors, such as cyto-
chrome c, to trigger the apoptosis program [11–15]. Al-
though modulation of mitochondrial fusion and fission
machineries is considered to influence the apoptotic response
of the cells, it remains controversial whether fission is abso-
lutely required for the progression of apoptosis. Nonetheless,
perturbations of the mitochondrial dynamics cause cellular
dysfunction, particularly of highly polarized cells such as
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neurons, and neuronal synaptic loss and cell death in neu-
rodegenerative disorders (e.g., Alzheimer’s disease, Parkin-
son’s disease, and Huntington’s disease), although the func-
tional relation between the morphologic alterations and
apoptosis is still insufficiently understood [16].

2. Regulation and Physiologic Significance of
Mitochondrial Fusion and Fission

Three types of high-molecular-weight GTPase proteins reg-
ulate mitochondrial fusion and fission in mammals [10].
Outer membrane fusion involves two mitofusin proteins
(Mfn1 and Mfn2; Fzo1 in yeast) located on the mitochon-
drial outer membrane (MOM) [17, 18]. An IMS-localized
GTPase, OPA1 (Mgm1 in yeast), functions as a hetero-oligo-
meric complex of the larger size Opa1 (L-Opa1) and the
smaller size Opa1 (S-Opa1) in fusion and cristae organiza-
tion of the inner membrane (MIM) [19, 20]. The cytoplas-
mic dynamin-related GTPase protein Drp1 (Dnm1 in yeast)
translocates to the foci of future mitochondrial fission sites
and mediates mitochondrial fission [21–23]. Mitochondrial
fission factor (Mff), and mitochondrial dynamics (Mid) 51/
mitochondrial elongation factor 1 (MIEF1), and the variant
Mid49 were recently reported to function as Drp1 receptors
on the MOM [10, 24–27], although detailed mechanisms of
Mff and MiD/MIEF1 proteins and their relation in Drp1-
dependent mitochondrial fission remain to be clarified. The
function of the mammalian homolog of yeast Fis1, which is
thought to regulate mitochondrial fission as in yeast remains
controversial [10, 24, 25].

Mutations in the mitochondrial fusion factors Mfn2 and
OPA1 result in neurodegenerative disorders, such as Char-
cot-Marie-Tooth Neuropathy 2a and Dominant Optic Atro-
phy I, respectively [16, 19, 20]. Mitochondrial fusion factor
knockout (KO) mice are lethal before embryonic day 12.5
(E12.5 for Mfn1 KO) or embryonic day 11.5 (E11.5 for Mfn2
KO), suggesting that both Mfn isoforms are essential for
embryonic development in mammals [17]. Cells lacking
both Mfn1 and Mfn2 exhibit severe cellular defects, includ-
ing poor cell growth, heterogeneity of inner membrane po-
tential, and decreased respiration, indicating that mitochon-
drial fusion has an essential role in maintaining functional
mitochondria. Depletion of Mfn2 in neurons in mice leads
to highly specific degeneration of Purkinje neurons [17].
The mitochondria in these mutant cells are fragmented and
fail to distribute to the long and branched neurites, indi-
cating that fusion also plays an important role in mito-
chondrial distribution in polarized cells. Depletion of both
Mfn isoforms in skeletal muscle results in muscle atrophy
[28]. Homozygous mutation of OPA1 in mice leads to
embryonic lethality by E13.5 in mice, while heterozygous
mutation causes a slow onset of degeneration in the optic
nerves [29]. Pancreatic beta-cell-specific OPA1 KO mice have
compromised glucose-stimulated insulin secretion and ATP
production due to a defect in respiratory complex IV, sug-
gesting that the function of OPA1 in the maintenance of the
respiratory chain is physiologically relevant to beta cells [30].

