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Abstract. We report that integrin-mediated signaling 
induces a rapid and transient tyrosine phosphorylation 
of platelet-derived growth factor (PDGF) 13-receptors 
in human diploid foreskin AG 1518 fibroblasts. A tran- 
sient tyrosine phosphorylation of PDGF i3-receptors 
was evident one and two hours after cells had been 
plated on collagen type I and fibronectin, as well as on 
immobilized anti-integrin subunit IgG, but not on poly- 
L-lysine. In contrast EGF or PDGF a-receptors were 
not phosphorylated on tyrosine residues under these 
conditions. Tyrosine phosphorylation of PDGF 13-recep- 
tors induced by plating on collagen type I was inhibited 
by cytochalasin D and herbimycin A, unaffected by cy- 
cloheximide and enhanced by orthovanadate. Further- 
more, a transient phosphorylation of PDGF 13-recep- 
tors occurred when AG 1518 fibroblasts were cultured 
in three-dimensional collagen lattices or exposed to ex- 
ternal strain exerted through centrifugation. The latter 

effect was evident already after two minutes. Clustering 
of cell surface 131 integrins led to PDGF ~-receptor 
phosphorylation both in suspended and firmly attached 
AG 1518 fibroblasts. Plating of cells on collagen type I, 
fibronectin, and anti-i3rintegrin IgG resulted in the for- 
mation of PDGF 13-receptor aggregates as detected by 
immunofluorescence. Suramin or anti-PDGF-BB IgG 
had no effect on the plating-induced tyrosine phosphor- 
ylation of PDGF 13-receptors. PDGF-B chain mRNA, 
or protein, were not detected in AG 1518 fibroblasts. 
Our data suggest that a ligand-independent PDGF 
13-receptor activation during cell adhesion and early 
phases of cell spreading is involved in integrin-medi- 
ated signaling in fibroblasts, and constitutes parts of a 
mechanism for cells to respond during the dynamic 
phases of externally applied tension as well as fibro- 
blast-mediated tension during cell adhesion and col- 
lagen gel contraction. 

C 
ELL adhesion to extracellular matrix (ECM) 1 regu- 

lates a plethora of cellular activities (6, 35, 68). 
Adhesion of cells to ECM components depends 

on a set of transmembrane receptors belonging to the inte- 
grin family. Integrins are heterodimers of non-covalently 
associated a and ~ subunits (2, 29, 32, 51), which link the 
ECM with the cytoskeleton, and act as signal transducing 
receptors (13, 16, 19, 35, 44, 55). In many types of cells, in- 
tegrin stimulation by ligand occupation or clustering by 
antibodies elicit changes in the intracellular pH, cytoplas- 
mic-free calcium concentration, phosphoinositide synthe- 
sis, protein tyrosine phosphorylation, and expression of 
certain genes. Proteins that are tyrosine phosphorylated in 
response to integrin-mediated adhesion include the focal 
adhesion kinase (p125 FAK) (9, 21, 25, 38, 53), paxillin (9), 
and the MAP kinases, ERK-1 and ERK-2 (72). Many of 
the responses elicited by integrin-mediated adhesion are 
also evoked by activation of the PDGF 13-receptors (7, 11, 
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71). Thus, PDGF stimulation leads to tyrosine phosphory- 
lation of p125 FAK and paxillin, as well as MAP kinases (11, 
48) The role of PDGF B-receptors, if any, in integrin- 
induced signaling, is not known. 

In addition to its well-known growth-promoting activities, 
PDGF stimulates several processes that depend on integrin 
activity. Examples are PDGF stimulated and 0t2131-medi- 
ated chemotaxis through collagen type I--coated mem- 
branes (61) and fibroblast-mediated contraction of three- 
dimensional collagen lattices (14, 24, 37, 42, 54). Conversely, 
PDGF 13-receptors become functionally refractory in fi- 
broblasts that have contracted a collagen gel (43, 64). 
PDGF specifically stimulates the synthesis of the collagen- 
binding integrin et2131 (1) and increases the apparent activity 
of 131 integrins in fibroblasts (24). Thus, several experimen- 
tal observations strongly suggest that PDGF 13-receptors 
modulate, and are modulated by, cellular processes depen- 
dent on integrin activity. 

Integrins are concentrated and co-localize with several 
cytoskeletal components at focal adhesion sites (8, 57, 67). 
Within focal adhesions, cytoskeletal components, as well 
as signaling molecules concentrate, and are believed to 
serve as regulatory complexes for integrin signaling. Stim- 
ulation of fibroblasts with PDGF induces a rapid and tran- 
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sient change of the cytoskeletal structure, involving the 
formation of membrane and circular ruffles (45). Stimula- 
tion with this growth factor also results in a redistribution, 
as well as a change in the phosphorylation pattern of the 
focal adhesion protein vinculin (30), a process dependent 
on changes in phosphoinositide turnover (18). 

It has been suggested that integrins can function as 
mechanochemical transducers conveying strain from the 
extracellular matrix to the cytoskeleton leading to effects 
on the cell signaling machinery (reviewed in 33, 56). In a 
recent communication, Wang et al. (69) demonstrated that 
integrin-mediated adhesions will restrain external force 
applied to the structural components linked to the cell sur- 
face via integrins. Given the background that integrins 
transduce chemical signals that converge with responses 
elicited by the PDGF g-receptor, and that the latter in 
turn influence integrin activity, it is reasonable to propose 
an involvement of PDGF 13-receptors in the mecha- 
nochemical transducing properties of integrins. 

Here we report that integrins and integrin-mediated ad- 
hesion processes induce an early and transient phosphory- 
lation and internalization of PDGF 13-receptors in fibro- 
blasts. These processes were independent of PDGF. The 
PDGF 13-receptor autophosphorylation was stimulated by 
increases in mechanical tension or stress exerted on the 
cells. Thus our findings suggest that autophosphorylation 
of PDGF 13-receptors constitutes parts of a mechanism for 
cells to respond during the dynamic phases of externally 
applied tension, as well as fibroblast-mediated tension 
during cell adhesion and collagen gel contraction. Further- 
more, the data are compatible with that PDGF 13-receptor 
activation during cell adhesion and early phases of cell 
spreading may be a component in integrin-induced signal- 
ing in fibroblasts. 

Materials and Methods 

Antibodies and Other Reagents 
The characteristics of the PDGF 13-receptor specific mouse mAb, 
PDGFR-B2, have been described elsewhere (28, 52). PDGFR-B2 was 
used at a concentration of I ~g/ml (49, 65). Polyclonal rabbit anti-PDGF- 
BB IgG (34) was kindly donated by Dr. C.-H. Heldin (Ludwig Institute 
for Cancer Research, Uppsala, Sweden). The anti-phosphotyrosine mouse 
mAb (4G10) (15, 36), and polyclonal rabbit anti-human PDGF type B-recep- 
tor serum raised against a synthetic peptide corresponding to amino acids 
1013-1025 (12) was purchased from Upstate Biotechnology Inc. (Lake 
Placid, NY). The anti-phosphotyrosine mouse mAb PY20 (20) was pur- 
chased from Transduction Laboratories (Lexington, KY). The anti-PDGF 
a-receptor mAb (anti-PDGF-Ra) (27) was purchased from Genzyme 
(Cambridge, MA). The anti-human EGF receptor mAb, clone 108, (3) 
was kindly donated by Dr. Andreas Batzer (New York University Medi- 
cal Center, New York, NY). The mAb PGF 007, raised toward a synthetic 
peptide corresponding to amino acid residues 73-97 of the PDGF B-chain 
was purchased from Mochida Co. (Tokyo, Japan). The PGF 007 antibody 
specifically recognizes PDGF-AB and PDGF-BB (60). The anti-human 
fibroblast surface protein mAb (1B10) was purchased from Sigma Chemi- 
cal Co. (St. Louis, MO). The anti-integrin al-subunit mAb TS2/7 (29) was 
kindly donated by Dr. Timothy Springer (Boston Blood Center, Boston, 
MA). The anti-integrin ot2-subunit mAb P1H5; anti-integrin as-subunit 
mAb P1B3; anti-integrin as-subunit mAb PID6; and the anti-integrin 
13rsubunit mAb P4C10 (10, 63, 70) were all kindly donated by Dr. William 
Carter (Fred Hutchinson Cancer Research Center, Seattle, WA). Poly- 
clonal rabbit anti-integrin 13t-subunit IgG was raised essentially as de- 
scribed (23, 50) with the modifications that purified rat hepatocytes were 
used as starting material and that collagen-binding proteins were eluted 
from collagen type I~Sepharose affinity columns by 10 mM EDTA. Cy- 

