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Abstract

Phylogenetic inference artifacts can occur when sequence evolution deviates from assumptions made by the models used
to analyze them. The combination of strong model assumption violations and highly heterogeneous lineage evolutionary
rates can become problematic in phylogenetic inference, and lead to the well-described long-branch attraction (LBA)
artifact. Here, we define an objective criterion for assessing lineage evolutionary rate heterogeneity among predefined
lineages: the result of a likelihood ratio test between a model in which the lineages evolve at the same rate (homogeneous
model) and a model in which different lineage rates are allowed (heterogeneous model). We implement this criterion in
the algorithm Locus Specific Sequence Subsampling (LS*), aimed at reducing the effects of LBA in multi-gene datasets. For
each gene, LS® sequentially removes the fastest-evolving taxon of the ingroup and tests for lineage rate homogeneity until
all lineages have uniform evolutionary rates. The sequences excluded from the homogeneously evolving taxon subset are
flagged as potentially problematic. The software implementation provides the user with the possibility to remove the
flagged sequences for generating a new concatenated alignment. We tested LS*> with simulations and two real datasets
containing LBA artifacts: a nucleotide dataset regarding the position of Glires within mammals and an amino-acid
dataset concerning the position of nematodes within bilaterians. The initially incorrect phylogenies were corrected in all

cases upon removing data flagged by LS>.
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Introduction

In recent years, new sequencing technologies have enabled
phylogenetic studies to move from the analysis of single genes
to the analysis of hundreds of genes, thus marking the advent
of phylogenomics. The benefits derived from the production
of large DNA sequence datasets include the reduction of
stochastic errors and single-gene biases in phylogenetic infer-
ences (Soltis et al. 2004; Philippe et al. 2005a). As a result, the
analysis of large datasets is often considered valuable for the
recovery of statistically well-supported and “true”
phylogenies.

However, a number of studies have suggested that analyz-
ing large datasets under optimal models of sequence evolu-
tion does not guarantee robust phylogenetic inferences (Ho
and Jermiin 2004; Philippe et al. 2005b; Rodriguez-Ezpeleta
et al. 2007; Salichos and Rokas 2013). In particular, the mis-
leading effects of certain biases may increase along with the
size of a dataset (e.g, Sullivan and Swofford 1997; Lartillot and
Philippe 2004). One such bias is long-branch attraction (LBA),
which was first described in the framework of maximum
parsimony (MP) by Felsenstein (1978) and results in the clus-
tering of taxa with high evolutionary rates (long branches)
regardless of the phylogenetic relatedness. This incorrect
arrangement occurs because converging characters in
fast-evolving taxa are interpreted as synapomorphic

(Felsenstein 1978; Bergsten 2005). This artifact has also been
reported when probabilistic phylogenetic inference methods
have been used, such as the maximum-likelihood (ML)
method (Klick et al. 2012; Parks and Goldman 2014) and
Bayesian inference method (Lartillot et al. 2007), although
these methods tend to be less sensitive to LBA artifacts rel-
ative to nonprobabilistic methods such as MP or distance
methods (distance measures based on probabilistic models
can be used).

LBA falls within the class of systematic errors (Sullivan and
Swofford 1997) that occur when models do not accurately
describe the processes that generate the data. In phyloge-
netics, systematic errors may appear when the actual evolu-
tionary process violates the sequence evolution assumptions
made by the model when analyzing the data (Yang and
Rannala 2012). Errors of this type are of major concern in
phylogenomics because additional data with a consistent bias
can exacerbate errors (Rodriguez-Ezpeleta et al. 2007) and
obscure phylogenetic signals.

Several studies have successfully mitigated problems re-
lated to LBA by using more complex sequence evolution
models and improving the model fit to the data, which re-
duces the model assumption violations. For example, Sullivan
and Swofford (1997) recovered the monophyly of Rodentia
by considering heterogeneous evolutionary rates among sites
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using a gamma distribution (Yang 1994). In addition, Lartillot
et al. (2007) corrected the artifactual paraphyly of Ecdysozoa
by analyzing their sequence data under a site-heterogeneous
mixture model (Lartillot and Philippe 2004). Authors have
resorted to optimizing datasets when LBA artifacts could
not be further mitigated by improvements to the model.
One method for optimizing a dataset is to partition the
data using certain criteria and then analyze each partition
independently. For example, data partitions have been ana-
lyzed according to site evolutionary rates to clarify conflicting
signals related to fast-evolving sites (Brinkmann and Philippe
1999; Sperling et al. 2009). An alternative approach is to re-
move data that are deemed unfit for analysis, such as data
from fast-evolving sites (e.g, Pisani 2004; Rodriguez-Ezpeleta
et al. 2007; Goremykin et al. 2013), fast-evolving genes from
multi-gene datasets (Brinkmann et al. 2005), and fast-evolving
taxa (e.g, Aguinaldo et al. 1997; Stefanovi¢ et al. 2004).