The dynamin-related GTPase Drp1 localizes mainly in
the cytoplasm and plays a central role in mitochondrial

fission in mammals. It is composed of an N-terminal GTPase
domain thought to provide mechanical force, a dynamin-
like middle domain, a connecting domain (“B” in Figure 1),
and a C-terminal GTPase effector domain (GED) (Figure 1).
Compared with mitochondrial fusion, however, the in vivo
function of Drp1-dependent mitochondrial fission is poorly
understood. During mitochondrial fission, Drp1 existing as
small oligomers in the cytoplasm assembles into larger oligo-
meric structures at the mitochondrial fission sites depending
on GTP binding and then severs the mitochondrial mem-
brane by GTP hydrolysis. A heterozygous, dominant-nega-
tive mutation of the Drp1 gene (A395D in the middle
domain) was identified in a newborn girl with severe pleio-
trophic defects, including abnormal brain development and
optic atrophy, who died at 37 days of age (Figure 1) [31].
To elucidate the detailed physiologic roles of mitochondrial
fission in vivo, we and another group generated tissue-
specific Drp1 KO mice [32, 33]. Drp1 KO mice die at around
E12.5 with developmental abnormalities, particularly in the
forebrain. Neuron-specific Drp1 KO mice are born, but die
within a day of birth due to neurodegeneration, although
Drp1 is dispensable for the viability of mouse embryonic
fibroblast (MEF) cells. In primary cultured neural Drp1 KO
cells, enlarged mitochondrial clumps are sparsely distributed
in the neurites and the synaptic structures are lost. These
findings suggest that the Drp1-deficiency causes the abnor-
mal distribution of fused and aggregated mitochondria in
polarized cells and these spatiotemporal defects might inhibit
the ATP supply and Ca2+ signaling, eventually preventing
synapse formation. Similarly, Drp1-dependent mitochon-
drial fission is essential for immune synapse formation in T-
cell receptor signaling [34]. A missense mutation in mouse
Drp1 in the middle domain, which is essential for oligomer-
ization (Python mice; C452F mutation), leads to cardiomy-
opathy [35]. The physiologic relevance of Drp1 in other
tissues that might underlie various human diseases remains
to be elucidated.

Drp1 activity is regulated by various posttranslational
modifications and changes in these modifications are related
to several disorders (Figure 1). In the early mitotic phase,
Ser616 in human Drp1 is specifically phosphorylated by the
Cdk1/cyclinB complex, which promotes mitochondrial fis-
sion to facilitate stochastic distribution of the mitochondria
to daughter cells [36]. Under oxidative stress conditions, pro-
tein kinase Cδ mediates phosphorylation of Ser579 in human
Drp1 isoform 3 (Ser616 in the human Drp1 isoform 1),
leading to mitochondrial fission and impaired mitochondrial
function, which contributes to hypertension-induced brain
injury [37]. Phosphorylation at Ser637 in the GED domain
of human Drp1 by cAMP-dependent protein kinase (PKA)
stimulates Drp1 GTPase activity and releases Drp1 from
the mitochondria by inhibiting oligomeric assembly on the
membrane to promote mitochondrial network extension and
cell viability [38]. This reaction is reversed by calcineurin-
mediated dephosphorylation [39, 40]. Polyglutamine expan-
sions in huntingtin protein, the cause of Huntington’s dis-
ease, superactivate calcineurin through enhanced calcium
levels, and increase mitochondrial recruitment of Drp1,
leading to apoptosis due to mitochondrial fission, cristae
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Figure 1: Domain structure of Drp1 and schematic view of the regulation of Drp1 by posttranslational modifications. Drp1 activity is
regulated by various posttranslational modifications and changes in these modifications are related to several disorders. Under oxidative
stress, protein kinase Cδ (PKCδ) phosphorylates Drp1 at Ser616 in the GED domain. Drp1 is recruited to mitochondria and stimulates
mitochondrial fission, leading to apoptosis in hypertension-induced brain. Cyclic-AMP-dependent protein kinase (PKA) phosphorylates
Drp1 at Ser637 in the GED domain. This reaction releases Drp1 from mitochondria to the cytosol, leading to mitochondrial elongation and
suppression of apoptosis vulnerability of the cells. Calcineurin dephosphorylates Drp1 at Ser637 and promotes mitochondrial fragmentation
and cell vulnerability to apoptosis. Polyglutamine expansion in huntingtin protein activates calcineurin and increases mitochondrial frag-
mentation and cell vulnerability to apoptosis. β-Amyloid protein increases S-nitrosylation of Drp1 at Cys644 in the GED domain to trigger
mitochondrial fission by activating GTPase, thereby causing synaptic loss. All amino acid numbering is based on the human Drp1 splice
variant 1 sequence.