tochalsin D, cyclohexamide, herbimycin A, and sodium orthovanadate 
were purchased from Sigma Chem. Co. 

Rabbit anti-mouse IgG antibodies and goat anti-rabbit IgG antibodies 
were purchased from Sigma Chem. Co. and used at a concentration of 10 
Ixg/ml. Affinity purified F(ab)2 fragments of goat anti-mouse immuno- 
globulins (IgG, IgA, and IgM) was purchased from Cooper Biomedical 
(Malvern, PA). Biotinylated horse anti-mouse IgG, biotinylated goat 
anti-rabbit IgG, and Texas red avidin D were from Vector Laboratories 
(Burlingame, CA). Fluorescein-conjugated goat anti-mouse IgG, and 
goat anti-rabbit IgG were from Becton and Dickinson (Mountainview, 
CA) and Sigma Chem. Co., respectively. All antibodies were diluted in 
PBS (130 mM NaCl, 10 mM Na-phosphate, pH 7.4), and used in optimal 
concentrations determined after serial dilutions. 

Recombinant human PDGF-AA and PDGF-BB (47a) was kindly do- 
nated by Dr. C.-H. Heldin. EGF was purchased from Sigma Chem. Co. 
Suramin, an agent which inhibits the binding of several growth factors to 
their receptors and is able to dissociate receptor-bound growth factors in- 
cluding PDGF (5, 31, 39), was kindly provided by Bayer (Leverkusen, 
Germany). Human plasma fibronectin was purified according to the 
method described by Miekka et al. (46). Calf skin collagen type I (Vitro- 
gen 100) was obtained from Celltrix (Palo Alto, CA). DME, MCDB 104 
medium used for serum-free cell culture and trypsin-EDTA were ob- 
tained from the National Veterinary Institute (Uppsala, Sweden). FBS 
was obtained from Sera-Lab limited (Sussex, UK). 

Cells 
Stock cultures of human diploid foreskin AG 1518 fibroblasts (Genetic 
Mutant Cell Repository, Camden, NJ), were grown in 175 cm 2 cell culture 
flasks (Costar Corp., Cambridge, MA) in DME supplemented with 10% 
FBS, 50 ~g/ml streptomycinsulphate, 60 p.g/ml penicillin G, and 2 mM 
L-glutamine (National Veterinary Institute). Cells were passaged once a 
week and fed fresh medium twice a week. All experiments were per- 
formed with cells in passages 15-20 (passage split 1:2). Cells grown to near 
confluence were detached by two rinses with PBS containing 10 mM 
EDTA, and subsequently treated for 3 min with trypsin-EDTA. Trypsin 
was neutralized with DME containing 10% FBS. Cells were then centri- 
fuged and resuspended in MCDB 104 medium. 

Preparation of Collagen Gels 
For the manufacturing of three-dimensional collagen gels, tissue culture 
24-well plates (Costar Corp.) were coated overnight with PBS containing 
2% BSA (National Veterinary Institute) that had been heat inactivated at 
55°C for 2 h, followed by washing the plates twice with PBS. Neutral col- 
lagen solutions were prepared by mixing two times concentrated MCDB 
104 medium, 0.2 M Hepes, pH 8.0, and vitrogen 100, in the proportions 
5:1:4 by volume. Fibrohlasts suspended in two times MCDB 104 medium 
were mixed with the collagen solution to bring the final cell concentration 
to 800,000 cells/ml, and the final collagen concentration to 1.1 mg/ml. The 
collagen/cell solution was incubated at 37°C for 5 min, whereafter 400 ~l 
of the mixture was added to each well. The collagen/cell mixture was al- 
lowed to polymerize for 60 min at 37°C. After polymerization, 1 ml of 
MCDB 104 was added and gels that were to be rotated (relaxed) were 
dislodged from the walls of the plates with a spatula and allowed to float 
freely in the well. Gels that were not dislodged are referred to as stressed. 

Cell Staining 
Cells were seeded onto coverslips in 24-well plates (Costar Corp.) and cul- 
tivated for the designated time periods. Cells were fixed in fresh 2% 
paraformaldehyde 4°C for 10 min. After rinsing in TBS (0.15 M NaCI and 
0.01 M Tris, pH 7.4) cells were incubated for 15 min in TBS with 0.1% 
Tween, rinsed in TBS containing 0.1% BSA, and 0.1% Tween, thereafter 
remaining free aldehyde groups were blocked by incubating in 0.1 M gly- 
cine containing 0.5% BSA, pH 7.4, for i h. Coverslips were incubated with 
the primary mouse monoclonal antibody for 45 rain, rinsed, and incubated 
with biotinylated horse anti-mouse IgG diluted for 30 min, rinsed, and in- 
cubated with a mixture of Texas red avidin D and Bodipy FL Phallacidin 
(Molecular Probes Inc.), rinsed, and subsequently mounted in glycerin/PBS 
(9:1) containing 0.1% phenylenediamine (Aldrich, Steinheim, Germany). 

Detection of [3rintegrin Clustering 
AG 1518 fibroblasts were grown on glass coverslips in the presence of 
10% FBS for 2 d, washed, and then serum depleted in MCDB 104 for 24 h. 
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Cells were either incubated with polyclonal anti-13t integrin IgG (250 wg/ 
ml) only or with polyclonal anti-131 integrin IgG (250 wg/ml) followed by 
goat anti-rabbit IgG (20 ~g/ml) prior to fixation in 2% paraformaldehyde 
4°C for 10 rain and rinsed in TBS. Cells were incubated for 15 min in TBS 
with 0.1% Tween, rinsed in TBS containing 0.1% BSA and 0.1% Tween, 
and free aldehyde groups were blocked by incubating in 0.1 M glycine 
with 0.5% BSA, pH 7.4, for 1 h. IgG was visualized by incubation with 
goat anti-rabbit IgG FITC (Sigma Chem. Co.) or rabbit anti-goat IgG 
FITC (Sigma Chem. Co.) for 30 min, rinsed in TBS, and mounted as de- 
scribed above. 

