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Abstract

Synaptic dysfunction underlies the development of neurological impairment following an acute 

ischemic stroke. Unfortunately, to this date there is no therapeutic approach to protect and repair 

the synapse that has suffered an ischemic injury. However, recent research with in vitro models of 

hypoxia, in vivo models of cerebral ischemia and different neuroradiological techniques has 

revealed that during the recovery phase from a hypoxic injury neurons release the serine proteinase 

urokinase-type plasminogen activator (uPA) and astrocytes recruit its receptor (uPAR) to their 

plasma membrane; and that binding of neuronal uPA to astrocytic uPAR promotes the recovery of 

the “tripartite synapse” that has suffered an acute ischemic injury. The translational relevance of 

these findings is underscored by the fact that intravenous treatment with recombinant uPA 

promotes synaptic recovery and functional improvement following an acute ischemic stroke.

Introduction

Ischemic stroke is the second cause of mortality in the world and the 5th in USA [1]. 

Fortunately, the development of new medical and neuroradiological strategies to treat acute 

ischemic stroke patients has led to a sustained decreased in stroke mortality [2]. However, 

this has also resulted in a significant increase in the number of patients that survive an 

ischemic stroke with different degrees of disability. Unfortunately, in contrast with the 

treatment of acute ischemic stroke patients, to this date there is no effective therapeutic 

strategy to promote neurological recovery among ischemic stroke survivors.

Despite the fact that neurorepair in the ischemic brain is a very complex process, there is a 

growing consensus around the concept that synaptic dysfunction underlies the development 

of functional impairment after an ischemic stroke [3]. Indeed, it is estimated that one minute 

of ischemia in the human brain destroys 14 billion synapses [4]. Thus, protection of 
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synapses that are suffering an ischemic injury and repair of those that have survived an acute 

ischemic stroke, are the cornerstone for any therapy aimed to promote neurological recovery 

among ischemic stroke patients.

The Plasminogen Activating System

The plasminogen activation (PA) system is an enzymatic cascade that promotes the 

degradation of fibrin by catalyzing the conversion of plasminogen into the broad-spectrum 

protease plasmin upon its activation by two serine proteinases: tissue-type plasminogen 

activator (tPA) and urokinase-type plasminogen activator (uPA) [5]. Thus, based on their 

ability to generate plasmin, thrombolysis with either recombinant uPA [6] or tPA [7] has 

shown to promote neurological improvement when administered to acute ischemic stroke 

patients within few hours of onset of symptoms. Remarkably, soon thereafter became 

evident that besides their fibrinolytic role, uPA and tPA also play a central role in the central 

nervous system. Accordingly, it was shown that neuronal activity induces the release of tPA 

in the synapse, where it mediates the development of neuronal plasticity [8], learning [9,10], 

stress-induced anxiety [11], and visual cortex plasticity [12]. In contrast, it was considered 

that uPA plays a central role during development but not in the mature brain [13].

tPA and uPA in the ischemic brain

A substantial amount of experimental data indicates that the activity of uPA and tPA increase 

in the ischemic brain. However, while tPA expression increases within minutes of the 

ischemic injury and decreases again to baseline levels in less than 3 hours, uPA activity 

raises only 6–24 hours after the end of the acute ischemic injury [14,15]. Interestingly, 

whereas this finding originated a large number of papers on the role of tPA in the ischemic 

brain, very few research groups focused their work on the effect of uPA. Indeed, since then it 

has been discovered that the release of tPA in the ischemic brain promotes synaptic 

protection [16,17], and regulates the permeability of the blood-brain barrier [14], our 

knowledge of the role of uPA is very limited.