disintegration, and cytochrome c release (Figures 1 and 3)
[41]. Further, mutant huntingtin protein directly binds Drp1
and increases its GTPase activity, leading to mitochondrial
fragmentation and defects in anterograde and retrograde
mitochondrial transport and neuronal cell death [42, 43]. β-
Amyloid protein, a key mediator of Alzheimer’s disease, is
reported to induce S-nitrosylation of Drp1 at Cys644 in the
GED domain to trigger mitochondrial fission by activating
GTPase and thereby causing synaptic loss (Figure 1) [44],
although this model has been challenged [45]. Thus, mito-
chondrial morphologic balance shift toward fission makes
cells susceptible to apoptosis and vice versa (Figure 1).

3. Regulation of Mitochondrial Apoptosis by
Bcl-2 Family Proteins

Mitochondria play a central role in apoptotic initiation by
providing proapoptotic factors that are involved in caspase
activation, and chromosome condensation and fragmenta-
tion [15]. Multiple cellular pathways trigger apoptosis [46]:
an extrinsic pathway that is initiated by the binding of a death
ligands to the plasma-membrane-localized receptor, result-
ing in the rapid activation of caspases in the cytoplasm and

an intrinsic (mitochondrial) pathway where mitochondria
play a central role governed by pro- and antiapoptotic Bcl-2
family proteins. The extrinsic pathway does not directly
involve the mitochondria, and activation of the initiator
caspase (caspase-8) is mediated by the death-inducing sig-
naling complex [47]. Conversely, the intrinsic pathway is
initiated by the release of cytochrome c from the IMS accom-
panied by MOMP and cristae disorganization, which acti-
vates procaspase-9 through Apaf-1 [3, 4, 15]. Although the
extrinsic and intrinsic pathways have long been considered
independent from each other, evidence that caspase-8 also
activates the intrinsic pathway has led to a more complex
view of apoptosis in which crosstalk exists between the two
pathways [48, 49].

The Bcl-2 family proteins regulate the MOM integrity
and contribute to the release of proapoptotic factors from the
IMS to the cytoplasm by MOMP [50, 51]. Irrespective of the
precise mechanism, the antiapoptotic members of the Bcl-2
family tend to stabilize the barrier function of the MOM,
whereas proapoptotic Bcl-2 family proteins such as Bax or
Bak tend to antagonize such function and permeabilize the
MOM. Upon apoptotic stimuli, caspase-8 activated by the
death-inducing signaling complex cleaves the proapoptotic
BH3-only protein Bid to the active truncated form (tBid).
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The activated tBid is then recruited to the cardiolipin-rich
region on the MOM by MTCH2, a half-type carrier super-
family protein [52]. tBid either interacts with antiapoptotic
Bcl-2 family proteins such as Bcl-2 or Bcl-XL to inhibit their
antiapoptotic functions [48, 49, 53], or triggers targeting
and oligomerization of cytoplasmic Bax into the MOM and
Opa1-dependent cristae disorganization, leading to the re-
lease of IMS-stored proapoptotic factors such as cytochrome
c [54]. Bak, in contrast to Bax, is constitutively localized in
the MOM associating with voltage-dependent anion channel
2 (VDAC2) as an inactive form in the ∼400-kDa complex,
and tBid activates Bak by releasing it from the complex,
leading to MOMP [55–58]. Bcl-XL interacts with Bax on the
mitochondrial surface and retrotranslocates it to the cytosol,
thereby preventing Bax-induced MOMP in healthy cells
[59]. As discussed below, mitochondrial membrane dynam-
ics have an important role in the regulation of MOMP and
apoptosis.