Experimental Conditions 
Plating Experiments. 60 mm dishes were coated at 37°C overnight with 30 
~g/ml collagen type I, 20 Ixg/ml of plasma fibronectin or 4 mg/ml of poly- 
L-lysine diluted in PBS. To coat dishes with different IgG:s or IgM, 100 
l~g/ml of affinity-purified F(ab)2 fragments of goat anti-mouse immuno- 
globulins (IgG, IgA, and IgM) were incubated in PBS on 60 mm dishes for 
8 h at 4°C. All dishes were washed in PBS and remaining free plastic pro- 
tein-binding sites blocked for 2 h in PBS containing 2% BSA that had 
been heat inactivated, and again washed twice in PBS. Dishes wero then 
incubated overnight with monoclonal anti-integrin subunit antibodies di- 
luted in PBS, and subsequently washed twice in PBS. AG 1518 fibroblasts 
were trypsinized for 2 min at 37°C, and then washed and resuspended in 
MCDB 104 medium. 800,000 cells were plated in the 60 mm cell culture 
dishes unless otherwise stated and incubated at 37°C for the designated 
time periods. 

Integrin Cross-linkingExperiments. 400,000 AG 1518 fibroblasts were 
seeded in 60 mm dishes and grown to near confluence in DME supple- 
mented with 10% FBS. Before the initiation of experiments cells were se- 
rum starved in MCDB 104 for 24 h, washed twice in MCDB 104 and incu- 
bated with polyclonal anti-I~l integrin IgG (250 i~g/ml) for 30 rain. Cells 
were washed once in MCDB 104 and incubated with secondary goat anti- 
rabbit antibody (20 ~g/ml) for different time periods to dus ter  cell surface 
131 integrins. 

Experiments on Cells in Suspension Were Performed as Follows. 500 ~1 of 
protein A-Sepharose beads (Pharmacia, Piscataway, N J) were incubated 
in 4 ml of a solution containing 250 ~g/ml polyclonal anti-I~l integrin IgG 
for 2 h at 4°C and then washed three times in PBS. 50 ~1 of the beads were 
incubated with 800,000 cells in 600 p.l MCDB 104 in suspension at 37°C for 
the designated time periods. Alternatively, 800,000 ceils were incubated in 
600 ill MCDB 104 containing 250 i~g/ml polyclonal anti-131 integrin anti- 
bodies in suspension at 37°C. 

Solubilization and Immunoprecipitation 
Cell monolayers were removed from the culture dishes by scraping with a 
rubber policeman and solubilized for 30 min in 400 p~l solubilization buffer 
(0.5% Triton X-100, 0.5% sodiumdeoxycholate, 20 mM Tris-HCl, pH 7.4, 
0.15 M NaCl, 30 mM disodium pyrophosphate, 2 mM EDTA, 0.4 mM Na- 
vanadate, 5 l~g/ml leupeptin, 5 wg/ml pepstatin A, 1 mM PFA block, and 
250 KIE/ml aprotinin). Collagen gels were pooled and volumes were 
equilibrated to 1.5 ml with MCDB 104. Thereafter 500 Ixl of four times 
concentrated solubilization buffer was added. Samples were then homoge- 
nized (I5 strokes) with a 2 ml Dounce homogenizer at 4°C and incubated 
for 30 rain. 

Lysates were centrifuged at 16,000 g for 30 min. Supernatants were pre- 
cleared by incubating with normal rabbit IgG and protein A -  or G-Seph- 
arose (Pharmacia) for 1.5 h. Supernatants were then immunoprecipitated 
with polydonal anti-PDGF 13-receptor, or monodonal anti-PDGF a-recep- 
tor IgG, anti-phosphotyrosine IgG or anti-EGF receptor IgG for 2 h, and 
subsequently precipitated with protein A -  or G-Sepharose. The 
Sepharose pellets were washed three times in 0.5 M NaCl and three times 
in 0.15 M NaCl solubilization buffer and subjected to SDS-PAGE. 

Immunoblotting 
Samples for SDS-PAGE were mixed with reducing sample buffer (0.2 M 
Tris-HCL, pH 8.8, 18% glycerol, 4% SDS, 0.01% bromophenol blue, 10% 
mercaptoethanol) and were subjected to a 7.5% acrylamide gel electro- 
phoresis (40) using minigel aggregates (Bio-Rad Labs, Boston, MA). 
Rainbow-colored protein molecular weight markers (Amersham) were 
used. Gels were transferred to Immobilin polyvinylidene fluoride mem- 
branes (Millipore Corp., Bedford, MA). 

Membranes were blocked overnight at 4°C in TBS with 5% BSA and 
0.2% Tween-20 and then were incubated for 2 h with the anti-phosphoty- 

rosine mAb PY20 or P4G10 diluted in blocking solution. Membranes 
were washed in TBS with 0.1% BSA and 0.2% Tween followed by 1.5-h 
incubations with horseradish peroxidase-linked sheep anti-mouse IgG 
(Amersham) in blocking solution. Bands were developed using the en- 
hanced chemiluminescence substrate kit (Amersham) for 1-3 min with 
medical x-ray film (Fuji). Films were analyzed by laser scanning densitom- 
etry on an Ultroscan XL (LKB-Wallac, Bromma, Sweden). 

Centrifugation Experiments 
Plastic dishes were coated with collagen type I (30 p.g/ml) or fibronectin 
(20 wg/ml) as described above. AG 1518 fibroblasts were plated at a den- 
sity of 800,000 cells in 60 mm dishes, and allowed to adhere for 4 h in 
MCDB 104. Dishes were then incubated on ice until used in centrifuga- 
tion experiments. Immediately before centrifugation, dishes were incu- 
bated at 37°C for 5 min, washed once with MCDB 104, and then com- 
pletely filled with MCDB 104 containing 10 mM Hepes and 100 I~M 
sodium orthovanadate, pH 7.4, at 37°C. Dishes were covered with para- 
film and airbubbles removed with a syringe. The cell plates were immedi- 
ately centrifuged for the designated time periods. The dishes were placed 
in the centrifuge so that the centrifugal force was directed upward and 
perpendicular to the plane of the interphase between the cell and the sub- 
strate. The Omnifuge 2.0 RS centrifuge (Heraeus Sepatech, Hanau, Ger- 
many) used enables precise regulation of temperature, acceleration, 
deceleration, and final G-force value. Cell plates were centrifuged up- 
side-down at 25°C, varying the final G-force values. Parallel control plates 
that were not subjected to centrifugation were incubated in MCDB 104, 
10 mM Hepes, and 100 ttM sodium orthovanadate at 25°C. 

Results 

Plating of Cells on ECM Substrates Induces Tyrosine 
Phosphorylation of PDGF r-Receptors 

Plating of human AG 1518 fibroblasts on dishes coated 
with collagen type I or fibronectin in serum-free MCDB 
104 medium resulted in a rapid tyrosine phosphorylation 
of PDGF B-receptors (Fig. 1, A and B). Maximal PDGF 
B-receptor tyrosine phosphorylation was detected i and 2 h, 
respectively, after plating. The tyrosine phosphorylation 
response elicited by plating cells on collagen type I and fi- 
bronectin was transient, 6 h after plating a clear decrease 
in PDGF [3-phosphorylation was apparent on both sub- 
strates. In cells plated on poly-L-lysine only a limited phos- 
phorylation of PDGF B-receptors was detected 2 h after 
plating (Fig. 1 C). The limited phosphorylation of PDGF 
B-receptors in cells plated on poly-L-lysine was completely 
abrogated by the presence of 10 p.g/ml cycloheximide (Fig. 
1 D). In contrast the PDGF B-receptor phosphorylation 
induced by plating cells on fibronectin or collagen type I 
was not affected by cycloheximide (Fig. 1 D) thus the 
PDGF B-receptor phosphorylation response after plating 
cells on poly-L-lysine was due to synthesis of a cell attach- 
ment protein. Furthermore, the plating-induced tyrosine 
phosphorylation of PDGF B-receptors was not altered by 
the presence of 10% FBS, or when cells were plated at a 
four times lower density, but was enhanced in the presence 
of orthovanadate and inhibited in the presence of herbi- 
mycin A (data not shown). As expected no tyrosine phos- 
phorylation of PDGF B-receptors was detected in AG 
1518 fibroblasts that had been plated in the presence of 
10% FBS, grown to confluence and serum depleted for 24 h. 
PDGF-BB stimulation of such cells resulted, however, in a 
rapid and effective tyrosine phosphorylation of PDGF 
B-receptors (Fig. 1, A and D). 