However, only the latter approach specifically focuses on
the heterogeneous rates of evolution across lineages, an im-
portant condition required for LBA to occur in a phylogenetic
reconstruction. Eliminating fast-evolving taxa decreases the
heterogeneity of evolutionary rates among the lineages in a
dataset, which reduces the possibility of generating LBA arti-
facts during phylogenetic inferences. Nevertheless, data re-
moval leads to missing data in the dataset, and the effects
of these data gaps have been debated (e.g, Lemmon et al.
2009; Roure et al. 2013). In the studies by Aguinaldo et al.
(1997) and Stefanovi¢ et al. (2004), the deleted taxa were
selected subjectively. To systematically and reproducibly re-
move sequence information from multi-gene and phyloge-
nomic datasets, objective criteria are required to indicate
whether removing particular taxa will decrease LBA artifacts.
In addition, these criteria must provide information on
whether removing a taxon was effective in reducing the het-
erogeneity of lineage evolutionary rates.

Here, we present one such criterion that was employed in
a sequence data exploration algorithm that we developed
called “Locus Specific Sequence Subsampling” (LS®), which
aims to reduce LBA artifacts in phylogenetic inferences.
This algorithm extends and refines the approach proposed
by Brinkmann et al. (2005) and automatically identifies, for
any given gene, a subset of taxon sequences with homoge-
neous evolutionary rates and flags as potentially problematic
the sequences with excessively high rates of evolution. In a
multi-gene context, identifying these taxon sequences is per-
formed independently for each gene, taking into account
gene-specific evolutionary patterns. With this information,
the user can decide to remove the sequences flagged by LS*
and analyze a subset of the dataset in which lineage rate
homogeneity has been enforced. The criterion used in LS®
derives from a likelihood ratio test (LRT) and hence can be
applied to both nucleotide and amino-acid datasets.

To assess whether the new LS®> method effectively identi-
fies data that can lead to LBA, we tested the LS®> method with
three types of data: (i) simulated data of nucleotides; (i) a
dataset of biological nucleotide sequences; and (iii) a dataset
of biological amino acid sequences. In the first case, we sim-
ulated gene evolution leading to LBA by introducing highly
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heterogeneous rates of evolution among lineages. Upon an-
alyzing 10,000 such datasets, the LS® method effectively
flagged all of the introduced fast-evolving taxon sequences
in virtually all the alignments. Next, we tested the effective-
ness of LS’ in two biological multi-gene datasets with well-
documented LBA artifacts. The first biological case we ad-
dressed was a nucleotide dataset that we assembled with
the aim of reproducing the artifactual paraphyly of Glires
(rodents and lagomorphs), in the tree of placental mammals
as inferred by D’Erchia et al. (1996) and corrected by Sullivan
and Swofford (1997). The second biological case we analyzed
was the amino-acid dataset from Philippe et al. (2005b) lead-
ing to the incorrect paraphyly of Ecdysozoa (Aguinaldo et al.
1997; Philippe et al. 2005b). This same dataset was used by
Lartillot et al. (2007) to demonstrate the efficiency of their
CAT site-heterogeneous mixture model of protein evolution
for correcting LBA artifact. In our study, both real cases ini-
tially led to a wrong phylogeny with high bootstrap supports,
resulting from LBA artifacts. On both cases we were able to
recover the correct phylogeny upon removing the sequence
information flagged by LS as potentially problematic.

New Approaches

Assessing the Heterogeneity of Evolutionary Rates
among Lineages

Taxa with long branches are a result of ancient divergence
times (with poor taxon sampling), fast evolutionary rates, or a
combination of both (Felsenstein 2004). The relative contri-
bution of these two factors can be evaluated using ad hoc
information, such as well-established phylogenetic relation-
ships and/or well-documented time calibration points, which
can help account for different evolutionary rates among lin-
eages. However, a number of phylogenetic questions cannot
be resolved because information on these factors is unavail-
able, which increases the difficulty of determining whether
the inferred phylogenies suffer from LBA artifacts. Our ap-
proach aims to address whether errors of phylogenetic infer-
ence are caused by unequal evolutionary rates among
lineages.

To explain the LS? procedure, we will consider three mono-
phyletic lineages (“ingroup lineages”) with unknown interre-
lationships and one or more distantly related lineages as
outgroups (fig. 1). The ingroup lineages contain species that
evolved at different evolutionary rates, and the mean lineage
evolutionary rates differ among the three lineages. To test
whether differences in the evolutionary rates among the three
lineages are significant, we perform an LRT (Felsenstein 1981)
between two models: (1) a model that assumes a single evo-
lutionary rate for all three ingroup lineages (“homogeneous
model”) and (2) a model that allows each ingroup lineage to
have its own evolutionary rate (“heterogeneous model”). If
the P-value resulting from the LRT is >0.05, then the homo-
geneous model cannot be rejected because the difference in
evolutionary rates among lineages is small. However, if the P-
value resulting from the LRT is <0.05, then the heterogeneous
model provides a significantly improved explanation of the
data relative to the homogeneous model and the hypothesis
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Fic. 1. Guide tree used to produce the simulated gene evolution
datasets. Two long-branch assemblages (the outgroups and the
Lineage C) are placed on both extremes of the tree. Fifty different
cases of this general topology were considered, and they differed
according to the taxa in Lineage C to which the long and short
branches were assigned. These 50 cases represented all possible com-
binations of two to four fast-evolving taxa in the Lineage C, with all
other branch lengths equal. For each of the 50 cases, 200 simulations
were performed, and a total of 10,000 trees were produced. Branch
length units are substitutions per site.

that all ingroup lineages have a homogeneous rate of evolu-
tion must be rejected.