4. The Role of Mitochondrial
Fission in Apoptosis

It is generally accepted that the mitochondrial network
collapses into small spherical structures in response to apop-
totic stimuli, and that proapoptotic and antiapoptotic Bcl-2
family member proteins play important roles in regulating
mitochondrial morphology [15]. During apoptosis, cytosolic
Bax is recruited to the MOM and colocalizes with Drp1
and Mfn2 at mitochondrial sites where fission subsequently
occurs [60]. Bak, which initially localizes uniformly on the
MOM, also coalesces into discrete foci at mitochondrial fis-
sion sites during apoptosis. tBid-triggered Bax/Bak activation
correlates with a reduction in mitochondrial fusion, possibly
through the inhibition of Mfn2 and eventually leads to mito-
chondrial fragmentation [61, 62]. Upon Bax activation, Drp1
stably associates with the MOM through Bax/Bak-dependent
SUMO modifications of Drp1 [63]. This mitochondrial
fragmentation is caspase independent and occurs concomi-
tantly with MOMP, cristae disorganization, and subsequent
cytochrome c release (Figure 2) [64, 65]. Increased mito-
chondrial fission in apoptotic cells apparently parallels the
release of cytochrome c, and inhibition of fission by Drp1-
RNA interference (RNAi) delays the release of cytochrome c,
suggesting that the release of cytochrome c from the IMS is
intimately involved in mitochondrial fission [65]. Consistent
with these data, Mff depletion by RNAi results in extensive
mitochondrial elongation, delayed cytochrome c release, and
retardation of apoptosis [24, 66]. Similarly, MEFs from
Drp1-KO mice exhibit a delay in cytochrome c release, cas-
pase activation and nuclear DNA fragmentation [32, 33].
Notably, mitochondria with network structures that are
subtly different from the structures observed prior to cyto-
chrome c release are frequently detected in Drp1 KO cells
after the release of cytochrome c and seem to undergo frag-
mentation in the advanced stage of apoptosis, suggesting
that Drp1-independent mitochondrial fragmentation likely
occurs late after the release of cytochrome c [32]. This sug-
gests that Drp1-independent fission might participate in

III: smac/DIABLO, HtrA2 release
No cytochrome c release

II: delayed cytochrome c release
Smac/DIABLO release
HtrA2 release

I: cytochrome c release
Smac/DIABLO release
HtrA2 release

MOMP
III

II

I

FragmentationCristae
disorganization

Figure 2: Relation between mitochondrial structural changes and
the release of IMS-stored apoptogenic factors. During apoptosis in
wild-type cells, mitochondrial fragmentation normally occurs con-
comitantly with MOMP, cristae disorganization, and subsequent
release of the IMS-stored apoptogenic factors (e.g., cytochrome c,
smac/DIABLO, HtrA2/omi). Mitochondrial fission facilitates these
reactions (State I). In contrast, elongated but cristae-disrupted
mitochondria (i.e., Drp1- and OPA1-double RNAi cells; Drp1-
KO and OPA1 RNAi cells) exhibit a significant delay only in the
cytochrome c release in response to apoptotic stimuli, because of
the absence of mitochondrial fragmentation. Of note, however,
MOM targeting and oligomeric assembly of Bax and the release of
the IMS-soluble Smac/DIABLO normally proceed (State II). State
III: presumed MOM permeabilized state in the absence of both
cristae disorganization and mitochondrial fragmentation. MOMP:
mitochondrial outer membrane permeabilization.

mitochondrial fission during apoptosis; for example, Dro-
sophila PMI and its human homolog TMEM11 of MIM, both
of which regulate mitochondrial morphology in a manner
independent of Drp1 and Mfn [67]. Taken together, these
findings indicate that the delay in cytochrome c release in
these cells is relatively modest, suggesting that the Drp1-Mff
system is dispensable, but facilitates the normal progression
of apoptosis [32, 33]. Conversely, the inhibition of mito-
chondrial fragmentation by the activation of fusion-related
proteins, such as Mfn1, Mfn2, or Opa1 antagonizes apoptosis
progression.

