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Machine learning-based
clustering in cervical spondylotic
myelopathy patients to identify
heterogeneous clinical
characteristics
Chenxing Zhou†, ShengSheng Huang†, Tuo Liang, Jie Jiang,
Jiarui Chen, Tianyou Chen, Liyi Chen, Xuhua Sun, Jichong Zhu,
Shaofeng Wu, Zhen Ye, Hao Guo, Wenkang Chen, Chong Liu*

and Xinli Zhan*

Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China

Background: Anterior cervical decompression and fusion can effectively treat
cervical spondylotic myelopathy (CSM). Accurately classifying patients with
CSM who have undergone anterior cervical decompression and fusion is the
premise of precision medicine. In this study, we used machine learning
algorithms to classify patients and compare the postoperative efficacy of
each classification.
Methods: A total of 616 patients with cervical spondylotic myelopathy who
underwent anterior cervical decompression and fusion were enrolled.
Unsupervised machine learning algorithms (UMLAs) were used to cluster
subjects according to similar clinical characteristics. Then, the results of
clustering were visualized. The surgical outcomes were used to verify the
accuracy of machine learning clustering.
Results: We identified two clusters in these patients who had significantly
different baseline clinical characteristics, preoperative complications, the
severity of neurological symptoms, and the range of decompression required
for surgery. UMLA divided the CSM patients into two clusters according to
the severity of their illness. The repose to surgical treatment between the
clusters was significantly different.
Conclusions:Our results showed that UMLA could be used to rationally classify
a heterogeneous cohort of CSM patients effectively, and thus, it might be used
as the basis for a data-driven platform for identifying the cluster of patients who
can respond to a particular treatment method.
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Introduction

The neurological symptoms of cervical spondylotic myelopathy

(CSM) are mainly caused by spinal cord compression and can be

relieved by surgical decompression (1,2). CSM was included in

the umbrella term degenerative cervical myelopathy (DCM).

DCM is a degenerative disease, and the process of disease

progression is progressive and irreversible. Progressive

compression of the cervical spinal cord by degeneration and

spinal canal stenosis is the pathogenesis of DCM (3). Preventing

symptom progression is one of the aims of surgery (4). After

decompression of the cervical spinal cord, the pressure reduces,

and some functions improve. Patients with more severe

symptoms often show greater improvement in function (5,6).

Anterior cervical decompression and fusion, including anterior

cervical discectomy and fusion (ACDF) and anterior cervical

corpectomy and fusion (ACCF), can effectively relieve cervical

spinal cord compression and improve neurological symptoms (7).

With the advancement in the medical field, precision medicine

has greatly enhanced the effectiveness of medication and reduced

the incidence of patient complications. Accurately identifying the

problem and classifying the patient has become very important

(8). With the development of artificial intelligence, machine

learning has been applied to disease diagnosis, classification, and

treatment, such as heart failure and child-specific dermatitis (8,9).

Supervised machine learning utilizes iterative algorithms and

learns from a large and accurately labeled training dataset (10).

Although it can accurately diagnose diseases, it is generally unable

to infer “diagnostic reasoning” used in these algorithms.

Unsupervised machine learning algorithms (UMLAs) cluster (or

group) patients based on their characteristics rather than

identifying the “truth” of diagnosis or prognosis (11). By clustering

patients, it is possible to analyze the characteristics of similarly

clustered individuals and determine the outcome of therapy.

Machine learning algorithms are widely used in clinical practice

(12,13) but are seldom used to evaluate the efficacy of cervical spine

surgery. It is important to effectively classify patients undergoing

cervical surgery and identify their potential risks (14).

Unsupervised machine learning algorithm (UMLA) can be used to

cluster patients based on their disease characteristics and accurately

and rationally classify a heterogeneous cohort effectively (15). We

rationally classify a heterogeneous cohort of patients by UMLA

and form a basis for a data-driven platform that can identify the

subgroup of patients who might respond to a particular treatment.

Eventually, the management of CSM patients including treatment

decision making can be improved. In this study, we collected the

clinical data of patients with CSM who underwent anterior cervical

decompression and fusion. UMLA was performed to classify

patients into two clusters based on the characteristics of the

perioperative clinical data of the patients. Finally, we compared the

differences in the clinical characteristics, the efficacy of the surgery,

and postoperative complications between the clusters and verified

the accuracy of the clustering performed.
Frontiers in Surgery 02
Materials and methods

Patients

This study was authorized by the Ethics Committee of The

First Affiliated Hospital of Guangxi Medical University.