By using an LRT and its associated P-value as criteria to
evaluate differences in evolutionary rates among ingroup lin-
eages, the lineage rate homogeneity of virtually any dataset
can be assessed. This can be applied to automatically test
several subsets of taxa of the same gene to identify a subset
in which the evolutionary rates among lineages are not sig-
nificantly different. Once such a subset is identified, the se-
quences that disrupted the lineage rate homogeneity are
flagged as potentially problematic.

LS®: Locus Specific Sequence Subsampling Algorithm
The LS? algorithm employs the LRT to compare the homo-
geneous versus the heterogeneous models of lineage evolu-
tionary rate to remove the fast-evolving sequences in
successive subsamples of taxa in a gene. The likelihood asso-
ciated with the sequence data under each model is calculated
based on a rooted tree given by the user in which the three
ingroup lineages of interest are each monophyletic, but all
emerge from a single basal polytomy (step 1 in fig. 2). The
polytomy in the input tree for the likelihood calculation re-
duces the possible misleading effect that may result from
using a wrong branching order in the LRT analysis, as this
interrelationship represents the question to be solved. Then,
LS® performs the following steps: (i) This algorithm employs
the LRT (as explained in the previous section) to determine
whether the homogeneous model can be accepted or re-
jected for a particular gene (step 3 in fig. 2). (ii) If rejected,
the sequence displaying the longest sum of branch lengths
beginning from the polytomic node is removed (step 5 in
fig. 2). (iii) Using the reduced dataset, a new LRT is performed
(return arrow in fig. 2). If the homogeneous model is retained,

the algorithm stops. Otherwise, a new sequence is removed
according to step (i), and the process is iterated until the
homogeneous model is not rejected in a subset of taxa. As the
taxon sequence subsampling progresses, the input tree re-
quired for the LRT is modified according to the taxon se-
quence sample, and its branch lengths are optimized again
via ML methods.

The removal of the fast evolving taxa progresses until a
user-defined stopping point is reached after which no more
sequences can be removed from a gene because it would
render the dataset inadequate for phylogenetic analysis. We
suggest it to be when each lineage is represented by only two
taxon sequences. If homogeneous lineage rates are never at-
tained on a given gene by the time it reaches this stopping
point, the entire gene is flagged as unfit for analysis due to its
persistent lineage rate heterogeneity.

After the LS algorithm is applied to each gene of a multi-
gene or phylogenomic dataset, an additional script produces
a table for each gene showing the sequences flagged as po-
tentially problematic by the LS* method. Because sequences
are flagged according to their branch lengths relative to the
other lineages, paralogous or markedly misaligned sequences
will also be flagged by the LS® algorithm. If the user decides to
explore a multi-gene dataset without flagged sequences and
genes (i.e, enforcing gene-by-gene lineage rate homogeneity),
we include a script that generates these datasets. Eliminating
the flagged data of potential problematic sequences increases
the overall quality of the dataset taking into account the
specific biases and mode of evolution of each gene. A fast-
evolving taxon sequence that was flagged in one gene may
not be flagged in another gene because the taxa in the latter
dataset may have evolved at a more homogeneous rate.
Therefore, taxa that were problematic in certain genes may
still be placed in the phylogeny even after removing the se-
quences flagged by the LS? algorithm. This approach contrasts
with the more common practice of completely removing
taxa from the entire dataset when bias is suspected.

Results

Validation of LS® through Simulations

To assess the LS> method when the true phylogeny is known,
we applied the LS’ algorithm to simulated datasets that pro-
duce LBA artifacts. We simulated the evolution of 2,000 bp
genes with INDELible v1.03 (Fletcher and Yang 2009) using an
input tree designed to generate LBA artifacts. The input tree
had markedly divergent (long-branched) outgroups and three
ingroup lineages. One of the two ingroup lineages furthest
from the outgroups contained long terminal branches (fig. 1).
This setting facilitated the generation of an artifactual
nonphylogenetic signal that incorrectly located the fast-
evolving crown lineage closer to the root of the tree toward
the highly divergent outgroups. To include variation in the
datasets, we produced 50 different arrangements of long-
branched taxa in the fast-evolving lineage (Lineage C in fig.
1), representing all of the possible combinations of two to
four fast-evolving taxa in the six taxon fast-evolving lineage
(supplementary fig. S1, Supplementary Material online). The
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FiG. 2. Flow chart representation of the LS® algorithm. The input tree
with the gene sequence alignment passes through a ML branch op-
timization step. The input tree contains a multifurcation that consists
of the three lineages of interest (Lineage 1, Lineage 2, and Lineage 3).
The sum of branch lengths for each ingroup taxon is calculated based
on this tree (steps 1 and 2). Next, an LRT is performed between a
model that assumes homogeneous evolutionary ratesamong ingroup
lineages and a model that allows for a local rate of evolution for each
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final dataset was composed of 200 simulated genes for each of
the 50 long-branch arrangement cases, thus totaling 10,000
genes.