Urokinase-type plasminogen activator

uPA is a serine proteinase that catalyzes the conversion of plasminogen into plasmin on the 

cell surface [18]. It is produced as a single-chain inactive protein that is cleaved into two-

chain active uPA assembled by an amino-terminal growth factor, a kringle, and a carboxy-

terminal catalytic domain. Its name was derived from the observation that the renal tubular 

epithelium seems to be its most abundant source in vivo. However, subsequent studies found 

that wound repair and angiogenesis also induce the expression of uPA in other tissues [19]. 

uPA binds to a three-domain receptor (uPAR) attached to the plasma membrane through a 

glycosyl phosphatidylinositol (GPI) anchor [20]. Upon binding to uPAR, activated uPA (and 

inactive uPA) cleaves the zymogen plasminogen generating plasmin which reciprocally 

cleaves and activates pro-uPA [21]. The activity of the uPA/uPAR system is regulated by 

plasminogen activator inhibitor-1 (PAI-1), which induces the internalization and degradation 

of uPAR-bound uPA via de low-density lipoprotein receptor-related protein-1 (LRP-1). Then 

internalized uPAR and LRP1 recycle back to the cell surface [20].
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Urokinase in the ischemic brain

Despite the fact that for a long time it was believed that uPA/ uPAR binding in the brain is 

important only during development [13], recent studies revealed the intriguing finding that 

neurons but not astrocytes release uPA while recovering from an episode of hypoxia in vitro 
and cerebral ischemia in vivo. Furthermore, these studies also showed that astrocytes do not 

release uPA, but instead that they recruit uPAR to their plasma membrane in response to the 

hypoxic injury. Interestingly, genetic deficiency of neither uPA nor uPA has an effect on 

neuronal death in in vitro models of hypoxia and in vivo models of cerebral ischemia [22]. 

In contrast, compared to their wild-type controls, animals genetically deficient on either uPA 

(uPA−/−) or uPAR (uPAR−/−) have impaired functional recovery following an acute ischemic 

injury [23]. More importantly, intravenous treatment with recombinant uPA (ruPA) after the 

onset of the ischemic injury, at doses similar to those used in acute ischemic stroke patients 

[6] induced neurological improvement in Wt and uPA−/− but not uPAR−/− animals. Together, 

these data set up the stage to develop the concept that binding of uPA to uPAR promotes 

neurological recovery following an acute ischemic stroke.

Urokinase and the ischemic synapse

In an attempt to understand the mechanism whereby uPA binding to uPAR promotes 

neurological recovery without reducing the volume of the ischemic lesion, the brain of Wt, 

uPA−/−, and uPAR−/− mice was examined with diffusion tensor imaging (DTI) following the 

induction of experimental cerebral ischemia. Surprisingly, it was found that compared to Wt 

animals, uPA−/− and uPAR−/− mice have increased mean diffusivity of water (MD) and 

decreased fractional anisotropy (Fa) in a thin area of tissue surrounding the necrotic core 

[22], where previous studies have shown activation of biochemical and structural changes 

that drive the recovery of neurons damaged by the ischemic injury [24]. These data led to 

propose a model in which binding of uPA released by neurons to uPAR recruited to the 

plasma membrane during the recovery phase from a hypoxic/ischemic injury have a 

protective effect on the synapse. More importantly, these findings suggest that uPA and 

uPAR mediate a cross-talk between the different components of the “tripartite synapse” that 

results in preservation of its integrity and function.

uPA-uPAR binding mediate a Cross-talk between the different components of the 
“Tripartite Synapse”

The term “tripartite synapse” was proposed to conceptualize the fact that owning to their 

intimate contact with the synapse astrocytes can regulate synaptic function [25]. Thus, to 

study the role of uPA/uPAR binding on the “tripartite synapse”, several studies investigated 

the effect of uPA/uPAR on each of its components: axons, dendrites and astrocytes.