Informed consent forms were signed by the volunteers who

participated in this study.

We collected the clinical data of the CSM patients who were

hospitalized and underwent anterior cervical decompression and

fusion (ACDF and ACCF) from June 2012 to June 2021 in the

Department of Spinal Osteopathology, The First Affiliated

Hospital of Guangxi Medical University. In total, 616 patients

were enrolled in this study. We collected data on 31

perioperative variables, including 13 preoperative variables and

18 operative and postoperative variables. The 13 preoperative

variables were gender, age, body mass index (BMI), the

American Spinal Cord Injury Association (ASIA) score, the

visual analog scale (VAS), stability of the cervical spine,

segments of the spinal operation, and history of diabetes,

osteoporosis, hypertension (HP), cardiovascular heart disease

(CHD), cerebrovascular disease (CVD), and hepatic and renal

function disorder (HRFD). The 18 operative and postoperative

variables included respiratory failure, peptic ulcer postoperation,

dysphagia, pneumonia, hoarseness, mental disorder, axial pane,

leakage of cerebrospinal fluid, esophagostoma, wound

hematomas, sense of girdle, wound infection, JOA improvement

rate >25%, blood transfusion, operation time (OT), bleeding

volume (BV), postoperative drainage volume (PDV), and the

length of hospital stay (LOS). The inclusion criteria were as

follows: (I) The inpatient was diagnosed with CSM. (II) The

inpatient underwent anterior cervical decompression and fusion,

including anterior cervical discectomy and fusion (ACDF) and

anterior cervical corpectomy and fusion (ACDF). (III) There

were symptoms, signs, and imaging manifestations of cervical

spinal cord compression in hospitalized patients. (IV) All

patients who completed the preoperative examination. (V) The

anterior cervical decompression and fusion operation was

completed. The exclusion criteria were as follows: (I) Inpatients

with tumor, tuberculosis, and space-occupying lesions in the

cervical medulla were excluded. (II) Inpatients with traumatic

cervical spinal cord injury. (III) Inpatients with cervical

spondylosis who received other approaches, such as a posterior

approach or a combined (anterior and posterior) approach. (IV)

Inpatients without complete perioperative clinical data.
Normalization of data and unsupervised
machine learning

We used R software 4.0.3 to perform unsupervised machine

learning. The data of anterior cervical decompression and
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FIGURE 1

Optimal clustering number of the K-means clustering algorithm was determined by Silhouette coefficient (SC). The peak of the curve is the best value
for the Silhouette coefficient (Y-axis); the best number of clusters was equal to 2 (X–axis).
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fusion patients were normalized using the Scale function in the

“factoextra” package (16). The Fpc package was used for

determining the optimal clustering number (K value) by the

Silhouette coefficient (SC) (17,18). Then, we used the K-

means cluster algorithm to cluster the patients (13,18,19). The

result of the K-means cluster was visualized using a

clustergram and a radargram.
Statistical analysis

SPSS V.22.0 was used for performing statistical analyses.

The clinical measurement data of the patients were

represented as the median (P25, P75) and the mean (SD). We

performed a chi-squared test, Mann–Whitney U-test, and
Frontiers in Surgery 03
Student’s t-test to compare the differences. The differences

were considered to be statistically significant at p < 0.05.
Results

Result of unsupervised machine learning
algorithms

The K-means clustering algorithm was used to identify and

classify the characteristic clinical data of the patients. It is a

common unsupervised algorithm in machine learning. It can

categorize the data of unknown labels into different groups

based on their characteristics. Each group of data is also

called a “cluster,” and the center point of each cluster is called
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FIGURE 2

Scatter plots of patients’ clinical data. Scatter points on the graph represent each patient, and the K-means clustering algorithm divides patients into
two clusters. The orange scatter represents cluster 1, and the blue scatter represents cluster 2.
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a “centroid.” After normalizing the clinical data using the Scale

function, we used the K-means clustering algorithm. The basic

process is as follows: (I) The K initial centroids (that may not be

sample points) are randomly selected, the nearest centroid for

each sample point is found, and the sample points and

centroids are grouped into the same cluster, thus generating K

clusters. (II) When all sample points are divided, for each

cluster, the new centroid (the average coordinate value of all
Frontiers in Surgery 04
points in the same cluster) is recalculated. (III) Iterations

are performed until the position of the centroid

becomes constant. In this study, we determine the K value

using the SC

SCðiÞ ¼ bðiÞ � aðiÞ
max aðiÞ; bðiÞf g
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TABLE 1 Baseline characteristics of the study patients by clusters.