For 9,775 genes (97.75%), the LS®> method successfully
flagged as potentially problematic all of the fast-evolving
taxon sequences that were simulated in the fast-evolving lin-
eage. The remaining 225 genes (2.25%) were flagged as unfit
for analysis because with only two species remaining per
ingroup lineage, significant evolutionary rate heterogeneity
remained among the lineages. In 277 of the cases in which
all of the fast-evolving sequences were correctly flagged
(2.83% of the 9,775), additional taxa that were not simulated
as fast-evolving were removed because they contributed
significantly to evolutionary rate heterogeneity among the
lineages, which was likely caused by case-specific variations
in the simulation processes.

We constructed ML trees for each of the 10,000 simulated
genes to examine whether the simulated long branches had
an effect on the phylogenetic inferences. Although all of the
inferences were conducted under the same model and model
parameters used to simulate the data, 6,705 (67.05%) datasets
produced an incorrect LBA-affected topology. A total of 3,211
(32.11%) datasets produced the correct topology, and the
remaining 84 (0.84%) datasets produced a variety of incorrect
arrangements. Consistent with our rationale, when the taxon
sequences flagged by the LS® method were removed from
these datasets, 8,446 inferences produced the correct tree
(86.40% of the 9,775). The remaining 1,329 cases (13.60% of
the 9,775) produced a variety of incorrect arrangements pre-
sumably due to the lack of phylogenetic signal to solve the
short internal branches. This suspicion was confirmed by an-
alyzing these remaining 1,329 genes concatenated (total align-
ment size of 2,658,000bp), which produced a correct
phylogeny with full bootstrap supports for all correct rela-
tionships (data not shown).

To examine the effect of introducing fast-evolving se-
quences within a multi-gene context, we produced 100
multi-gene alignments that were each composed of 100 sim-
ulated genes randomly chosen from the pool of 10,000. The
ML trees for these 200,000 bp multi-gene alignments showed
that the bias introduced by the fast-evolving species was suf-
ficient to generate LBA-affected phylogenies. We tested
whether removing the sequences and genes flagged by the
LS®> method would result in more robust inferences and found
that misleading information was reduced and the correct
phylogenetic signal was recovered. When analyzing the full

of the three lineages (step 3). If the homogeneous evolutionary rate
model is accepted for a set of taxon sequences, these sequences are
maintained for further analysis. If the homogeneous evolutionary rate
model is rejected, the fastest-evolving sequence is flagged and re-
moved and the LRT test is repeated (steps 4—6). A minimum taxon
sequence threshold is defined, and after reaching this threshold, se-
quences cannot be removed (in this study, this threshold is defined as
only two species remaining per lineage, step 5). If a gene dataset
reaches this threshold and the homogeneous model is rejected, the
gene is flagged as unfit for phylogenetic analysis and can be removed
by the user.
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simulated data, 59 out of the 100 multi-gene datasets (59%)
resulted in the correct topology; however, the bootstrap sup-
port for the correct grouping of lineages B and C was low (x =
68.17% = 13.22). The remaining 41 multi-gene datasets pro-
duced incorrect topologies in which the fast-evolving Lineage
C was incorrectly displaced toward the outgroups (albeit with
little support for the resulting incorrect grouping of lineages A
and B; x = 35.22% = 14.42), thus indicating that concatenat-
ing these genes did not entirely correct their initial bias.
However, when the sequence data flagged by the LS> method
was removed, all 100 multi-gene datasets generated the cor-
rect topology. Moreover, the bootstrap support for the cor-
rect placement of the fast-evolving lineage was 100% in all
datasets, thus reflecting a systematic recovery of the phylo-
genetic signal. The mean percent of missing data in the data-
sets in which the LS’-flagged data had been removed
remained relatively low (x = 17.0% = 0.50 for the full data-
sets, X = 50.3% = 1.38 for the fast-evolving lineage).

Based on these assays of simulated data we confirmed that
the LS* method could efficiently and automatically flag po-
tentially problematic fast-evolving sequences that disrupt lin-
eage evolutionary rate homogeneity in a gene-specific
manner. We further observed that the exclusion of LS*-
flagged data resulted in a reduction of misleading signals and
a corresponding increase of the true phylogenetic signal.

Biological Datasets—Position of Glires within
Placental Mammals
We further assessed the efficiency of the LS> method by an-
alyzing two actual cases of evolutionary relationships that
were once problematic to solve because of LBA but for which
a reasonable solution is currently available. The first case
addresses the historically problematic recognition of Glires
(grouping rodents, rabbits, and hares) as a monophyletic lin-
eage and the challenging position of this group within the
mammalian tree (currently accepted to be the sister group of
Primates, which together form the clade Euarchontoglires). In
early molecular phylogenies, Glires was recovered as a para-
phyletic assemblage (e.g, D’Erchia et al. 1996); however, this
relationship was subsequently explained by systematic errors
and LBA artifacts due to several fast-evolving Glires species
(e.g, Sullivan and Swofford 1997; Goremykin et al. 2010).
We assembled a multi-gene dataset with high amounts of
LBA artifacts by selecting, from all mammalian single-copy
orthologous genes (n = 679) as provided in OrthoDB
(Waterhouse et al. 2013), the genes that individually led to
the nonmonophyly of Glires and the inaccurate placement of
its members within the mammalian tree. We excluded rep-
resentatives from both Afrotheria and Xenarthra to avoid
unnecessary controversial results because the positioning of
these groups is still debated (Nikolaev et al. 2007; Song et al.
2012; Akanni et al. 2014; Moran et al. 2015). The subselection
of LBA-affected genes resulted in 57 genes that amounted to
a total of 135,394 bp (list of gene accession numbers are in
supplementary table S1, Supplementary Material online).
Concatenating these 57 genes produced a dataset referred
to as the “only LBA” (OL) dataset, which was expected to
produce strong LBA biases. Indeed, the resulting ML inference