The plating-induced phosphorylation of PDGF 13-recep- 
tors was sensitive to disruption of the actin cytoskeletal in- 
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Figure 1. Plating-induced phosphorylation of PDGF [3-receptors 
in AG 1518 fibroblasts. Cells were plated and cultured in MCDB 
104 medium for the indicated time periods under serum-free con- 
ditions. (A) Cells plated on fibronectin; (B) cells plated on col- 
lagen type I; (C) cells plated on poly-L-lysine; (D) cells plated on 
poly-L-lysine and cultured in the presence of cycloheximide (10 
i~g/ml); and (E) cells plated on collagen type I and cultured in the 
presence or absence of (5 izg/ml) cytochalasin D. Phosphoryla- 
tion of PDGF B-receptors achieved after stimulation of cells with 
20 ng/ml of PDGF-BB for 15 min is shown in A and D. PDGF 
13-receptors were immunoprecipitated with specific polyclonal 
anti-PDGF B-receptor IgG, and tyrosine phosphorylation was 
detected by immunoblotting after separation of precipitated pro- 
teins by SDS-PAGE. The relative migration of pre-stained mo- 
lecular weight standard proteins are indicated. 220, Myosin; 97, 
phosphorylase B; and 66, bovine serum albumin. These marker 
proteins migrate as proteins with Mr:s 220,000, 97,000, and 66,000 
respectively. IP, Immunoprecipitation. 

tegrity as evidenced by experiments in which cells were 
plated on ECM molecules in the presence of 5 tzg/ml cy- 
tochalasin D. Cells plated in the presence of cytochalasin 
D adhered but did not spread on collagen type I and fi- 
bronectin. Addition of this drug to the medium completely 
abolished the plating-induced tyrosine phosphorylation of 
PDGF [3-receptors (Fig. 1 E). 

The degree of PDGF [3-receptor tyrosine phosphoryla- 
tion, measured as optical density of exposed films by laser 
densitometric scanning, was directly proportional to the 
PDGF-BB concentration used to stimulate cells for the 
film exposure times, 1-3 min, that were used in the present 
studies. The relative values obtained for plating-induced 
tyrosine phosphorylation of PDGF [3-receptors in A G  
1518 fibroblasts amounted to 19% (n = 6) for cells plated 
on collagen type I, and 27% (n = 3) for cells plated on fi- 
bronectin, compared to the signal resulting from stimula- 
tion of the cells with 20 ng/ml PDGF-BB for 15 min. Cells 
stimulated with 20 ng/ml PDGF-BB for 15 min were in- 
cluded in all of the following experiments, and the magni- 
tude of the PDGF 13-receptor tyrosine phosphorylation re- 
sponse is referred to as the maximal response in the 
following text. 

Human A G  1518 fibroblasts express EGF receptors as 
well as PDGF a-receptors. Tyrosine phosphorylation of 
EGF receptors and PDGF a-receptors was detected after 
stimulation for 15 min with 100 ng/ml of EGF and 50 ng/ml 
of PDGF-AA, respectively (Fig. 2, A and B). Densitomet- 
ric scanning revealed a maximum tyrosine phosphoryla- 
tion response of 80% for EGF receptors and 20% for 
PDGF a-receptors of the maximal tyrosine phosphoryla- 
tion response of PDGF [3-receptors. In contrast, plating of 
the fibroblasts on collagen type I (Fig. 2, A and B) or fi- 
bronectin did not induce any detectable tyrosine phosphor- 
ylation of EGF receptors or PDGF a-receptors. 

Addition of polyclonal anti-PDGF-BB IgG (Fig. 2 C), 
known to inhibit auto- or paracrine stimulation of PDGF 
receptors in v-sis transfected cells (34), or 100 ~zM suramin 
(data not shown) had no effect on the phosphorylation of 
PDGF [3-receptors in response to plating on collagen type 
I or fibronectin. The concentrations of anti-PDGF-BB 
IgG used, 40 ~g/ml, and suramin, 100 ~g/ml were able to 
inhibit the tyrosine phosphorylation of PDGF B-receptors 
induced by 50 ng/ml PDGF-BB (Fig. 2 D and data not 
shown). No expression of PDGF-AB/BB was detected in 
the AG 1518 fibroblasts, either as protein using the anti- 
PDGF-AB/BB antibody PGF 007 in immunofluorescence 
staining, or as mRNA using Northern blotting (data not 
shown). Taken together, these findings suggest that the 
plating-induced phosphorylation of PDGF 13-receptors is 
not dependent on para- or autocrine stimulatory loops in- 
volving PDGF-BB. 

Plating of  AG 1518 Fibroblasts on ECM Substrates 
Induces Clustering of  PDGF t-Receptors 

Stimulation of A G  1518 fibroblasts with PDGF-BB, but 
not with PDGF-AA, results in the formation of intracellu- 
lar granular accumulations, or clusters, of PDGF 13-recep- 
tors (62, 65). These receptor clusters can be detected by 
immunofluorescence using PDGFR-B2 IgG (Fig. 3, A-L). 
Plating of A G  1518 fibroblasts on collagen type I or on fi- 
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Figure 2. Effects of plating on EGF 
and PDGF a-receptor phosphorylation 
(A and B) and effects of anti-PDGF- 
BB on plating-induced tyrosine phos- 
phorylation of PDGF 13-receptors (C 
and D) in AG 1518 fibroblasts. AG 
1518 fibroblasts were plated on col- 
lagen type I and cultured for the indi- 
cated time periods in MCDB 104 me- 
dium. Ceils were cultured in C, the 
absence or presence of 40 ixg/ml of 
polyclonal anti-PDGF-BB IgG; or (D) 
ceils were stimulated with 50 ng/ml of 
PDGF-BB in the presence or absence 
of 40 ~g/ml of polyclonal anti-PDGF- 
BB IgG. Extracts were immunoprecip- 
itated with: (A) monoclonal anti-EGF 
receptor IgG; (B) monoclonal anti- 
PDGF a-receptor IgG; and (C and D) 
polyclonal anti-PDGF [3-receptor IgG. 
Phosphorylation of PDGF 13-receptors 
achieved after stimulation of cells with 
20 ng/ml of PDGF-BB for 15 min is 
shown in D. Immunoprecipitations and 
detection of tyrosine phosphorylated 
proteins by immunoblotting was per- 
formed as described in Materials and 
Methods. The relative migration of 
pre-stained molecular weight standard 
proteins are indicated, 220, myosin; 97, 
phosphorylase B; and 66, bovine serum 
albumin. These marker proteins mi- 
grate as proteins with Mr:s 220,000, 
97,000, and 66,000 respectively, in 
SDS-PAGE. IP, Immunoprecipitation. 

bronectin led to the formation of PDGF 13-receptor vesi- 
cles suggesting that the plating-induced phosphorylation 
resulted in assembly and internalization of the PDGF 
13-receptors. The receptor clusters were evident two hours 
after plating of cells on collagen type I (Fig. 3, E and F) or 
on fibronectin (Fig. 3, G and H). Cells plated on poly-L- 
lysine did not exhibit clusters of PDGF 13-receptors 2 h af- 
ter plating (Fig. 3, K and L). 