Overall
(n = 616)

Cluster 1
(n = 469)

Cluster 2
(n = 147)

p-value

Gender 0.301

Male 362 (58.77%) 281 (59.91%) 81 (55.10%)

Female 254 (41.23%) 188 (40.09%) 66 (44.90%)

Age <0.001

Mean ± SD 54.25 ± 10.06 52.03 ± 9.32 61.36 ± 9.01

Medium [P25,
P75]

54 [48,60] 52 [47,57] 60 [56,68]

BMI <0.001

Mean ± SD 23.21 ± 3.10 22.72 ± 2.89 24.77 ± 3.26

Medium [P25,
P75]

22.86
[21.37,24.93]

22.49
[20.96,24.27]

24.77
[23.30,26.62]

ASIA 0.030

C 230 (33.34%) 164 (34.97%) 66 (44.90%)

D 386 (62.66%) 305 (65.03%) 81 (55.1%)

VAS 0.355

Mean ± SD 3.65 ± 2.02 3.69 ± 2.01 3.52 ± 2.05

Medium [P25,
P75]

3 [2,6] 3 [2,6] 3 [2,5.5]

Stability <0.001

Stable 550 (89.29%) 442 (94.24%) 108 (73.47%)

Unstable 66 (10.71%) 27 (5.76%) 39 (26.53%)

Segment <0.001

1 75 (12.18%) 67 (14.29%) 8 (5.44%)

2 407 (66.07%) 320 (68.23%) 87 (59.18%)

3 120 (19.48%) 77 (16.42) 43 (29.25%)

4 14 (2.27%) 5 (1.06%) 9 (6.13%)

Osteoporosis 22 (3.57%) 0 (0%) 22 (14.97%) <0.001

Diabetes 40 (6.49%) 15 (3.20%) 25 (17.01%) <0.001

HP 104 (16.88%) 1 (0.21%) 103 (70.07%) <0.001

CHD 3 (0.48%) 0(0%) 3 (2.04%) 0.002

HRFD 1 (0.16%) 0(0%) 1 (0.68%) 0.074

CVD 10 (1.62%) 3 (0.64%) 7 (4.76%) <0.001

BMI: body mass index; ASIA: American Spinal Cord Injury Association; HP:

hypertension; CHD: cardiovascular heart disease; CVD: cerebrovascular

disease; VAS: visual analog scale; HRFD: hepatic and renal function disorder.

Zhou et al. 10.3389/fsurg.2022.935656
In this formula, a(i) represents the average distance between the

sample point and all other points in the same cluster and b(i)

represents the average distance between the sample point and all

points in the next nearest cluster (20). The K-means clustering

algorithm pursues that, for each cluster, the difference within the

cluster is small, while the difference between clusters is large, and

the Silhouette coefficient is the key indicator to describe the

difference inside and outside the cluster. According to the

formula, the value of SC can range from −1 to 1. When SC is

closer to 1, the clustering effect is better; when SC is closer to −1,
the clustering effect worsens. The peak of the curve is the best

value for the Silhouette coefficient (Y-axis) such that the best K
Frontiers in Surgery 05
value is equal to 2 (X-axis) (Figure 1). Two clusters are optimal

for the K-means clustering algorithm. The clinical data were

sufficiently clustered into cluster 1 and cluster 2 (Figure 2). The

results of the K-means clustering algorithm for the clinical data

are presented in Table 1. The heterogeneity and homogeneity of

the clinical characteristics of the two clusters were determined

using a Venn diagram (Figure 3).
Characteristics of the patients by K-
means clustering

The 13 preoperative variables of the two clusters based on

the K-means clustering algorithm are presented in Table 1.