produced an incorrect tree, with Lagomorpha (rabbits and
hares) diverging first within the analyzed placentals, followed
by Rodentia (hence rendering Glires paraphyletic) and the
incorrect grouping of Laurasiatheria sister to Primates. The
incorrect grouping of laurasiatherians and primates had 93%
bootstrap support, and the incorrect grouping of laurasiather-
ians, primates, and rodents had 92% bootstrap support (to-
pology in fig. 3A).

We examined this multi-gene dataset using the LS’
method and considered Laurasiatheria, Glires and Primates
to be three ingroup lineages with unknown relationships. The
LS® analysis flagged as potentially problematic 44 genes out of
the initial 57 genes (77% of genes, an expected result consid-
ering the high amount of bias contained in this dataset) and
81 sequences contained within the remaining 13 genes (35%;
supplementary table S2, Supplementary Material online). We
removed the LS>flagged data to produce the OLs: dataset,
which contained a total of 28230bp and had 30% missing
data. In addition, three species, pika (Ochotona princeps),
mouse (Mus musculus), and Chinese hamster (Cricetulus gri-
seus), produced consistent nonconformity with the lineage
rate homogeneity; thus, their data were removed from all 57
genes. Compared with the OL dataset (fig. 3, and supplemen
tary fig. S2A and B, Supplementary Material online), the re-
duced but clean OLs; dataset generated an ML inference that
successfully recovered the correct topology (fig. 3, and supple
mentary fig. S2A and B, Supplementary Material online).
However, the bootstrap support for the correct groupings
was low (57% for the monophyly of Glires and 55% for
the monophyly of Euarchontoglires, fig. 3B). Excluding the
aforementioned three species from the unprocessed OL data-
set was not sufficient to correct the topology (data not
shown).

We hypothesized that the phylogenetic signal contained in
the reduced OL,s: dataset was most likely too low to produce
high bootstrap supports; therefore, we tested whether adding
two genes that produced the correct species tree would in-
crease the bootstrap support. The LS® analysis indicated that
the first gene did not include any flagged taxa, whereas the
second gene required the removal of a single taxon to reach a
homogeneous rate of evolution across the ingroup lineages.
The two additional LS*-processed genes (totaling 3,114 bp)
were added to the OL s dataset, thus producing the OLs: +
2 dataset (supplementary table S3, Supplementary Material
online). With this slightly extended dataset, the correct phy-
logeny was recovered with high bootstrap support: 90% for
the monophyly of Glires and 89% for the monophyly of
Euarchontoglires (fig. 3B). However, when the same two genes
were added to the unprocessed OL dataset to form the
OL 42 dataset, the topology remained incorrect and had
high support values (fig. 3A). Similar results were obtained
when adding other gene pairs that initially produced the
correct species tree (data not shown).

Biological Datasets—Position of Nematoda within
Bilateria

To test the performance of the LS* method with amino-acid
data, we used a second biological case study on the
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flagged sequences and genes from the dataset, the correct topology is recovered (B). Note that in (B), the bootstrap support from the OLs; dataset
(in red) is much lower compared with that of the OL,ss+2 dataset (corresponding number in black). The missing data plots show the percent of
total missing data by species (orange) and the percent of genes in which the species was not represented in the dataset (green). Asterisks (*) mark
species that were eliminated from the OL,s; dataset because they disrupted the lineage rate homogeneity in all genes. The scientific names of the
species are as follows: Gibbon = Nomascus leucogenys; Human = Homo sapiens; Macaque = Macaca mulatta; Marmoset = Callithrix jacchus;
Mouse lemur = Microcebus murinus; Cow = Bos taurus; Pig = Sus scrofa; Dog = Canis lupus familiaris; Microbat = Myotis lucifugus; Horse = Equus
caballus; Chinese hamster = Cricetulus griseus; Mouse = Mus musculus; Kangaroo rat = Dipodomys ordii; Squirrel = Ictidomys tridecemlineatus;

Guinea pig=Cavia porcellus;

Naked mole-rat = Heterocephalus glaber;

Pika = Ochotona princeps; Rabbit = Oryctolagus cuniculus;

Opossum = Monodelphis domestica; and Platypus = Ornithorhynchus anatinus.