Plating of AG 1518 Fibroblasts on Anti-integrin 
Subunit IgG Induces Phosphorylation and Clustering of 
PDGF r-Receptors 

The involvement of 131 integrins in the plating-induced 
phosphorylation of PDGF 13-receptors was investigated. In 
a first series of experiments AG 1518 fibroblasts were 
seeded on dishes to which monoclonal anti-integrin a sub- 
unit or anti-integrin 131-subunit IgG had been immobilized 
(see Materials and Methods). Monoclonal antibodies used 
were TS2/7 (anti-a1), P1H5 and PIE6 (anti-a2), PIB5 
(anti-a3), PID6 (anti-as), and P4C10 (anti-131). AG 1518 fi- 
broblasts attached and spread readily to surfaces coated 
with all of these antibodies, anti-c~ 5 and anti-~l being the 
most effective in supporting cell spreading. A rapid ty- 
rosine phosphorylation of PDGF 13-receptors was evident 
after plating of cells on all of the anti-integrin antibodies 
(Fig. 4). Phosphorylation of PDGF 13-receptors occurred 
most rapidly in cells plated on monoclonal anti-as and 

anti-J31 integrin IgG with a maximal level achieved 30 min 
after plating and thereafter decreasing during a 2-h incu- 
bation period. AG 1518 fibroblasts, plated on monoclonal 
anti-fibroblast surface marker IgM (1B10) were able to 
adhere and spread but did not display any phosphoryla- 
tion of the PDGF 13-receptors during the time period in- 
vestigated (Fig. 4). Cells did not adhere to dishes coated 
solely with the anti-mouse F(ab)2 fragments used to im- 
mobilize the anti-integrin subunit antibodies. 

Plating of cells on polyclonal anti-[31 integrin IgG re- 
suited in rapid formation of PDGF 13-receptor dusters vis- 
ible 2 h after plating (Fig. 3, I and J), these clusters gradu- 
ally decreased during a 6-h incubation period (data not 
shown), as assessed by immunofluorescence using PDGFR- 
B2 IgG. When omitting the primary antibody in the immu- 
nofluorescence staining procedure no patches were de- 
tected indicating that the secondary biotinylated horse 
anti-mouse IgG does not cross-react with rabbit IgG (data 
not shown). No PDGF 13-receptor clusters were detected 
in cells plated on poly-L-lysine (Fig. 3, K and L). 

To further assess the effects of 131 integrin stimulation on 
phosphorylation of PDGF 13-receptors in AG 1518 fibro- 
blasts, antibody cross-linking experiments were conducted. 
Fibroblasts were grown to near confluence in DME with 
10% FBS, serum-depleted in MCDB 104 medium for 24 h, 
and stimulated with 250 Ixg/ml polyclonal anti-131 integrin 
IgG for 30 min. After removal of unbound anti-131 IgG by 
washing with MCDB 104, cultures were incubated with 
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Figure 3. Plating-induced formation of PDGF 13-receptor granules in AG 1518 fibroblasts. (A, C, E, G,/ ,  and K), immunofluorescence 
stainings of PDGF 13-receptors using PDGFR-B2 IgG; (B, D, F, H, J, and L), detection of F-actin by Bodipy FL-Phallacidin. Both re- 
agents were used in the double fluorescence staining procedure described in Materials and Methods. Double-stained areas are repre- 
sented side by side in the figure. In A - D  cells had been cultured on glass coverslips in DME containing 10% FBS and subsequently se- 
rum depleted for a 24-h time period in MCDB 104 medium. In E-L  cells had been cultured on glass coverslips coated with the indicated 
substances for 2 h in MCDB 104 medium. (A and B) Nonstimulated AG 1518 fibroblasts; (C and D) AG 1518 fibroblasts stimulated for 
15 min with 50 ng/ml of PDGF-BB. Note the formation of PDGF 13-receptor granules in C, and circular actin ruffles in the same cells 
(D); (E and F) AG 1518 fibroblasts plated on collagen type I--coated coverslips; (G and H) AG 1518 fibroblasts plated on human plasma 
fibronectin-coated coverslips; (I and J) AG 1518 fibroblasts plated on polyclonal anti-131 integrin IgG-coated coverslips; (K and L) AG 
1518 fibroblasts plated on poly-L-lysine-coated coverslips. Note the presence of PDGF 13-receptor granules in (E, G, and/), but absence 
of circular actin ruffles in the corresponding cells (F, H, and J). No PDGF 13-receptor granules or circular actin ruffles were detected in 
cells plated on poly-L-lysine (K and L). Bar, 40 txm. 
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Figure 4. Tyrosine phosphorylation of PDGF B-receptors in- 
duced by plating AG 1518 fibroblasts on anti-integrin subunit 
IgG. Cells were plated and cultured in MCDB 104 medium for 
the indicated time periods. Monoclonal anti-integrin subunit IgG, 
or anti-fibroblast surface marker IgM were immobilized on plas- 
tic culture dishes pre-coated with goat anti-mouse immunoglobu- 
lin F(ab)2 fragments as described in Material and Methods. Anti- 
bodies used were: TS2/7 (anti-ctl); P1E6 (anti-et2); P1B3 (anti-~t3); 
P1D6 (anti-o~5); P4C10 (anti-B1); and 1B10 (anti-human fibro- 
blast surface protein; FSP IgM). PDGF B-receptors were immu- 
noprecipitated with specifc polyclonal anti-PDGF B-receptor 
IgG, and tyrosine phosphorylation was detected by immunoblot- 
ting after separation of precipitated proteins by SDS-PAGE. The 
position of pre-stained myosin, migrating as a 220,000-M r protein 
in SDS-PAGE is indicated. Phosphorylation of PDGF B-recep- 
tors achieved after stimulation of cells with 20 ng/ml of PDGF- 
BB for 15 min is shown. 

goat anti-rabbit IgG for different time periods. This treat- 
ment resulted in a weak tyrosine phosphorylation of 
PDGF B-receptors after a 30-min incubation period and 
an increased phosphorylation at 120 min (Fig. 5 D) 
amounting to 28% of the maximal response that was 
achieved after PDGF-BB stimulation. Cells incubated 
with 250 ~g/ml of polyclonal anti-B1 integrin IgG only, ex- 
hibited a weak tyrosine phosphorylation throughout the 
2-h time course, averaging 3.5% of the maximal PDGF- 
BB response (Fig. 5 C). Cells incubated with 250 ixg/ml of 

polyclonal anti-B1 integrin IgG and then secondary anti- 
bodies exhibited extensive integrin receptor patching as 
determined by immunofluorescence (Fig. 6 B). However, 
when cells were incubated with primary antibody alone, 
only low amounts of patches were discerned (Fig. 6 A). No 
integrin patches were observed when incubating with non- 
immune rabbit IgG (250 p.g/ml) or secondary antibodies 
alone (data not shown). 

Suspended A G  1518 fibroblasts incubated in MCDB 
104 containing 250 ixg/ml of polyclonal anti-B1 integrin IgG 
exhibited no tyrosine phosphorylation of PDGF B-recep- 
tors (Fig. 5 A). However, when cells were incubated in sus- 
pension with polyclonal anti-B1 integrin IgG antibodies 
immobilized on protein A-Sepharose,  .tyrosine phosphor- 
ylation of PDGF B-receptors was evident at 30 min, there- 
after the signal decreased over the 2-h observation period 
(Fig. 5 B). 

