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Identification of congenital sensorineural hearing loss (SNHL) and early intervention,
especially by cochlear implantation (CI), are crucial for restoring hearing in patients.
However, high accuracy diagnostics of SNHL and prognostic prediction of CI are lacking
to date. To diagnose SNHL and predict the outcome of CI, we propose a method
combining functional connections (FCs) measured by functional magnetic resonance
imaging (fMRI) and machine learning. A total of 68 children with SNHL and 34 healthy
controls (HC) of matched age and gender were recruited to construct classification
models for SNHL and HC. A total of 52 children with SNHL that underwent CI were
selected to establish a predictive model of the outcome measured by the category
of auditory performance (CAP), and their resting-state fMRI images were acquired.
After the dimensional reduction of FCs by kernel principal component analysis, three
machine learning methods including the support vector machine, logistic regression,
and k-nearest neighbor and their voting were used as the classifiers. A multiple logistic
regression method was performed to predict the CAP of CI. The classification model of
voting achieves an area under the curve of 0.84, which is higher than that of three single
classifiers. The multiple logistic regression model predicts CAP after CI in SNHL with
an average accuracy of 82.7%. These models may improve the identification of SNHL
through fMRI images and prognosis prediction of CI in SNHL.

Keywords: sensorineural hearing loss, resting-state fMRI, functional brain network, cochlear implantation,
machine learning, multiple logistic regression

Abbreviations: ABR, auditory brainstem response; AUC, area under curve; BOLD, blood-oxygen-level-dependent; CAP,
category of auditory performance; CI, cochlear implantation; DPABI, data processing & analysis for brain imaging; FA, flip
angle; FC, functional connection; fMRI, functional magnetic resonance imaging; FOV, field of view; HC, health control;
HRCT, high-resolution computed tomography; KNN, k-nearest neighbor; KPCA, kernel principal component analysis; LR,
logistic regression; MLR, multiple logistic regression; MRI, magnetic resonance imaging; PCA, principal component analysis;
rs-fMRI, resting-state fMRI; SIR, speech intelligibility rate; SNHL, sensorineural hearing loss; SVM, support vector machine;
TE, echo time; TR, repetition time.
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INTRODUCTION

Congenital sensorineural hearing loss (SNHL) occurs in 0.2–
0.4% of live births. It affects approximately 40,000 children in the
United States (US) each year, and nearly two-thirds of cases result
in bilateral hearing loss (Prosser et al., 2015; Lieu et al., 2020). In
China, approximately 30 million people suffer from congenital
SNHL and there are ∼23,000 newborn deaf children and ∼50–
60,000 late-onset deafness patients every year (National Bureau
of Statistics of the People’s Republic of China [NBSPRC], 2007).
Hearing loss results from the blockage or attenuation of auditory
input to the brain and changes the connectivity and processing of
the auditory stimulus by the brain (Halliday et al., 2017; Wilson
et al., 2017). Bilateral SNHL can impair the speech development
of children and even result in difficulties in socialization and
poor academic performance (Tuller and Delage, 2014). Among
numerous treatments, cochlear implantation (CI) is highly
effective for SNHL (Kral and O’Donoghue, 2010). Therefore,
early identification, determination of the cause and appropriate
treatment plans are essential for the patient’s recovery.

Medical imaging assumes a crucial role in the diagnostic
evaluation of congenital SNHL. In addition to determining
the underlying cause, it can also identify related abnormalities
caused by hearing loss and evaluate the applicability of surgical
intervention (Woolley et al., 1997; Jackson et al., 2015; Gillard
et al., 2020). Preferred imaging modalities for evaluating
children’s SNHL are high-resolution computed tomography
(HRCT) and magnetic resonance imaging (MRI) of the temporal
bone. The diagnosis rate of HRCT is ∼30% (Chen et al., 2014).
MRI can detect more brain abnormalities and has a higher
diagnosis rate than HRCT (Buchman et al., 2006; Ratnanather,
2020). In particular, MRI is highly effective in identifying cochlear
nerve defects, which are common in SNHL (Manno et al., 2021).