A pharmacologic inhibitor of Drp1-GTPase, mdivi-1,
inhibits tBid-dependent cytochrome c release from isolated
mitochondria that are incapable of undergoing fission in
vitro. These findings suggest either that mdivi-1 inhibits
other Drp1 functions than mediating mitochondrial fission
or that it inhibits molecules other than Drp1 that regulate
cytochrome c release [68]. Martinou and coworkers recently
demonstrated that Drp1 promotes the formation of a non-
bilayer hemifission intermediate in which the activated and
oligomerized Bax forms a hole, leading to MOMP [69].

Therefore, although mitochondrial fragmentation is in-
deed associated with apoptosis, excessive mitochondrial frag-
mentation can occur in a variety of conditions independently
of apoptosis processes, such as that occurring upon exposure
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to carbonyl cyanide m-chlorophenyl hydrazone (CCCP),
uncoupling agents that disrupt the electrochemical potential
of the MIM [70]. Thus, how Drp1 contributes to apoptosis is
an important issue for future studies.

5. Cristae Remodeling and Apoptosis

Opa1, localizing in the inner membrane as a hetero-oligo-
meric complex of large and small size forms, regulates MIM
fusion and is necessary for maintenance of the cristae junc-
tions independently of mitochondrial fusion. The majority
of cytochrome c is confined within the cristae folds and the
complete release and mobilization of cytochrome c in the
IMS require cristae remodeling or cristae-junction opening
[71]. Opa1 depletion by RNAi leads to fragmented mito-
chondria with disrupted cristae structures and an increase
in the sensitivity to the apoptotic stimuli [65, 72, 73]. Fur-
ther, during early apoptosis, the Opa1 hetero-oligomer is dis-
rupted, the cristae widen, and cytochrome c is released into
the IMS. Of note, we demonstrated that Opa1 RNAi HeLa
cells have disrupted cristae and efficient sensitivity to apop-
tosis, based on the cytochrome c release. In contrast, Opa1/
Drp1 or Opa1/Mff double-RNAi cells have elongated but
cristae-disrupted mitochondria, and exhibit a significant
delay in the cytochrome c release in response to apoptotic
stimuli (State II in Figure 2) [24]. Importantly, however,
mitochondrial targeting of Bax and the release of the IMS-
soluble Smac/DIABLO proceeded with the same kinetics as
in the control cells. Similarly, in Drp1 KO MEFs or Drp1
RNAi HeLa cells, Bax/Bak-mediated MOMP occurs inde-
pendently of Drp1 and is separable from cytochrome c re-
lease. These results suggest that cristae disorganization and
mitochondrial fission as well as MOMP (State I in Figure 2)
are essentially required for efficient cytochrome c release and
each can limit the initial apoptosis progression. In contrast to
these observations, detailed analysis with transmission elec-
tron microscopy and three-dimensional electron microscope
tomography revealed that neither cristae reorganization nor
cristae-junction opening is required for the complete release
of cytochrome c [74]. Thus, the requirement of Opa1-
dependent cristae remodeling for cytochrome c release re-
mains to be reconciled.