placement of the fast-evolving Nematoda within the animal
tree of life using the protein dataset published by Philippe
et al. (2005b). This dataset consists of 146 proteins (alignment
length: 35,371 aa positions) and includes sequences from
nematodes, arthropods, and deuterostomes as well as a large
set of sequences belonging to the distant Fungi outgroup.
This dataset contains a strong signal that incorrectly displaces
the fast-evolving Nematoda toward the base of the bilaterian
animals and the Fungi outgroup, thus impeding the mono-
phyletic recovery of Ecdysozoa (formed by nematodes and
arthropods). The full dataset resulted in an ML phylogeny
that incorrectly placed Nematoda as the first diverging lineage
of the bilaterian ingroup and sister to a clade formed by
Deuterostomia and Arthropoda (the “coelomates” clade)
with 76% bootstrap support (fig. 4A). We processed the
data with the LS*> method using Deuterostomia,
Arthropoda and Nematoda as the three ingroup lineages
with unknown interrelationships. A subsample of taxon se-
quences with homogeneous evolutionary rates was found in
98 out of the initial 146 proteins (67%), whereas the remain-
ing 61 genes were flagged as potentially misleading because of
their persistent lineage rate heterogeneity (supplementary
table S4, Supplementary Material online). Removing the
flagged sequences and genes produced an alignment of
23,011 aa positions and 32% missing data. Compared with
the full dataset, this filtered dataset resulted in a correct ML
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phylogeny and generated the monophyly of Ecdysozoa with
73% bootstrap support (fig. 4B).

Discussion

Currently, no automated data filtering process is available to
mitigate LBA artifacts by directly reducing the evolutionary
rate heterogeneity among taxa. In this study, we showed that
an LRT can be employed to assess lineage evolutionary rate
heterogeneity in different taxon subsets of a gene to recover
lineages with homogeneous evolutionary rates. This was ac-
complished by comparing the likelihood scores of a model in
which all lineages are assumed to evolve at the same rate with
the scores of a model that allows for local lineage rates. We
then presented a taxon sequence subselection algorithm
(LS*) developed by our group that uses this test to identify
in any given gene a subset of taxon sequences that evolved at
a homogeneous rate. We hypothesized that when LBA-re-
lated errors are suspected, flagging potentially problematic
sequences and genes in multi-gene datasets through the
LS® algorithm and subsequently removing the flagged data
would result in a corrected phylogenetic tree. By testing the
LS® method on simulated and biological datasets that pro-
duced incorrect topologies due to LBA, we successfully recov-
ered the correct topologies in all cases when the sequence
data that had been flagged by the LS? algorithm was excluded.
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Fic. 4. ML phylogenies and missing data plots obtained for the 35,371 amino acid alignments from Philippe et al. (2005b) before (A) and after (B)
removing the sequences and genes flagged by the LS? algorithm. Nematoda is colored in red, Deuterostomia is in blue, and Arthropoda is in yellow.
When the full dataset is analyzed, Ecdysozoa (arthropods and nematodes) is not recovered, and an incorrect “coelomate” clade is produced with
substantial bootstrap support (support value in red). However, the dataset without the LS>-flagged data recovers Ecdysozoa with relatively high
bootstrap support (support value in green). The missing data plots show the percent of total missing data by species (orange) and the percent of
genes in which the species was not represented in the dataset (green). Only bootstrap support values <100 are shown.

As our knowledge of molecular evolutionary processes in-
creases, more realistic models of sequence evolution that can
provide more robust data analyses will be developed.
However, the analysis of data with highly heterogeneous evo-
lutionary rates among taxa can still lead to artifactual phylog-
enies even under the best available models of sequence
evolution. Probabilistic phylogenetic methods have been
shown to be relatively robust to artifacts despite high hetero-
geneity in rates of evolution across taxa (Bergsten 2005); how-
ever, it is not possible to tell when this robustness fails.
Consequently, subselecting the data that will reduce the
bias in phylogeney construction is a safe strategy. Data sub-
selection has been suggested by Philippe et al. (2005a) in order
to increase the phylogenetic to nonphylogenetic signal ratio.
More recently, Salichos and Rokas (2013) vouched for the
subselection of genes with high amounts of signal for phylo-
genomic analyses and for the use of conditional combination
approaches, instead of “total evidence” approaches.
Moreover, the amount of sequence data available nowadays
is high, and this amount is increasing as sequencing technol-
ogies improve and their costs decrease. This enables the use of
data exploration techniques such as LS® to identify subsam-
ples of a larger dataset that can be better interpreted, with a
high chance that enough phylogenetic signal will finally re-
main to recover the “true” tree even after the removal of the
potentially problematic information.

Nevertheless, excluding data raises concerns because of the
fraction of valuable phylogenetic information this excluded

data may contain. In this study, the amount of excluded data
in the analysis of the monophyly and position of Glires within
the mammalian tree does not reflect a real situation because
the dataset was assembled with the intention of inflating LBA
artifacts. However, the amino-acid alignment from Philippe
et al. (2005b) was not assembled for that purpose and reflects
a realistic situation. The LS® method identified 98 out of 146
(67%) proteins as suitable for the final analysis. In the con-
catenated protein dataset in which the LS*-flagged sequences
and genes were removed, missing data represented 32% of
the matrix, whereas missing data represented 10% of the
original dataset. Thus, the final quantity of excluded data
was 38% of the genes and 22% of the sequences in the re-
maining genes (missing data plots in fig. 4, supplementary
table S5, Supplementary Material online). These exclusions
were not detrimental to the question addressed with this
dataset; however, the effects of missing data on phylogenetic
inferences are disputed (e.g, Lemmon et al. 2009; Roure et al.
2013).