PDGF fl-Receptors are Phosphorylated in 
AG 1518 Fibroblasts during the Process of  Collagen 
Gel Contraction 

AG 1518 fibroblasts readily contract three-dimensional 
collagen gels in a process that is stimulated by, but not de- 
pendent on, PDGF or serum (64), and that is mediated by 
[31 integrins (24). A prominent phosphorylation of PDGF 
[3-receptors in A G  1518 fibroblasts during the process of 
contracting free-floating gels (relaxed condition) was evi- 
dent 4 h after that gels had been flotated (20% of maximal 
response), corresponding to 5 h after seeding of the col- 
lagen/cell mixture (Fig. 7 B). Fibroblasts cultured in at- 
tached collagen gels (stressed conditions) also exhibited a 
strong phosphorylation of PDGF B-receptors, but the re- 
sponse followed a different time course with a peak in the 
phosphorylation at 1.5 and 5 h after initiation of cultures 
with relative levels of phosphorylation corresponding to 
13 and 11% of the maximal response, respectively, (Fig. 7 
A). In lysates of A G  1518 fibroblasts cultured both under 
stressed and relaxed conditions a ~110,000-Mr protein 
that was phosphorylated on tyrosine co-precipitated with 
the PDGF B-receptor. The identity of this latter protein is 
not known but the degree of tyrosine phosphorylation of 
this protein closely followed that of PDGF B-receptors. 

Figure 5. Tyrosine phosphorylation of 
PDGF B-receptors in AG 1518 fibro- 
blasts induced by clustering cell surface 
131 integrins by antibodies. (A and B), 
AG 1518 fibroblasts suspended in 600 
~1 MCDB 104 medium; (C and D) AG 
1518 fibroblasts grown to confluence in 
DMEM with 10% FBS and subse- 
quently serum-depleted for 24 h in 
MCDB 104 medium. (A and C) cells 
incubated with 250 t~g/ml polyclonal 
anti-131 integrin IgG for the indicated 
time periods; (B) cells incubated with 

150 ~g polyclonal anti-B1 integrin IgG coupled to 50 pJ protein A-Sepharose; (D) cells incubated with 250 p.g/ml polyclonal anti-131 in- 
tegrin IgG for 30 min and subsequently with 10 ~g/ml goat anti-rabbit IgG for the indicated time periods. PDGF B-receptors were im- 
munoprecipitated with specific polyclonal anti-PDGF B-receptor IgG, and tyrosine phosphorylation was detected by immunoblotting 
after separation of precipitated proteins by SDS-PAGE. The positions of pre-stained myosin and phosphorylase B, migrating as 
220,000- and 97,000-Mr proteins are indicated. Phosphorylation of PDGF B-receptors achieved after stimulation of cells with 20 ng/ml of 
PDGF-BB for 15 min is shown in A. 
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Figure 6. Appearance of clustered cell-surface 131 integrins on AG 1518 fibroblasts. AG 1518 fibroblasts grown to confluence in DME 
with 10% FBS and subsequently serum-depleted for 24 h in MCDB 104 medium. (A) Fibroblasts incubated with 250 v~g/ml polyclonal 
anti-l~l integrin IgG for 30 min prior to fixation and staining with goat anti-rabbit FITC; (B) fibroblasts incubated with 250 t~g/ml poly- 
clonal anti-I~l integrin IgG for 30 rain, washed, and further incubated with 10 v~g/ml of goat anti-rabbit IgG prior to fixation and staining 
with goat anti-rabbit FITC. Bar, 40 ixm. 

PDGF fl-Receptor Phosphorylation is Induced in 
AG 1518 Fibroblasts in Response to the Application 
of  External Tension on the Cells 

To assess the effect of the PDGF 13-receptor phosphoryla- 
tion by external strain on cell-substrate adhesions A G  
1518 fibroblasts attached to collagen type I and fibronectin 
were subjected to a centrifugal force that was directed per- 
pendicular to the plane of the cell-substrate interphase us- 
ing the technology detailed in Materials and Methods. The 
centrifuge used, enabled precise control of acceleration, 
de-acceleration, temperature, and final G-force value. 
Cultures were centrifuged with constant acceleration and 
deceleration rates but with final G-force values ranging 
from 2-64 g. Tyrosine phosphorylation of PDGF 13-recep- 
tors was evident in cells plated on collagen type I that had 
been exposed to centrifugal force for 2 min with a peak in 
phosphorylation after 5 rain (Fig. 8 A and 9) and a subse- 
quent decrease in tyrosine phosphorylation after 10 rain. 
Tyrosine phosphorylation of PDGF [3-receptors increased 
with increasing final G-force values up to 32 g. Fibroblasts 
remained attached during eentrifugation even at 64 g for 
10 min, and, in addition, responded to stimulation with 20 
ng/ml PDGF-BB by tyrosine phosphorylation of PDGF 
[~-receptors when stimulated immediately after being ex- 
posed to centrifugal forces (Fig. 8 D). It can therefore be 
concluded that the decrease in tyrosine phosphorylation, 
noticeable after centrifugation for 10 min, was not due to 
detachment of cells, nor to downregulation of PDGF 
13-receptors from the cell surface. Cells attached to fi- 
bronectin exhibited a similar response of tyrosine phos- 
phorylation of PDGF 13-receptors when exposed to centrif- 
ugal force, however, the peak in tyrosine phosphorylation 

was observed already after 2 min (Figs. 8 D and 9). Cells 
incubated in medium containing 100 p~M sodium ortho- 
vanadate but not subjected to centrifugation exhibited a 
slight increase in tyrosine phosphorylation (3% of maxi- 
mal response) of PDGF 13-receptors above background 
levels (0.5% of maximal response) after a 5-min incuba- 
tion period compared to uncentrifuged cells incubated in 
the absence of orthovanadate (Fig. 8 C). 

Figure 7. Induction of tyrosine phosphorylation of PDGF B-recep- 
tors in AG 1518 fibroblasts cultured in three-dimensional col- 
lagen gels. (A) AG 1518 fibroblasts cultured and maintained un- 
der "stressed" (see text) conditions; stressed; and (B) AG 1518 
fibroblasts cultured and maintained under "relaxed" (see text) 
conditions. Incubations were performed in MCDB 104 medium 
for the indicated time periods referring to the times after gelation 
of the lattices. PDGF 13-receptors were immunoprecipitated with 
specific polyclonal anti-PDGF 13-receptor IgG, and tyrosine 
phosphorylation was detected by immunoblotting after separa- 
tion of precipitated proteins by SDS-PAGE. The positions of 
pre-stained myosin and phosphorylase B, migrating as 220,000- 
and 97,000-Mr proteins are indicated. Phosphorylation of PDGF 
B-receptors achieved after stimulation of cells with 20 ng/ml of 
PDGF-BB for 15 rain is shown in A. 
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Figure 8. Induction of PDGF 13-receptor tyrosine phosphoryla- 
tion in AG 1518 fibroblasts exposed to centrifugal forces. Cells 
were plated on the respective substrates and cultured in MCDB 
104 medium prior to exposure to centrifugal forces as detailed in 
Material and Methods. Final G-force values (g) and time periods 
are indicated in A and B. (A) Fibroblasts plated on collagen type 
I; (B) fibroblasts plated on human plasma fibronectin. (C) Fibro- 
blasts plated on collagen type I and cultured in MCDB 104, and 
then incubated (without being subjected to centrifugation) for 5 
min in the presence (lane 1), or absence (lane 2) of 100 ixM ortho- 
vanadate; (D) fibroblasts plated on collagen type I and cultured 
in MCDB medium, centrifuged for 10 min at 2 g (lane 1) and 64 g 
(lane 2) and thereafter stimulated with 50 ng/ml of PDGF-BB for 
15 min. PDGF [3-receptors were immunoprecipitated with spe- 
cific polyclonal anti-PDGF 13-receptor IgG, and tyrosine phos- 
phorylation was detected by immunoblotting after separation of 
precipitated proteins by SDS-PAGE. The positions of pre- 
stained myosin and phosphorylase B, migrating as 220,000- and 
97,000-Mr proteins are indicated in A and B. 