Previous studies reported significant differences in the MRI-
based cerebral volume and gray matter microstructure in children
with SNHL (Moon et al., 2020). Hearing loss may affect white
matter tracts linking the eighth cranial nerve to subcortical nuclei
(i.e., cochlear) and primary auditory cortices (i.e., Heschl’s gyri)
and the gray matter of primary auditory cortices (Feng et al.,
2018; Tarabichi et al., 2018). Cross-modal reorganization in the
auditory deprived cortex was extensively reported (Lomber et al.,
2010; Ding et al., 2015). Specifically, for sensory inputs such as
hearing, vision, and touch in individuals who lack one sensory
mode, another sensory mode can “take over” the cortical area
belonging to the lacking sensory mode (Neville et al., 1998; Sadato
et al., 2004). Studies involving animal autopsies support this
cross-modal plasticity. Cell structure changes were observed in
the auditory cortex of deaf cats, whose magnitudes are related to
the age of onset of deafness (Butler and Lomber, 2013).

Functional magnetic resonance imaging (fMRI) is a non-
invasive technique that can be used to study brain function
changes in a variety of diseases, providing valuable information
for explaining pathogenesis and guiding clinical practice
(Mulders et al., 2015; Puschmann and Thiel, 2017; Vos et al.,
2017; Xia et al., 2017; Tang et al., 2019; Jin et al., 2021). According
to previous studies, resting-state fMRI (rs-fMRI) can reflect
underlying neuronal activity (Logothetis, 2002; Qi et al., 2015;

Zhu et al., 2019; Qian et al., 2021). The analysis of functional
connections (FCs) calculates the temporal correlation of blood-
oxygen-level-dependent (BOLD) signal fluctuations between
brain regions. A positive FC indicates that the activity between
two voxels or brain regions is synchronized. Recent studies with
FC show that SNHL infants exhibit functional reorganization of
the auditory network in the early stage of the sensitive or critical
period (Wang et al., 2019, 2021; Chen et al., 2020; Cui et al.,
2022). Alterations in the regional homogeneity measured by rs-
fMRI have also been reported in the auditory, visual, motor, and
other related brain cortices for children with congenital SNHL
(Guo et al., 2021).

Accurate prediction of the clinical outcome after CI will help
project realistic expectations of the benefit for each patient with
SNHL, prepare additional rehabilitation for patients with under-
performance, and even improve the implantation criteria and
procedures (Velde et al., 2021). The CI outcome is assessed by
the categories of auditory performance (CAP) score, which can
be predicted by the preoperative auditory brainstem response
(ABR) and the area ratio of the vestibulocochlear nerve to the
facial nerve (Han et al., 2019). Using demographic, audiological
and hearing-related clinical history, as well as etiology features,
machine learning models can outperform linear ones in the
prediction of CI outcomes in adult patients, although their overall
accuracy remains limited (Shafieibavani et al., 2021).

It is noted that by using rs-fMRI images, the accurate
identification method of SNHL and good prognostic prediction
of CI are not well investigated. In this study, we propose to
combine FCs measured by rs-fMRI and machine learning to
identify SNHL and predict the outcome of CI measured by CAP.
To the best of our knowledge, this is the first such reported study.

MATERIALS AND METHODS

Participants
Initially 83 children with congenital SNHL aged 0–11 years prior
to undergoing CI surgery from May 2014 to October 2020 at the
Affiliated Hospital of Guizhou Medical University were selected
in this study (Figure 1). At the same time, we selected 42 patients
for the normal hearing control group, who attended the hospital
for other treatments.