Because of its efficiency at detecting and flagging fast-
evolving sequences in a dataset, the LS’ method may also
be effective for automatically identifying paralogous, mis-
aligned, and mislabeled sequences, which can help to increase
the general quality of multi-gene datasets. This expectation is
based on the fact that such problematic sequences will ap-
pear as long branches within the predetermined ingroup lin-
eages and thus be detected by the LS> method. We tested this
conjecture using an alignment from Zhou et al. (2010) that
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included a gene duplication deep in the eukaryote tree and
intentionally changed the actual orthologous sequence using
a paralogous copy in one species and then in two species. In
both tests, the LS® algorithm successfully flagged the paralo-
gous sequences (data not shown).

LS® Limitations

One limitation of the LS® method as currently implemented is
that the three ingroup lineages, whose interrelationships re-
main to be resolved, must be defined a priori. The number of
ingroup lineages to be compared can be increased without
issue; however, the monophyly of each of the compared lin-
eages must be known. In addition, the guide tree provided by
the user for the LRT step must also be rooted, otherwise the
lineage evolutionary rate calculations will lack an evolutionary
context. We believe that the majority of the current and
future cases of dubious relationships in phylogenetics can
be reduced to the positioning of a lineage relative to two
other lineages plus an outgroup with three branching alter-
natives (a “three-taxon” situation). For example, if a phyloge-
netic tree has several questionable (or unexpected) lineage
positions, the problematic areas in the tree can be analyzed by
first solving a subtree that reduces the problem to the three-
taxon situation. If a given problematic area of a tree contains
more than three competing branching alternatives due to, for
instance, the presence of four or more lineages whose inter-
relationships are debated, four or more lineages can be con-
sidered under the LS’ algorithm without any issues. However,
considering additional lineages may result in less precise as-
sessments because more internal branches collapse when
forcing the multifurcation at the base of the ingroup lineages
during the LS® procedure.

A possible outcome of removing LS*flagged data is that, if
a given species evolves faster than the rest in a consistent
manner across all genes, and is flagged on all gene datasets, it
will be absent from the final phylogenetic tree. In this case, the
result of removing LS>-flagged sequences would resemble—
for the particular species—the outcome of the classical taxon
removal approach, in which a taxon is removed from the
entire multi-gene dataset (as in Stefanovi¢ et al. 2004).
However, the rate of evolution of protein-coding genes in a
genome is known to have a spread distribution (e.g,
Montoya-Burgos 2011). Thus, with greater numbers of loci
available, then the probability that there will be genes in
which this species displays an average rate of evolution is
higher, enabling it to be placed in the final phylogeny.
However, we recommend removing LS>-flagged data in cases
where the main question to be resolved is the positioning of a
multi-species lineage within the phylogeny. In this case, for an
entire lineage to be absent in the final dataset, then all of the
members should be flagged for all of the genes. This situation
becomes less probable as the number of genes increases.

In this study, reducing our datasets to sequences that
evolved at homogeneous rates resulted in the inference of
correct ML trees and in the reduction of LBA artifacts. Their
identification and flagging enable the exploration of the signal
in the dataset by comparing the phylogeny obtained with and
without the flagged sequences, which can help uncover the

1632

true evolutionary signal. As sequence data production accel-
erates, we must develop in parallel well-grounded, fast and
automated data assessment methods able to identify poten-
tially misleading signal in order to take informed decisions
about the phylogenetic information contained in the data. In
this way, we will hopefully be able to solve the most elusive
splits in the tree of life.

Materials and Methods

Automatic Implementation of LS?

We implemented the LS? algorithm in a pipeline (available
at http://genev.unige.ch/en/users/Juan-Montoya/unit, last
accessed March 1, 2016) with the following dependencies:
PAML v4.6 (Yang 2007) and R (R Core Team 2014), with
the R packages “ape” (Paradis et al. 2004) and “adephylo”
(Jombart and Dray 2010). The input for the LS® pipeline is
an initial alignment in PHYLIP format, a tree including all
taxa with a multifurcation between the three ingroup lin-
eages of interest; and a table that assigns each taxon either
to the ingroup lineage they belong to (“Clade1,” “Clade2,”
or “Clade3”) or to the outgroups (“Ogs”). Next, the LS’
algorithm is run until the user-defined minimal taxa thresh-
old is reached (for this study, the threshold was when only
two species remained per declared ingroup lineage). At
each iteration, output files with general information and
all of the values of the LRT (relative rates of evolution, log-
likelihood values, P-value, etc.) are produced. In certain
cases, PAML may not converge systematically to the best
parameter estimations; therefore, we ran the LS® algorithm
several times on each gene until the minimal taxa threshold
was reached. Once the data exploration step was finished,
and the correct parameter estimations were confirmed,
another script (LS3_tabs.sh) developed by our group sum-
marized the data into a table that plotted all of the taxon
sequences for all of the unflagged genes and categorized
them as flagged (“0”), unflagged (“1”), or not present
(“NA”). Should the user decide to remove the flagged taxon
sequences, we developed a script (serial_trimmer.sh) to
select the first LS iteration for each gene that reached
lineage rate homogeneity (showing an LRT P-value >0.05)
and output an alignment with the corresponding taxon
sequences subset. These subsets can then be analyzed
gene-by-gene and/or concatenated to construct a multi-
gene phylogeny based on the datasets without the LS*-
flagged data. We did not include this last script embedded
in the LS® pipeline because we consider running the LS?
subsampling steps several times on the same dataset im-
portant to verify the consistency among the results of the
analysis with PAML. Note that our scripts run the LS® al-
gorithm until the minimum taxa threshold is reached and
do not have a stopping point defined by the LRT P-value of
0.05. This feature permits the exploration of gene dataset
subsamples that produced LRT P-values higher than the
classical 0.05 threshold. In these cases, evolutionary rate
heterogeneity among lineages is expected to be even lower
because the null hypothesis of a single evolutionary rate
among all ingroup lineages will be more easily rejected.
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Production and Analysis of the Simulated Datasets
The gene evolution simulations were performed using
INDELible v1.03 (Fletcher and Yang 2009). Each simulated
gene was 2,000-bp long, and the taxonomic samples included
14 ingroup taxa organized into three ingroup lineages: Lineage
A (two taxa), Lineage B (six taxa), and Lineage C (six taxa) and
four outgroup taxa, with the following interrelationships
(outgroup(A,(B,C))) (fig. 1). To introduce variation to the
simulation process, we produced 50 guide trees, and they
each differed in the number and identity of fast-evolving
taxa present in the fast-evolving Lineage C (supplementary
fig. S1, Supplementary Material online). These 50 cases repre-
sent all possible combinations of two to four fast-evolving
taxa in Lineage C. To produce the dataset with 10,000 simu-
lated genes, we performed 200 simulations for each of the 50
guide trees under the Jukes—Cantor (JC) model of sequence
evolution, including eight gamma rate categories (x = 1.0)
and a 0.3 proportion of invariable sites (I). The simple JC
model was selected to produce simulated data of low com-
plexity to reduce the number of misleading signals. Gene
phylogenies were obtained for each of the 10,000 simulated
genes using PhyML v3.0 (Guindon and Gascuel 2003) using
the same model and parameter values as in the simulation.