6. Mitochondrial Morphologic Responses in
Cell Survival

Many lines of evidence indicate that the efficiency of oxi-
dative phosphorylation by the mitochondrial electron trans-
port chain is affected by the degree of mitochondrial connec-
tivity; a highly connected mitochondrial network correlates
with increased ATP production efficiency. Mitochondria
hyperfuse and form a highly interconnected network when
cells are exposed to modest levels of stress (e.g., UV irra-
diation, actinomycin D treatment), named stress-induced
mitochondrial hyperfusion (SIMH) [75]. SIMH depends on
Mfn1, Opa1, and the MIM protein SLP-2, and delays the
activation of Bax and MOMP similar to the beneficial effect
of mitofusin overexpression. This seems to be a counterstress

action of the cells that is necessary for survival by increased
mitochondrial ATP production. Under nutrient starvation,
mitochondrial fission is repressed in response to PKA-
dependent Drp1 phosphorylation of Drp1 Ser637 due to
increased cAMP levels (Figure 1), resulting in elongation of
the mitochondria with a higher density of cristae and a
capacity for efficient ATP production. This response protects
mitochondria from autophagosomal degradation and sus-
tains cell viability [76, 77]. Taken together, enhanced fusion
in the mitochondrial fusion/fission balance promotes cell
survival. Alternatively, dysfunctional or damaged mitochon-
dria are selectively eliminated by autophagic degradation
(termed mitophagy): the process essential for maintaining
mitochondrial quality and cell function. For example, accu-
mulation of a causal gene product of Parkinson’s disease,
PTEN-induced mitochondrial protein kinase 1 (PINK1) on
depolarized mitochondria facilitates recruitment of cyto-
plasmic Parkin, an E3 ubiquitin ligase, to mitochondria to
initiate mitophagy [78–80]. The Parkin-PINK1 system thus
monitors damaged mitochondria, and dysfunction of this
mechanism is a possible cause of inflammation or Parkin-
son’s disease [81–86]. As it is thought that mitochondrial
fission is related to the progression of mitophagy, inhibition
of mitochondrial fission by the dominant negative mutant of
Drp1 or specific inhibitor of Drp1-GTPase mdivi-1 compro-
mises Parkin-PINK1-dependent mitophagy [83]. Together,
mitochondrial fusion and fission are more likely to be in-
volved in mitochondrial quality control in healthy cells. A
recent report demonstrated that the A-kinase anchoring pro-
tein 1 (AKAP1) localized on the MOM is involved in this
reaction. Thus, the PKA/AKAP1 complex-calcineurin system
regulates mitochondrial morphology and cell viability by
controlling the translocation of Drp1 to the mitochondria
(Figure 1) [87].

7. Communication between the Mitochondria
and ER in Apoptosis

In yeast, the ER mitochondria encounter structure (ERMES
comprising cytosolic Mdm12, mitochondrial Mdm10,
Mdm34, and Gem1, and ER membrane protein Mmm1),
identified by synthetic biology and biochemical approaches
[88–90], are involved in phospholipid transport. A similar
structure is expected to exist in mammalian cells; a mam-
malian homolog of yeast Gem1, MIRO, is detected in the
proximity of the ER-mitochondria [90]. Ca2+ is a key regu-
lator of not only cell survival but also cell death in response
to various apoptotic stimuli (Figure 3). The mitochondria
and ER have close contacts that are physiologically important
for the transfer of Ca2+, lipids, and metabolites, and there-
fore, for the regulation of mitochondrial metabolism and
other complex cellular processes including apoptosis. Mfn2
and its regulator Trichoplein/mitostatin localizing on the
mitochondria-associated ER membranes (MAM) is in-
volved in tethering mitochondria and ER through hetero-
or homotypic interactions with mitochondrial Mfn1 and
Mfn2, thereby regulating Ca2+ transfer from the ER to the
mitochondria [91, 92]. Interactions between the mitochon-
dria and ER are also supported by the finding that the ER
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Figure 3: Hypothetical models of the role of contacts between mitochondria and ER in apoptosis. The hFis1/Bap31 platform transmits the
mitochondrial stress signal to the ER via the activation of procaspase-8. The cytosolic region of the ER integral membrane protein Bap31
is cleaved by activated caspase-8 to generate proapoptotic p20Bap31, which causes rapid transmission of ER calcium signals to the mito-
chondria via the IP3 receptor. At close ER-mitochondria contact sites, mitochondria takes up calcium into the matrix via the mitochondrial
calcium channels MICU1 or LETM1. The massive influx of calcium leads to mitochondrial fission, cristae remodeling, and cytochrome c
release. Mfn2 is enriched in the mitochondria-associated membranes (MAM) of the endoplasmic reticulum (ER), where it interacts with
Mfn1 and Mfn2 on the mitochondria to form interorganellar bridges. Upon apoptosis signal, a BH3-only member of the Bcl-2 family,
Bik, induces Ca2+ release from the ER and, in turn, induces Drp1 recruitment to the mitochondria and their fragmentation and cristae
remodeling. SERCA, sarco/endoplasmic reticulum Ca2+-ATPase. MICU1, mitochondrial calcium uptake 1. LETM1, leucine zipper/EF hand-
containing transmembrane 1.