These variables included gender, age, BMI, the ASIA score,

the VAS, stability of the cervical spine, segments of the spinal

operation, and history of diabetes, osteoporosis, HP, CHD,

CVD, and hepatic and renal function disorder (HRFD). The

age and BMI of cluster 1 were significantly lower than those

of cluster 2 (age: cluster 1/cluster 2 = 52.03 ± 9.32/61.36 ± 9.01,

p < 0.001; BMI: cluster 1/cluster 2 = 22.72 ± 2.89/24.77 ± 3.26,

p < 0.001). The ASIA score, stability of the cervical spine, and

segments of the spinal operation were significantly different

between cluster 1 and cluster 2 [ASIA score-C grade: cluster

1/cluster 2 = 164 (34.97%)/66 (44.90%), p = 0.030; instability of

the cervical spine: cluster 1/cluster 2 = 442 (94.24%)/108

(73.47%), p < 0.001]. History of diabetes, osteoporosis, HP,

CHD, and CVD were significantly different between cluster 1

and cluster 2 [diabetes: cluster 1/cluster 2 = 15 (3.20%)/25

(17.01%), p < 0.001; HP: cluster 1/cluster 2 = 1 (0.21%)/103

(70.07%), p < 0.001; CHD: cluster 1/cluster 2 = 0 (0%)/3

(2.04%), p = 0.002; CVD: cluster 1/cluster 2 = 3 (0.64%)/7

(4.76%), p < 0.001]. The preoperative variables are represented

by a radargram in Figure 4.
Comparison of operative and
postoperative variables among clusters

The differences in the 18 operative and postoperative

variables between the clusters are presented in Tables 2 and

3. The incidence of postoperative pneumonia in cluster 2 was

higher than that in cluster 1 (p < 0.05). The OT of cluster 1

was 80 [65, 100] min, and that of cluster 2 was 84 [69, 110]

min (Figure 5A). The OT of cluster 1 was significantly

shorter than that of cluster 2 (p = 0.046). The PDV of cluster

1 was 53 [30, 100] ml, and that of cluster 2 was 80 [40, 130]

ml (Figure 5B). The PDV of cluster 1 was significantly lower

than that of cluster 2 (p = 0.005). Other postoperative

variables such as respiratory failure, peptic ulcer

postoperation, dysphagia, hoarseness, mental disorder, axial

pain, leakage of the cerebrospinal fluid, esophagostoma,

wound hematomas, sense of girdle, wound infection, JOA
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FIGURE 3

Typical clinical characteristics and features of two clusters. The blue circle represents cluster 1, more severe in condition, as opposed to the red
circles. The Venn diagram summarizes the results of the unsupervised machine learning algorithm (UMLA). The results of UMLA are clinically
explicable. BMI: body mass index; ASIA: American Spinal Cord Injury Association; HP: hypertension; CHD: cardiovascular heart disease; CVD:
cerebrovascular disease; VAS: visual analog scale; HRFD: hepatic and renal function disorder.

Zhou et al. 10.3389/fsurg.2022.935656
improvement rate >25%, blood transfusion, BV, and the LOS

were similar between the clusters (p > 0.05) (Supplementary

Figures 1 and 2). The operative and postoperative variables

are represented by a radargram in Figure 6.
Discussion

Orientation and interpretability of
unsupervised machine learning

In this study, machine learning algorithms could effectively

classify patients with CSM who underwent anterior cervical

decompression and fusion into two clusters based on 13

preoperative variables. The results of clustering are presented

in Table 1. The results suggested that the UMLA accurately

grouped patients according to the severity of their illness.

This method was specifically designed to integrate clinical

data, which is heterogeneous in an unsupervised manner (9).

It can cluster patients with similar characteristics (21). The

UMLA clusters patients based on their natural characteristics

instead of a priori knowledge (22). Supervised machine

learning algorithms were used in a study by Kwong et al.

(23). In that study, random forest regression models were

used to predict waitlist dropout among liver transplant

candidates. Such methods provide criteria for categorizing

patients, such as whether to drop out of the waitlist of liver

transplant candidates. Unlike the above study, we focused on

the intrinsic properties of the data, which allowed us to
Frontiers in Surgery 06
investigate the natural characteristics further and highlight

the characteristics that were relevant to the hypothesis

concerning medical research. This method provided a more

meaningful description and distinction between patient

clusters within the cohort (24). For example, cluster 1 and

cluster 2 distinguished various attributes of clinical

importance, such as age, BMI, and preoperative

complications. The clinical attributes of the patients were

more severe in cluster 2. The symptoms of CSM and the

range of cervical spine lesions were efficiently clustered into

the two clusters. Patients in cluster 2 had more severe

neurological symptoms, more populations had cervical

instability and osteoporosis, and more segments of the

cervical spine vertebra needed operation during the surgery.

In conclusion, unsupervised machine learning could classify

patients into two clusters, according to the severity of the

disease and their basic clinical attributes.
Outcomes of medical therapy based on
the classification of unsupervised
machine learning algorithms

Based on this classification, we further analyzed 18 operative

and postoperative variables of the patients to evaluate the

treatment outcomes of the patients in different clusters.