We screened all 10,000 resulting topologies to quantify the
number of correct and incorrect topologies before and after
eliminating the LS>-flagged sequences. A topology was
deemed to be correct if the bifurcation (B,C),(Aoutgroup)
was present, conversely, a topology was considered incorrect
if the bifurcation (A,B),(Coutgroup) was present. To assess
the impact of the flagged sequences in a multi-gene phylog-
eny context, we concatenated 100 sets of 100 simulated genes
selected at random from the 10,000 simulated genes and
analyzed each dataset before and after removing the LS*-
flagged sequences. ML analyses were performed with
PhyML using the same model and parameter values as in
the simulation as well as 200 bootstrap replicates to assess
the statistical support for the correct and incorrect
bipartitions. All of the simulated datasets are available online
at http://genev.unige.ch/en/users/Juan-Montoya/unit, last
accessed March 1, 2016.

Production of the Biological Datasets

The mammalian multi-gene dataset was constructed by ex-
tracting all of the single-copy 1:1 orthologous genes from
mammalian species available in OrthoDB (Waterhouse
et al. 2013). We then used a reduced taxa set that included
platypus  (Ornithorhynchus  anatinus) and  opossum
(Monodelphis domestica) as outgroups, five Laurasiatheria
species, eight Clires species, and five Primates species (fig.
3). We then automatically aligned all of the genes with
TranslatorX (Abascal et al. 2010) using default parameters,
and ambiguously aligned fragments were removed with
Gblocks (Talavera and Castresana 2007) using default param-
eters with the following exceptions: b3 = 10,b4 = 5,and b5
= a. Next, we performed ML inferences for every gene align-
ment >800 bp in size. For the OL dataset, we only selected
genes leading to an ML tree that incorrectly placed Primates
as the sister group to Laurasiatheria. Thus, all cases in which

Glires were incorrectly placed toward the outgroup (as pre-
dicted by LBA) were selected. The two genes added to pro-
duce the OL,s:+2 dataset were selected by applying the LS’
algorithm to all of the genes that had initially resulted in a
correct tree and choosing the two genes for which the least
number of taxa were flagged, thus indicating an overall low
lineage rate heterogeneity. Other genes that had initially re-
sulted in a correct tree were also tested for the production of
alternative OL, ;12 datasets. All of the aforementioned data-
sets are available upon request.

The amino-acid dataset for the bilaterian case (Philippe
et al. 2005b) was received directly from the authors.

Phylogenetic Analyses of the Biological Datasets

For the biological cases, all of the phylogenetic analyses of
single-gene nucleotide data were performed with RAXML
7.4.8 (Stamatakis 2006) using the GTR + G+I model of evo-
lution with four gamma rate categories and ten independent
inferences. The concatenated nucleotide datasets were ana-
lyzed with RAXML using the GTR + G+I model of sequence
evolution with four gamma rate categories and 100 indepen-
dent inferences. RAXML was used to analyze the amino acid
multi-gene datasets using the WAG + G+F model, which is
the same model used by Lartillot et al. (2007), with four
gamma rate categories and 100 independent inferences.
Both the nucleotide and amino-acid concatenated datasets
were partitioned according to genes, thus enabling indepen-
dent estimations of the parameters of the evolutionary model
for each gene. Node support values were assessed by analyz-
ing 1,000 bootstrap replicates using the same RAxML param-
eters applied to infer the phylogeny.

Supplementary Material

Supplementary figures S1 and S2, and tables S1-S5 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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