All children were subjected to hearing screening. Patients
with an auditory brainstem response (ABR) higher than 90 dB
were considered to have severe bilateral hearing loss. All deaf
children participating in the study had not worn hearing aids, had
not taken ototoxic drugs, nor had a history of cytomegalovirus,
infection, trauma, or any other neurological disease. Due to
the relatively young age of the subjects in this study, patients
were orally administered 10% chloral hydrate solution with a
dosage of 0.5 mL/kg to ensure the quality of the scan. Before
the examination, all of the subjects’ parents signed an informed
consent form. This study was approved by the ethics committee
of the Affiliated Hospital of Guizhou Medical University.

During image preprocessing, 15 SNHL and 8 HC children
were excluded due to head movement and data corruption
such as missing files, errors in file format conversion, etc. The
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FIGURE 1 | Participant selection procedure (a total of 68 children patients with congenital SNHL and 34 health controls were selected as Dataset 1 and 52 patients
who underwent cochlear implantation were selected as Dataset 2).

remaining 68 SNHL patients and 34 HCs constituted Dataset 1.
Among the 68 SNHL patients, 53 patients who underwent CI
surgery took the CAP test and the speech intelligibility rating
(SIR) test. One CI device was implanted into the unilateral ear
with the lower hearing loss measured by ABR for each patient. All
CI devices were provided by the same brand and manufacturer.
No related complications were observed in the children involved
in this study. One patient was excluded due to a conflict between
CAP and SIR scores (CAP = 1; SIR = 3). Finally, 52 SNHL patients
who underwent CI constituted Dataset 2.

Magnetic Resonance Imaging Image
Acquisition
The MR images of all participants were acquired before receiving
any treatment. In this study, we used a Philips Achieva
3.0TX series MR scanner with eight-channel phased coils. The
high-resolution T1-weighted images were obtained with the
following parameters: echo time (TE) = 4.6 ms, repetition time
(TR) = 9.4 ms, flip angle (FA) = 8◦, slice thickness = 1.6 mm,
slice interval = 0.8 mm, field of view (FOV) = 220 × 220 mm2,
acquisition matrix = 276 × 227 (i.e., the pixel spacing was 0.797
and 0.969 mm, respectively).

Using the echo plane imaging sequence, the BOLD-based
functional MR images were obtained with the flowing the

parameters: TE = 30 mm, TR = 2000 ms, time point = 200,
FA = 90◦, FOV = 220 × 220 mm2, slice thickness = 3.40 mm,
the number of slices = 35.

Study Procedure
The overall study procedure is illustrated in Figure 2. It
comprises two main tasks, namely, (1) classification of SNHL and
HC and (2) prediction of CAP after CI in SNHL. For task (1),
Dataset 1 was used with five main steps: (I) Image preprocessing;
(II) Construction of the functional brain network; (III) De-
duplication and flattening; (IV) Dimensionality reduction by
kernel principal component analysis (KPCA); (V) Classification
by machine learning methods. Task (2) employed Dataset 2. After
the dimensionality reduction, the obtained principal components
and parameters of age, gender, and ABR were used to build a
multiple logistic regression (MLR) model to predict CAP after CI
in SNHL. The details of each task and step are given as follows.

Data Preprocessing and Construction of
Brain Networks
We preprocessed rs-fMRI images using the Matlab R2018a
platform with data processing and analysis for brain imaging
(DPABI) and statistical parameter mapping (SPM) software
SPM12. First, we converted the files from the DICOM format
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FIGURE 2 | Overall study procedure with main steps including preprocessing, construction of functional brain network, de-duplication flattening, construction of
machine learning models for SNHL identification, and building of multiple logistic regression model for predicting the outcome after cochlear implantation measured
by the category of auditory performance.

into a standard NIFTI format. Second, the first 10 time-points in
the serial of rs-fMRI data were discarded to avoid errors caused
by unstable magnetic fields. Third, the slice time correction,
head motion correction, and covariate removal were performed

on rs-fMRI data. Fourth, the initial coordinates of T1-weighted
images (T1WI) and fMRI images were manually located to the
anterior commissure, and images with excessive displacement
and rotation deviations were corrected manually. Fifth, the
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processed images were normalized to the space of the Montreal
Neurological Institute (MNI). Finally, the images were filtered
and smoothed using a Gaussian filter with the default setting.
Instances where the average frame displacement of the image
exceeded 0.2 were considered to have exceeded the allowed head
movement were thus removed from the data set.