can elicit mitochondrial apoptosis. ER targeting of Bik, a
BH3-only member of the Bcl-2 family, induces Ca2+ release
from the ER and its concomitant uptake by the mitochon-
dria, which in turn induces Drp1 recruitment to the mito-
chondria and their fragmentation and cristae remodeling
(Figure 3) [93]. Mammalian mitochondrial Fis1 is an ortho-
log of yeast Fis1 thought to be involved in recruitment of
Drp1 to the mitochondria as in yeast [94]. Although recent
experiments revealed that Fis1 is not necessary for Drp1-
dependent mitochondrial fission in mammals [10, 24, 25],
it might have another important role. In this context, over-
expression of hFis1 (for human Fis1) induces mitochondrial
fragmentation concomitant with Bax/Bak-dependent release
of cytochrome c into the cytosol [95]. Of note, hFis1 does not
directly activate Bax and Bak, but induces ER Ca2+-depend-
ent mitochondrial dysfunction, leading to mitochondrial
apoptosis [96]. Interestingly, Iwasawa et al. recently dem-

onstrated that hFis1 localized to the MAM transmits an
apoptosis signal from the ER to mitochondria by interacting
with Bap31 at the ER to form a platform for the recruitment
of the initiator procaspase-8. Apoptotic signals induce cleav-
age of Bap31 into p20Bap31, which causes the rapid trans-
mission of ER calcium to the mitochondria through inositol
triphosphate receptors at the ER-mitochondria junction
[97]. Ca2+ influx into the mitochondria stimulates Drp1-
dependent mitochondrial fission and cytochrome c release.
Thus, the hFis1-Bap31 complex, bridging the mitochondria
and ER, functions as a platform to activate the initiator pro-
caspase in apoptosis signaling (Figure 3). Recently Green
and collaborators provided evidence that contacts between
mitochondria and other organelles such as ER are involved in
regulation of the levels of sphingolipid metabolites that are
required for Bax/Bak activation [98]. Distinct from the
substrate or ion transfer function of the ER-mitochondria
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contact, Friedman et al. [99] recently demonstrated that
mitochondrial fission occurs at contact regions between
the mitochondria and the ER. At the contacts, the ER wraps
around the mitochondria to form constrictions, where Drp1
and Mff accumulate and facilitate mitochondrial fission.
Interestingly, ER-localized Mfn2 which was shown to be
involved in tethering mitochondria and ER [91] is not in-
volved in this reaction [99].