Regarding the outcome of surgery, we focused on the

postoperative variables axial pain, sense of girdle, and JOA

improvement rate >25%. These three variables were similar
frontiersin.org
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FIGURE 4

Radargram of 13 preoperative variables in cervical spondylotic myelopathy patients in two clusters. The K-means clustering algorithm normalized
preoperative variables were compared between two clusters. Spoke lengths represent the average of each variable after the K-means clustering
algorithm is normalized. Significance levels are presented with asterisks. BMI: body mass index; ASIA: American Spinal Cord Injury Association;
HP: hypertension; CHD: cardiovascular heart disease; CVD: cerebrovascular disease; VAS: visual analog scale; HRFD: hepatic and renal function
disorder. *p-value <0.05, **p-value <0.01, ***p-value <0.001.
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between the clusters. Although the treatment outcomes between

the groups were similar, cluster 2 patients were in a worse

condition and had more comorbidities. Thus, the conditions of

the patients with severe diseases (cluster 2) might improve

considerably after surgical treatment, and the level of

improvement of the symptoms might be the same as that of the

patients with mild diseases (cluster 1). Recent studies

supported the results of our study and demonstrated that

patients undergoing anterior cervical decompression and fusion

experience significant relief, and patients with more severe

symptoms experience greater improvement (25,26). For

example, Cole’s study divided CSM patients into severe,

moderate, and mild groups by severity of myelopathy. After

surgical treatment, 30% of patients in the severe group and

58% of patients in the moderate group showed improvement in
Frontiers in Surgery 07
grip strength, while 9% of patients in the mild group showed

improvement in grip strength (5). The results of this study

suggested that surgical treatment might be equally effective in

severely and mildly ill patients. The results showed the

effectiveness of the unsupervised machine learning algorithm

in classifying CSM based on their heterogeneous clinical

characteristics. Local complications, such as hoarseness, leakage

of the cerebrospinal fluid, esophagostoma, wound hematomas,

and wound infection, were similar between the clusters. This

indicated that not only does anterior cervical decompression

and fusion improve symptoms in severely ill patients, but the

incidence of surgical complications also does not increase with

the severity of the illness (27).

The OT and the postoperation drainage volume were higher

in cluster 2. These differences were due to the condition of the
frontiersin.org
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TABLE 2 Postoperative conditions of two clusters of patients.

Postoperative
conditions

Overall
(n =
616)

Cluster 1
(n = 469)

Cluster 2
(n = 147)

p-value

Respiratory failure 0.143

Yes 3 (0.49%) 1 (0.21%) 2 (1.36%)

No 613
(99.51%)

468
(99.79%)

145
(98.64%)

Peptic ulcer
postoperation

0.633

Yes 6 (0.97%) 4 (0.85%) 2 (1.36%)

No 610
(99.03%)

465
(99.15%)

145
(98.64%)

Dysphagia 0.674

Yes 7 (1.14%) 5 (1.06%) 2 (1.36%)

No 609
(98.86%)

464
(98.94%)

145
(98.64%)

Pneumonia 0.010

Yes 12 (1.95%) 5 (1.06%) 7 (4.76%)

No 604
(98.05%)

464
(98.94%)

140
(95.24%)

Hoarseness 1.000

Yes 4 (0.65%) 3 (0.64%) 1 (0.68%)

No 612
(99.35%)

466
(99.36%)

146
(99.32%)

Mental disorder 0.559

Yes 3 (0.49%) 2 (0.43%) 1 (0.68%)

No 613
(99.51%)

467
(99.57%)

146
(99.32%)

Axial pain 0.559

Yes 3 (0.49%) 2 (0.43%) 1 (0.68%)

No 613
(99.51%)

467
(99.57%)

146
(99.32%)

Leakage of
cerebrospinal

0.149

Yes 6 (0.97%) 3 (0.64%) 3 (2.04%)

No 610
(99.03%)

466
(99.36%)

143
(97.96%)

Esophagostoma 0.421

Yes 2 (0.32%) 1 (0.21%) 1 (0.68%)

No 614
(99.68%)

468
(99.79%)

146
(99.32%)

Wound hematomas 1.000

Yes 6 (0.97%) 5 (1.06%) 1 (0.68%)

No 610
(99.03%)

464
(98.94%)

146
(99.32%)

Sense of girdle 0.239

Yes 1 (0.16%) 0 (0%) 1 (0.68%)

No 615
(99.84%)

469 (100%) 146
(99.32%)