uPA and the ischemic dendrite—Dendritic spines are protrusions that receive the 

excitatory input in the central nervous system [26]. Importantly, several in vivo studies using 

two-photon confocal microscopy have shown that cerebral ischemia has a profound effect on 

their morphology associated with synaptic integrity and functional outcome. Hence, while 

dendritic spines located inside the necrotic core are irreversibly damaged by the ischemic 

injury, those located within 1 mm from its border are replaced by varicosities, and 
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remarkably, if the cause of the ischemic injury disappears, a significant proportion of spines 

reemerge from these varicosities [27]. A role for uPA in the recovery of dendritic spines that 

have suffered an ischemia injury, was discovered by the observation that Wt, but not uPA−/−, 

or uPAR−/− mice, or animals in which a 4 amino acids mutation in endogenous uPA 

precludes its binding to endogenous uPAR (PlauGFDhu/GFDhu) [28] exhibit dendritic spine 

recovery after an ischemic injury. Furthermore, intravenous treatment with recombinant uPA 

was shown to induce dendritic spine recovery in Wt, uPA−/− and PlauGFDhu/GFDhu but not 

uPAR−/− mice. Together, these data indicate that binding of endogenous or recombinant uPA 

to endogenous uPAR promotes dendritic spine recovery in the ischemic brain.

Effect of uPA on the presynaptic terminal—Growth cones are highly dynamic 

structures located at the tip of the axon, that guide their growth during development and after 

an injury [29]. A typical axonal growth cone is assembled by three areas: a peripheral 

domain that contains F-actin bundles that form filopodium and lamellipodium-like veils, a 

central domain that contains microtubules, and an actinomyosin-rich transition zone between 

the peripheral and central domains [29]. A role for uPA/uPAR binding on the response of the 

axon to an injury was derived from the observation that uPAR is abundantly found in growth 

cones that reemerge from an injured axonal mantle, and that treatment with uPA promotes 

the growth of new axons following a mechanical injury. Again, as described for the 

postsynaptic terminal, this effect is mediated by uPAR. Furthermore, it required the activity 

of LRP-1, but not as an endocytic receptor, but as an inductor of the recruitment of β1-

integrin to the plasma membrane. More importantly, it was found that the co-receptor 

activity of uPAR: β1-integrin; LRP-1 induced the recovery of injured growth cones via 

activation of the Ras-related C3 botulinum toxin substrate 1 (Rac-1) [23].

uPA induces astrocytic activation—To examine the effect of uPA on the third 

component of the “tripartite synapse” the expression of glial fibrillary acidic protein (GFAP) 

was studied in astrocyttes treated with recombinant uPA. Surprisingly, it was found that 

uPA-treated cells have a significant increase in GFAP expression [30]. This was an important 

discovery because an increase in the expression of GFAP is a marker of astrocytic activation, 

an evolutionarily preserved process whereby astrocytes develop well-characterized 

structural, genetic and biochemical changes in response to their stimulation and different 

forms of injury [31]. To investigate whether uPA also induces astrocytic activation in the 

ischemic brain, the expression of GFAP was examined in the ischemic tissue of Wt, uPA−/−, 

uPAR−/− and PlauGFDhu/GFDhu mice following transient occlusion of the middle cerebral 

artery (tMCAo) and intravenous treatment with either ruPA or a comparable volume of 

saline solution. These experiments revealed that uPA binding to uPAR induces astrocytic 

activation in the ischemic brain. Further studies showed that this effect is mediated by 

extracellular signal-regulated kinase ½ (ERK ½)-induced phosphorylation of the signal 

transducer and activator of transcription3 (STAT3). Significantly, work with neuronal: 

astrocytic co-cultures revealed that the interaction between astrocytic STAT3 and LRP1 in 

the postsynaptic terminal promote synaptic recovery in neurons that are recovering from an 

acute hypoxic/ischemic injury [30].
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Conclusion

In conclusion, the experimental data available to this date suggest a model in which during 

the recovery phased from an ischemic stroke the injured synapse releases uPA and astrocytes 

recruit uPAR to their plasma membrane. The interaction between neuronal uPA and 

astrocytic uPAR triggers a sequence of events that leads to the recovery of the presynaptic 

compartment mediated by β1-integrin activation of Rac 1, and the protection of the 

postsynaptic terminal by reorganization of its actin cytoskeleton. Together, these data 

indicate that treatment with ruPA or induction of release of endogenous uPA is a potential 

strategy to promote neurological recovery among ischemic stroke survivors.
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