Preprocessed rs-fMRI data were used to construct the
functional brain network. In this study, the Human Brainnetome
Atlas released by the Chinese Academy of Sciences was applied
to parcellate the whole brain into 246 subregions (Fan et al.,
2016). The Pearson coefficient between time series in different
subregions can be calculated, which is referred to as the FC. After
eliminating the double-counted FCs, we finally obtained a vector
of 30,135 FCs for each participant.

Dimension Reduction Method
The principal component analysis (PCA) is a dimension
reduction method that transforms multiple related original
variable indicators into several independent comprehensive ones.
It uses several important principal components to explain
most original data and improve analysis efficiency. In the case
of a non-linear attribute in the original data, the principal
components extracted by principal component analysis cannot
reflect this non-linear attribute. Kernel PCA (KPCA) is a non-
linear transformation based on the original data, which extracts
the non-linear relationship between the data. Therefore, KPCA is
adopted in this study.

Moreover, the selection of optimal kernel functions and the
number of features for different classifiers was conducted by the
grid search method. The Kernel function can choose a linear,
sigmoid, poly, radial basis function (RBF) kernel. Studies have
shown (Gillies et al., 2016) that the feature number is generally
selected as 10% of the sample size to obtain a better classification
effect. Hence, this study selected 10 features as the benchmark,
and the number of features is searched from 2 to 20.

Machine Learning Model
We selected three Models of support vector machine (SVM),
logistic regression classifier (LR) and nearest neighbor algorithm
classifier (KNN) as machine learning classifiers. The voting was
conducted by prediction of the three classifiers. The voting
method involves averaging the predicted probabilities of the
samples according to different classifiers. To ensure the best
performance of the classifier, the internal hyperParameters of the
machine learning classifier and the parameters of the KPCA are
simultaneously determined by the grid search. We performed 10-
fold cross-validation on Dataset 1 and subsequently combined
the results of each fold to obtain the final precision, recall,
F1-score, accuracy, and area under curve (AUC).

Prediction of Category of Auditory
Performance After Cochlear
Implantation
Because the CAP test results are all integer ratings, this study
employs a multiple logistic regression method to perform a multi-
class analysis on Dataset 2. Studies showed (Wu et al., 2016)

TABLE 1 | Demographic and clinical characteristics of all participants.

HC group SNHL group P-value

Number 34 68 –

Age (months) (mean ± SD)a 45.62 ± 27.63 46.24 ± 24.38 0.908

Age range (months) 12–117 12–137 –

Gender (male/female)b 18/16 35/33 0.889

HC, health control; SD, standard deviation; SNHL, sensorineural hearing loss.
aStatistical analysis is done by two-sample t-test.
bStatistical analysis is done by Chi-square test.

TABLE 2 | Demographic and clinical characteristics of participants who
underwent cochlear implantation.

Measure Number and percentage

Gender

Male 27 (51.90%)

Female 25 (48.10%)

Age (years)

0–2 years 12 (23.10%)

2–4 years 24 (46.20%)

>4 years 16(30.80%)

Category of auditory performance

Grade 0 4 (7.70%) (Male: 2; Female: 2)

Grade 1 12 (23.10%) (Male: 7; Female: 5)

Grade 2 25 (53.80%) (Male: 13; Female: 12)

Grade 3 11 (15.40%) (Male: 5; Female: 6)

that the effect of surgery is highly correlated with the age of CI.
Therefore, we have introduced age as an independent variable.
In Dataset 2, we preprocessed the fMRI data and calculated the
FC, and then used KPCA for dimensionality reduction. Then,
we selected CAP as the dependent variable; age, and gender as
independent variables; principal components, and ABR data as
covariates, and conducted MLR analysis using SPSS25 software.