Discussion 

We have demonst ra ted  that P D G F  13-receptors in A G  
1518 diploid human fibroblasts become phosphoryla ted on 
tyrosine residues in response to changes in cell shape, or in 
response to external strain exerted on the cells. This ty- 
rosine phosphorylat ion occurred in the absence of exoge- 
nously added PDGF.  The  response was apparent  during 
at tachment,  and early phases of spreading on fibronectin 
or collagen type I, but  not when fibroblasts were plated on 
poly-L-lysine. Fur thermore ,  tyrosine phosphorylat ion of 
P D G F  13-receptors occurred during collagen gel contrac- 
tion and when cells were exposed to a centrifugal force. As 
assessed f rom laser densitrometric scanning, the magni- 
tudes of the tyrosine phosphoryla t ion responses in all 
these cases amounted  to between 20 and 30% of the re- 
sponse achieved by stimulation with 20 ng/ml of P D G F -  
BB for 15 min. Fur thermore ,  we demonst ra ted  that P D G F  
13-receptors become clustered in response to plating of A G  
1518 fibroblasts on fibronectln and collagen type I. These  
receptor  clusters were morphological ly indistinguishable 
f rom the intracellu!ar granular a6oamulations seen after 
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Figure 9. Time dependence of the induction of PDGF [3-receptor 
tyrosine phosphorylation by centrifugal forces. Laser densitomet- 
ric scanning was performed on the exposed films from the experi- 
ment shown in Fig. 8, A and B. Phosphorylation signals are ex- 
pressed as percentages of the signal recorded for confluent 
fibroblasts that had been stimulated with 20 ng/ml of PDGF-BB 
for 15 min. (V]) Cells plated on collagen type I, 2 g; (O) cells 
plated on collagen type I, 8 g; (A) cells plated on collagen type I, 
32 g; (©) cells plated on collagen type I, 64 g; (A) cells plated on 
human plasma fibronectin, 32 g. 

stimulation of these cells with P D G F - B B  (62, 65), indicat- 
ing that plating-induced tyrosine phosphorylat ion leads to 
an internalization of P D G F  B-receptors. Tyrosine phos- 
phorylat ion of P D G F  13-receptors occurred when cells 
were plated on immobilized anti-131 integrin IgG, but not 
when they were plated on IgG directed to a fibroblast 
(nonintegrin) cell surface marker .  I t  can therefore  be con- 
cluded that the plating-induced response is a result of  t31 
integrin-mediated adhesion reactions. We also investi- 
gated if the effects on P D G F  13-receptors could be attrib- 
uted to a specific 131-integrin. Exper iments  in which A G  
1518 fibroblasts were plated on immobilized monoclonal  
anti-integrin subunit IgG revealed that P D G F  B-receptor 
tyrosine phosphorylat ion was elicited in response to en- 
gagement  of the integrins a1131, a2131, t13131, and ets[31. These 
results demonstra te  that the various integrin a subunits do 
not confer specificity to the plating-induced tyrosine phos- 
phorylat ion of P D G F  13-receptors. Taken  together,  our  
findings demonstra te  the existence of a cross-talk between 
13x integrin-mediated adhesion reactions and tyrosine phos- 
phorylat ion of P D G F  13-receptors. Fur thermore ,  the find- 
ings raise the interesting possibility that part  of  the signal 
transduction events that  are evoked by 131 integrin engage- 
ment  (13, 55) in fact may be dependent  on activation of 
P D G F  [3-receptors. 

The present  data suggest that  13~ integrin-mediated ty- 
rosine phosphorylat ion of P D G F  13-receptors does not in- 
volve auto- or paracrine stimulation by PDGF-AB/BB.  
This notion is based on several observations. The kinetics 
of the reactions, displaying maximal  responses at early 
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time points; minutes in the case of exposure to centrifugal 
forces; and within one and two hours in the cases of plating 
and collagen gel contraction, makes it unlikely that the ob- 
served effect depends on de novo synthesis of PDGF 
B-chains. Moreover, PDGF B-chain mRNA was not de- 
tected in AG 1518 fibroblasts by Northern blotting (data 
not shown) and no expression of PDGF-AB/BB protein 
using the specific monoclonal anti-PDGF-AB/BB anti- 
body PGF 007 in immunofluorescence studies could be de- 
tected in AG 1518 fibroblasts. More importantly, the plat- 
ing-induced tyrosine phosphorylation of PDGF 13-receptors 
was insensitive to suramin, as well as to specific anti- 
PDGF-BB IgG, both being able to inhibit the activation of 
PDGF [3-receptors in response to exogenous PDGF-BB, 
added in concentrations of 50 ng/ml or less. Taken to- 
gether, our data exclude that the [31 integrin-mediated 
PDGF [3-receptor tyrosine phosphorylation is dependent 
on stimulation of PDGF B-chain synthesis or on release of 
stored PDGF-AB/BB. 

Cell surface EGF receptors on AG 1518 fibroblasts 
were not phosphorylated in response to plating on fi- 
bronectin or collagen type I. Similarly, no tyrosine phos- 
phorylation of PDGF {x-receptors was detected in response 
to plating of the fibroblasts on these ECM glycoproteins. 
Since human diploid foreskin fibroblasts express low lev- 
els of PDGF a-receptors compared to PDGF 13-receptors 
(58), it can, however, not be excluded that a possible plat- 
ing-induced tyrosine phosphorylation of PDGF a-recep- 
tors remained undetected by the present assay system. 
Nevertheless, the fact that EGF receptors were not phos- 
phorylated suggests a degree of specificity regarding the 
observed tyrosine phosphorylation of PDGF 13-receptors, 
ainong tyrosine kinase receptors, elicited by plating on 
ECM components. 

A transient tyrosine phosphorylation of PDGF 13-recep- 
tors was elicited after clustering of integrin [31 subunits at 
the cell surface. Binding of rabbit polyclonal anti-[31 inte- 
grin IgG to fibroblasts that had been cultured for several 
days and possessed well-developed focal adhesions, did 
not induce a tyrosine phosphorylation response. In order 
for PDGF [3-receptor tyrosine phosphorylation to occur, 
bound anti-131 integrin IgG had to be clustered by anti- 
rabbit IgG. Similarly, mere binding of anti-131 integrin IgG 
to the surface of suspended AG 1518 fibroblasts did not 
lead to tyrosine phosphorylation of PDGF [3-receptors. 
Such a response could, however, be elicited in suspended 
cells, by means of presenting the anti-[31 integrin IgG im- 
mobilized to protein A-Sepharose, in a process that in- 
volves clustering of integrins. Thus, induction of [31 inte- 
grin clusters at the cell surface provides the necessary 
signal for induction of PDGF [3-receptor tyrosine phos- 
phorylation, whereas integrins in already established focal 
adhesions are unable to induce such a response. These 
data suggest that PDGF [3-receptor tyrosine phosphoryla- 
tion may be an important element during the dynamic 
phase of 131 integrin-mediated adhesion reactions. 