8. Conclusions

Although key proteins regulating mammalian mitochondrial
dynamics have been identified during the past decade,
molecular mechanisms, their coordination, and physiologic
functions in distinct tissues are poorly understood, especially
in fission reaction: the mechanism of recruitment of Drp1 to
fission foci, functional relation between Mff and Mid pro-
teins in the Drp1 recruitment, and regulation of the foci
assembly and disassembly. Furthermore, involvement of Fis1
in the regulation of mitochondrial dynamics and its phys-
iologic function remain to be investigated. It is generally
agreed, but not completely admitted, that mitochondrial
fission/fusion dynamics are related to apoptosis and a bal-
ance sift toward fission enhances apoptotic susceptibility of
essentially all types of cells. Accumulating evidence, however,
suggest that Bax/Bak-dependent MOMP and cytochrome c
mobilization within IMS after cristae disintegration are es-
sential for cytochrome c release and Drp1 facilitates these
processes. The mechanisms coordinating these reactions and
the effect of Bcl-2 family proteins on mitochondrial fission
and fusion machineries remain to be analyzed at the mol-
ecular level. Recent studies have revealed that the ER-mito-
chondria contacts (MAM structures) are involved in the reg-
ulation of mitochondrial energy, lipid metabolism, calcium
signaling, and even in mitochondrial fission. Identification
of additional structural components, regulation of assembly
of these structures, and relation between various complexes
will reveal novel aspects of cell physiology regulation through
communication between mitochondria and ER.

In conclusion, mitochondrial fusion and fission mach-
ineries have crucial function in regulating cell physiology,
and investigation of the relation between mitochondrial
dynamics and their physiologic function will provide exciting
breakthrough in cell biology and various disorders.
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“VDAC2 is required for truncated BID-induced mitochon-
drial apoptosis by recruiting BAK to the mitochondria,”
EMBO Reports, vol. 10, no. 12, pp. 1341–1347, 2009.

[58] K. Setoguchi, H. Otera, and K. Mihara, “Cytosolic factor- and
TOM-independent import of C-tail-anchored mitochondrial
outer membrane proteins,” The EMBO Journal, vol. 25, no. 24,
pp. 5635–5647, 2006.

[59] F. Edlich, S. Banerjee, M. Suzuki et al., “Bcl-x(L) retrotranslo-
cates Bax from the mitochondria into the cytosol,” Cell, vol.
145, pp. 104–116, 2011.

[60] M. Karbowski, Y. J. Lee, B. Gaume et al., “Spatial and temporal
association of Bax with mitochondrial fission sites, Drp1, and
Mfn2 during apoptosis,” Journal of Cell Biology, vol. 159, no. 6,
pp. 931–938, 2002.

[61] M. Karbowski, D. Arnoult, H. Chen, D. C. Chan, C. L. Smith,
and R. J. Youle, “Quantitation of mitochondrial dynamics by
photolabeling of individual organelles shows that mitochon-
drial fusion is blocked during the Bax activation phase of
apoptosis,” Journal of Cell Biology, vol. 164, no. 4, pp. 493–499,
2004.

[62] C. Brooks, Q. Wei, L. Feng et al., “Bak regulates mitochondrial
morphology and pathology during apoptosis by interacting
with mitofusins,” Proceedings of the National Academy of Sci-
ences of the United States of America, vol. 104, no. 28, pp.
11649–11654, 2007.

[63] S. Wasiak, R. Zunino, and H. M. McBride, “Bax/Bak promote
sumoylation of DRP1 and its stable association with mito-
chondria during apoptotic cell death,” Journal of Cell Biology,
vol. 177, no. 3, pp. 439–450, 2007.

[64] S. Frank, B. Gaume, E. S. Bergmann-Leitner et al., “The role
of dynamin-related protein 1, a mediator of mitochondrial
fission, in apoptosis,” Developmental Cell, vol. 1, no. 4, pp.
515–525, 2001.

[65] Y. J. Lee, S. Y. Jeong, M. Karbowski, C. L. Smith, and R. J. Youle,
“Roles of the mammalian mitochondrial fission and fusion
mediators Fis1, Drp1, Opa1 in apoptosis,” Molecular Biology
of the Cell, vol. 15, no. 11, pp. 5001–5011, 2004.

[66] S. Gandre-Babbe and A. M. van der Bliek, “The novel tail-
anchored membrane protein Mff controls mitochondrial and
peroxisomal fission in mammalian cells,” Molecular Biology of
the Cell, vol. 19, no. 6, pp. 2402–2412, 2008.

[67] T. Rival, M. MacChi, L. Arnauné-Pelloquin et al., “Inner-
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