MLR is represented as follows.

P (r | xi) =
exp (wi · xi)∑K

j = 1 exp (wj · xj)
(1)

Here, P denotes the posterior probability of the sample point
xi belonging to the category r, and xi is a feature vector with
dimension D. The weight vector of the i-th category is set to wi,
and there is a total of K weight vectors.

RESULTS

Demographic and Clinical Information
Tables 1, 2 summarize the demographic and clinical
characteristics of all participants (Dataset 1) and the participants
who underwent CI (Dataset 2). The age in the HC and
SNHL groups was 45.62 ± 27.63 and 46.24 ± 24.38 months
(mean ± SD) and the ranges 12–117 and 12–137 months,
respectively. There were no significant differences in gender and
age between HC and SNHL groups (p > 0.05).
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TABLE 3 | Optimal parameters of dimensionality reduction and internal
hyperparameters of the classifiers.

Classifier Parameters of PCA Internal hyperparameters

Kernel
function

Feature
number

SVM Sigmoid 6 C = 0.62, gamma = 4.268, Kernel = RBF

KNN Sigmoid 5 n_neighbors = 9

LR Linear 10 Penalty = ’L2’, solver = ’L-BFGS’

TABLE 4 | Classification performance of each classifier and voting.

Classifiers Precision Recall F1-score Accuracy AUC

SVM 0.77 0.72 0.72 0.72 0.78

KNN 0.77 0.76 0.77 0.76 0.79

LR 0.70 0.72 0.70 0.72 0.80

VOTE 0.81 0.77 0.78 0.77 0.84

Dataset 2 includes 25 females and 27 males. There were 12
subjects aged range of 0–2 years (23.10%), 24 subjects of 2–4 years
(46.20%), and 16 of > 4 years (30.80%). The number of subjects
in Grade 0, 1, 2, and 3 of CAP was 4 (7.70%), 12 (23.10%), 25
(53.80%), and 11 (15.40%), respectively.

Optimal Model Parameters
Table 3 shows the optimal KPCA parameters and internal
hyperparameters of each classifier. Sigmoid kernels are more
suitable for SVM and KNN classifiers, and their optimal number
of features is six and five, respectively. Linear kernels are more
suitable for LR, and the optimal number of features is ten.
For SVM classifier, the optimal hyperparameters are C = 0.62,
gamma = 4.268, and Kernel = “RBF”. The optimal number of
neighbors is nine in KNN. The optimal type of penalty is “L2”,
and the solver is “L-BFGS” in LR.

Classification Performance of Healthy
Controls vs. Sensorineural Hearing Loss
Figure 3 shows the receiver operating characteristic curve and the
confusion matrix of the classification of HC vs. SNHL by three
machine-learning methods and their voting. The AUCs of SVM,
KNN, and LR are 0.79, 0.79, and 0.80, respectively. No significant
difference was found among the three classifiers (DeLong test,
p > 0.05). After the voting, the AUC increased to 0.84, higher
than every single classifier, although significance is not observed
(DeLong test, p > 0.05). In the confusion matrix of the voting
method, 18 of 68 SNHL are wrongly predicted as HC and 4 of 34
HC are wrongly predicted as SNHL.

Table 4 shows the precision, recall, F1-score, accuracy, and
AUC of three machine-learning methods and their voting. As
expected, the voting yields higher performance compared to
the three single machine-learning methods for all measures:
precision of 0.81; recall of 0.77; F1-score of 0.78; and
accuracy of 0.77.

Prediction Performance of Category of
Auditory Performance After Cochlear
Implantation
Table 5 lists the fitting information of CAP after CI by multiple
logistic regression (MLR). The final value of MLR using –2
Log likelihood as the fitting condition reaches 54.716, and the
interception is 126.504. For the likelihood ratio, the value of Chi-
square, degree of freedom, and significance is 71.788, 42, and
0.003, respectively. The significance is 0.003, considerably below
0.05, indicating a high degree of fitting. For the pseudo R-squared
test, the final value of Cox-Snell, Nagelkerke, and McFadden
reaches 0.749, 0.821, and 0.567, respectively. All values are close
to 1.0 and larger than 0.5, indicating a good fitting result.