Wound infection 0.559

Yes 3 (0.49%) 2 (0.43%) 1 (0.68%)

No

(continued)

TABLE 2 Continued

Postoperative
conditions

Overall
(n =
616)

Cluster 1
(n = 469)

Cluster 2
(n = 147)

p-value

613
(99.51%)

467
(99.57%)

146
(99.32%)

JOA improvement
rate >25%

0.214

Yes 601
(97.56%)

460
(98.08%)

141
(95.92%)

No 15 (2.44%) 9 (1.92%) 6 (4.08%)

Blood transfusion 0.280

Yes 31 (5.03%) 21 (4.48%) 10 (6.80%)

No 585
(94.97%)

448
(95.52%)

137
(93.20%)

TABLE 3 Postoperative conditions of two clusters of patients.

Postoperative conditions Cluster 1
(n = 469)

Cluster 2
(n = 147)

p-value

OT 0.046

Medium [P25, P75] 80 [65,100] 84 [69,110]

BV 0.332

Medium [P25, P75] 100 [50,200] 100 [50,200]

PDV 0.005

Medium [P25, P75] 53 [30,100] 80 [40,130]

LOS 0.852

Medium [P25, P75] 8 [6,10] 8 [6,10]

OT: operation time; BV: bleeding volume; PDV: postoperative drainage

volume; LOS: length of hospital stay.

Zhou et al. 10.3389/fsurg.2022.935656
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patients, such as the surgical segments of the cervical spine,

which were reflected in the clustering result. The surgical

segments of patients in cluster 2 were larger (p < 0.001), and

the proportion of patients with long-segment surgery (3 or 4

segments) was 35.47% in cluster 2 and 17.48% in

cluster 1. Decompression of the cervical spinal cord or nerve

root, reconstruction and stabilization of the cervical spine, and

maintenance of the alignment of the spine are the aims of

cervical spine surgery (28). Patients in cluster 2 had extensive

cervical spinal cord compression. To achieve sufficient

decompression, the number of segments requiring surgery

increased, and the operative time and the postoperation

volume of drainage also increased (Table 3 and Figures 5 and 6).

Another reason for the higher postoperation volume of

drainage in cluster 2 was that 14.97% of the patients in cluster

2 had osteoporosis. Osteoporosis causes osteopenia in the

cervical vertebral body and increases bleeding on the bone

graft surface during surgery; thus, patients have more
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FIGURE 5

Two clustered boxplots of operative time and postoperative drainage volume. (A) The operation time (OT) of cluster 1 was 80[65, 100] min, and that
of cluster 2 was 84[69, 110] min. The operation time of cluster 1 was significantly shorter than that of cluster 2 (p= 0.046). (B) The postoperative
drainage volume (PDV) of cluster 1 was 53[30, 100] ml, and that of cluster 2 was 80[40, 130] ml. The postoperative drainage volume of cluster 1
was significantly less than that of cluster 2 (p= 0.005).

FIGURE 6

Radargram of 18 preoperative variables in cervical spondylotic myelopathy patients in two clusters. K-means clustering algorithm-normalized
preoperative variables were compared between two clusters. Spoke lengths represent the average of each variable after the K-means clustering
algorithm is normalized. Significance levels are presented with asterisks. OT: operation time; BV: bleeding volume; PDV: postoperative drainage
volume; LOS: length of hospital stay. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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postoperative drainage (29). These differences in the operative

variables also verified the accuracy of UMLA in classifying

patients with CSM who underwent anterior cervical

decompression and fusion.

We did not construct a clinical model or an evaluation

system for classifying the patients, as they require external

validation and another novel algorithm. Instead, we assessed

the ability of the unsupervised machine learning algorithm to

cluster these patients and validate the effectiveness of the

postoperative variables.

Our study had some limitations. First, the participants were

from a single center. Second, this was a retrospective study, and

thus, the data might have selection bias. Furthermore, the

preferences and the experience of the surgeon might have

influenced the results of the study.
Conclusion

This study showed the effectiveness of unsupervised

machine learning as a novel method for classifying patients

with CSM who have undergone anterior cervical

decompression and fusion. Our results showed that the

unsupervised machine learning algorithm could be used to

rationally classify a heterogeneous cohort of patients and

form a basis for a data-driven platform that can identify the

subgroup of patients who might respond to a particular

treatment. However, the feasibility and novelty of

unsupervised machine learning algorithms and their value

in making clinical decisions should be evaluated in

prospective controlled trials.
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