The above concept was also supported by the transient 
tyrosine phosphorylation of PDGF 13-receptors initiated 
during contraction of AG 1518 fibroblast-populated col- 
lagen matrices. Cell-mediated collagen gel contraction is 
an obviously dynamic process, dependent on an intact ac- 
tin cytoskeleton, and resulting from compaction of the col- 

lagen fiber network by elongated fibroblasts (4, 22, 66) 
through the process of "cell traction" (26). During this 
process, integrins form stable contacts with the collagen fi- 
bers; these contacts should be operative for a certain time 
period after which they are to be dismantled allowing for 
new contacts to be formed. Such a model is supported by 
the recent finding that the 131 integrin-activating antibody 
TS2/16 paradoxically inhibits contraction of smooth mus- 
cle cell-populated collagen matrices (42). In anchored AG 
1518 fibroblast-populated collagen gels, in which contrac- 
tion is mechanically impeded ("stressed" conditions; 43), 
tyrosine phosphorylation of PDGF [3-receptors peaked at 
1 and 4 h. In floating collagen matrices ("relaxed" condi- 
tions) tyrosine phosphorylation peaked at 4 h. This differ- 
ence in timing of the response may be related to differ- 
ences in the mechanical tension during contraction. Floating 
collagen gels remain mechanically relaxed during contrac- 
tion in contrast to anchored lattices where a high mechani- 
cal stress is generated (47). Our results indicate that ty- 
rosine phosphorylation of PDGF 13-receptors in collagen 
gels coincides with the buildup of mechanical stress and 
subsequent collagen gel contraction. Thus our findings 
support the view that tyrosine phosphorylation of PDGF 
[3-receptors is elicited during dynamic phases of [31 integrin 
mediated adhesion processes. It has been reported that 
PDGF [3-receptors become functionally refractory in fi- 
broblasts that are cultured in contracting relaxed collagen 
gels (43, 64). The present results add the possibility that a 
persistent remodelling of integrin-mediated contacts dur- 
ing contraction, leading to the observed PDGF-BB-inde- 
pendent phsphorylation of PDGF [3-receptors, makes the 
latter nonavailable for stimulation by added ligand. 

A correlation between alterations in mechanical tension 
and PDGF 13-receptor tyrosine phosphorylation in AG 
1518 fibroblasts was further supported by experiments in 
which cells were exposed to centrifugal forces. Under the 
experimental conditions used focal adhesions already 
formed with the underlying substratum were challenged 
by forces induced through centrifugation. A rapid and 
transient PDGF 13-receptor tyrosine phosphorylation was 
elicited in response to a centrifugal force directed upwards 
from, and perpendicular to, the plane of the culture dishes. 
This phosphorylation response was dependent on the 
magnitude of the centrifugal force applied to the cells up 
to a force of 32 g, at 64 g the phosphorylation response de- 
creased in magnitude. The latter effect was not due to that 
cells detached from the substrate. Furthermore, immedi- 
ately after centrifugation fibroblasts responded to stimula- 
tion by PDGF-BB with a rapid and prominent tyrosine 
phosphorylation of PDGF 13-receptors. However, it can 
not be ruled out that the observed decrease in tyrosine 
phosphorylation after centrifugation at 64 g is due to me- 
chanical damage inflicted on the cells. The time needed to 
reach the final G-force value in the centrifuge varied from 
30 s to over 2 min when cells were centrifuged at 64 g. The 
transient character of the tyrosine phosphorylation re- 
sponse, with maximal phosphorylation achieved after 5 
min, thereafter declining to background levels regardless 
of final G-force value, indicate that when cells have 
achieved a constant tension, adaption occurs. Mechanore- 
ceptors often register dynamic rather than static mechani- 
cal forces, and adaption occurs when a displacement stim- 
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ulus is constant (41) as is the case in our experimental 
system when cells have reached the final G-force value. 
Adaption enables mechanoreceptors to remain highly sen- 
sitive to changes in environment. These results further 
support that the phosphorylation response of PDGF 
B-receptors is elicited in response to changes in tension ex- 
erted on the cells, and that this effect can be induced in al- 
ready established focal adhesions. 

The signal transduction pathway involved in plating- 
induced tyrosine phosphorylation of PDGF 13-receptors is 
not known. One possibility is that the tyrosine phosphory- 
lation of PDGF [3-receptors is carried out by tyrosine ki- 
nases, e.g., p125 FAK, that become activated as part of the 
integrin-signaling pathway (13, 55). Alternatively, integrin 
engagement could induce changes in the spatial distribu- 
tion of PDGF [3-receptors in a manner that leads to their 
dimerization and activation. In experiments aimed to dis- 
criminate between these possibilities we took advantage of 
porcine aortic endothelial (PAE) cells transfected with 
PDGF 13-receptor cDNA constructs (17). Plating-induced 
PDGF 13-receptor tyrosine phosphorylation was observed 
when PAE cells, transfected with the wildtype receptor, 
were plated on fibronectin (manuscript in preparation). In 
PAE cells expressing kinase-inactivated (K634A) recep- 
tors (62) no plating-induced tyrosine phosphorylation of 
PDGF B-receptors was observed. From these experiments 
it is possible to conclude that plating-induced PDGF 
[5-receptor tyrosine phosphorylation is dependent on the 
intrinsic tyrosine kinase activity of the receptor. Thus it 
seems less likely that integrin-mediated activation of ty- 
rosine kinases such as p125 FAK phosphorylate PDGF 
B-receptors. 

The cross-talk between PDGF 13-receptors and 131 inte- 
grins has several implications. An obvious possibility is 
that this phosphorylation response, at least in part, is re- 
sponsible for integrin-mediated signaling events. Thus, 
PDGF B-receptor activation could constitute an upstream 
signaling event in the phosphorylation of p125 FAK, paxil- 
lin, and the MAP kinases. Furthermore, the integrin-medi- 
ated phosphorylation of PDGF 13-receptors could be part 
of a positive feed-back loop-strengthening celI-ECM con- 
tact. In favor of such a hypothesis are the findings that the 
phosphorylation response was observed during cell spread- 
ing, collagen gel contraction and when cells were exposed 
to external strain. Evidence that receptor tyrosine kinases 
stimulates integrin-mediated adhesion in reactions not 
likely to be dependent on stimulation of de novo biosyn- 
thesis of integrins include stem cell factor-enhanced 151 in- 
tegrin-mediated adhesion of mast cells to fibronectin (59), 
PDGF-BB stimulated contraction of 131 integrin-mediated 
fibroblast-populated collagen gel contraction (1, 24) and 
smooth muscle cell migration through collagen-coated 
membranes (61). 

In summary, the present study provides evidence for a 
coupling between 131 integrin-mediated adhesion reactions 
and ligand-independent activation of PDGF 13-receptors 
in AG 1518 fibroblasts. This activation is elicited during 
the dynamic phases of adhesion and spreading, collagen 
gel contraction and when external force is applied to the 
cells. Furthermore, the signal leading to activation of PDGF 
13-receptors is dependent on clustering of 131 integrins at 
the cell surface. The results demonstrate a novel, potential 

regulatory mechanism for cell behavior based on a cross- 
talk between adhesion and tyrosine kinase receptors. 
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