Definingwj · xi asGj, the fitted parameters are given as follows.

G0 = −233.816+75.413f1+4.407f2−16.785f3+141.98f4

−32.187f5+42.805f6+13.628f7+47.64f8+82.779f9+61.62f10

−3.428ABR−1.525female+37.286age1+ 12.029age2 (2)

G1 = −10.13+6.551f1+3.022f2−0.636f3−3.111f4+2.961f5

−3.749f6−6.372f7+5.079f8−3.605f9−3.283f10

−13.44ABR−1.193female+1.422age1−1.484age2 (3)

G2 = 0.717−1.347f1−2.464f2+3.478f3−0.66f4−7.534f5

−1.727f6−6.82f7+5.26f8−3.663f9+0.81f10

+7.555ABR−1.207female+0.266age1−0.169age2 (4)

G3 = 0 (5)

Here, f1, f2, ..., f10 are the features After dimensionality
reduction. The value age1 represents 1 if it is in the range of
0–2 years; otherwise, it is 0. The value age2 represents 1 if it is in
the range of 2–4 years; otherwise it is 0. If the subject is a female,
the value female is 1; otherwise, it is 0.

Pi represents the probability that the subject belongs to the i-th
category of auditoria performance.

Pi =
exp (Gi)∑3

j = 0 exp (Gj)
(6)
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FIGURE 3 | Classification performance of HC vs. SNHL. (A) ROC curves; (B) confusion matrix.

TABLE 5 | Fitting information of CAP after CI by multiple logistic regression.

Model Model fitting conditions: -2 Log-likelihood Likelihood ratio Pseudo R-squared

Chi-square Degree of freedom Significance Cox-Snell Nagelkerke McFadden

Final value 54.716 (Interception 126.504) 71.788 42 0.003 0.749 0.821 0.567

TABLE 6 | Prediction of CAP after CI.

True\Prediction 0 1 2 3 Accuracy

0 4 0 0 0 100.0%

1 0 10 1 1 83.3%

2 0 1 23 1 92.0%

3 0 1 4 6 54.5%

Average - - - - 82.7%

Using Eqs (2–6) and the input data off1, f2, ..., f10, ABR, age1,
age2, and female, we obtain the statistical results listed in Table 6.
The prediction accuracy to CAP of 0, 1, 2, and 3 is 100.0, 83.3,
92.0, and 54.5%. For CAP of 0, 1, and 2, the prediction is very
good. However, the prediction performance is poor for CAP of 3.
4 of 11, and 1 of 11 SNHL patients with CAP of 3 were wrongly
predicted as CAP 2 and 1, respectively. This indicates that there
is a minor difference between functional netWorks of CAP 2
and CAP 3. The average accuracy for the prediction of the four
categories is 82.7%.

DISCUSSION

The preoperative evaluation of children with SNHL about
to undergo cochlear implantation was performed using rs-
fMRI images, including auxiliary diagnosis and prediction of

postoperative recovery. By combining functional connections
measured by fMRI and machine learning methods, the
classification models were constructed, and the highest AUC of
differentiating SNHL from HC reached 0.84. Furthermore, the
multiple logistic regression model was obtained, which predicts
CAP after CI in SNHL with an average accuracy of 82.7%.

Diagnosis of Sensorineural Hearing Loss
by the Combination of Functional Brain
Network and Machine Learning
Numerous studies showed that brain connections and functions
of SNHL patients undergo numerous changes compared to the
control group; however, their conclusions are not consistent (Kral
and O’Donoghue, 2010; Huang et al., 2015; Liu et al., 2015; Shi
et al., 2016; Xu et al., 2016; Tobyne et al., 2017; Tarabichi et al.,
2018). Our classification models differ from previous studies, as
they differentiate SNHL from HC on account of all differences
between the two groups, which are embedded in the principal
components extracted from FCs in the brain. Specific changes of
FCs and functions of brain regions cannot be traced back due to
the nature of kernel PCA.

Due to the complexity of the etiology of congenital SNHL,
the diagnosis and cause determination of congenital SNHL often
require a comprehensive evaluation combined with multiple
diagnostic methods. Imaging methods are mostly employed to
detect anatomical structures of the cochlea, labyrinth, and cranial
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nerves (Mulders et al., 2015; Puschmann and Thiel, 2017; Vos
et al., 2017; Xia et al., 2017; Tang et al., 2019). Anatomical
abnormalities can help confirm the cause of SNHL. Furthermore,
in some cases, these abnormalities may completely exclude
surgical intervention.

However, previous studies have shown that in imaging
examinations, the diagnostic rate of HRCT is estimated to be
30% (Chen et al., 2014), and the effect of MRI is slightly higher.
Our study focuses on the identification of SNHL based on the
characteristics of brain function connections. The classification
accuracy can reach 0.77, which outperforms traditional imaging
methods. This may help doctors diagnose SNHL early and make
clinical decisions.

Prediction of Category of Auditory
Performance After Cochlear
Implantation in Sensorineural Hearing
Loss by Multiple Logistic Regression
Previous studies (Woolley et al., 1997; Jackson et al., 2015)
showed that the decision whether to carry out surgical
interventions generally relies on the discovery of abnormal
anatomical structures, and there is no clear decision basis for
the types of abnormalities. This study predicts the CAP as a
prognostic measure after CI in SNHL, based on the characteristics
of brain function connections. The average accuracy achieves
82.7%. This may contribute to decision-making in surgical
intervention, and help establish psychological expectations
for patients and their families and thus reduce unnecessary
medical disputes.

The deprivation of auditory input in the early sensitive period
has a significant impact on the internal organization of the brain,
with lasting effects. The FCs we choose can represent changes in
the patient’s brain function, and the age at the time of surgery
is an important parameter for predicting postoperative effects.
Simultaneously, to consider the different development speeds due
to gender differences, gender is used as a reference factor (Sharma
and Campbell, 2011; Kral and Sharma, 2012).

Limitations and Future Work
This study has certain limitations. First, the prediction accuracy
of this study is not particularly high, which may be related to the
large number of younger subjects whose brain connections and
structural changes are not yet evident. All children in this study
are patients with severe congenital deafness, and the diagnostic
effect for mild cases is temporarily unknown. Second, currently,
it is not possible to determine the specific location of abnormal
brain regions based on the diagnostic results, it is impossible to
prompt the cause, and further research is required for validation.
Third, the evaluation index CAP of the surgical effect generally
contains eight levels, whereas the evaluation results obtained
only range from 0 to 3, such that it is impossible to make more
accurate regression predictions. This means that if there is a
pathology with a postoperative effect that is better than grade
3, it cannot be predicted. Fourth, the participants ranged in
age from 12 to 137 months, which is when the human brain
undergoes dramatic changes. Narrowing the age range may make

the present results more convincing while decreasing the number
of participants.

In the future, research will be carried out in the direction
of improving the diagnostic accuracy and disease traceability
to provide an important basis for the diagnosis of the cause
of SNHL. As the volume of data increases, we expect that the
predictive ability of the postoperative effect will be enhanced,
which may provide useful support for the diagnosis and
treatment of SNHL.

CONCLUSION

We used functional brain connections to identify sensorineural
hearing loss and predict the outcome of cochlear implantation
by machine learning methods. The constructed machine
learning models, in particular the one after voting,
accurately classified participants into SNHL and HC. The
constructed multiple logistic regression model enables
the prediction of CAP after CI in SNHL with a high
average accuracy. These models might help improve the
diagnosis of SNHL through fMRI images and prognosis
prediction of CI in SNHL.
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