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Purpose: More and more automatic segmentation tools are being introduced in routine

clinical practice. However, physicians need to spend a considerable amount of time in

examining the generated contours slice by slice. This greatly reduces the benefit of the

tool’s automaticity. In order to overcome this shortcoming, we developed an automatic

quality assurance (QA) method for automatic segmentation using convolutional neural

networks (CNNs).

Materials and Methods: The study cohort comprised 680 patients with early-stage

breast cancer who received whole breast radiation. The overall architecture of the

automatic QA method for deep learning-based segmentation included the following two

main parts: a segmentation CNN model and a QA network that was established based

on ResNet-101. The inputs were from computed tomography, segmentation probability

maps, and uncertainty maps. Two kinds of Dice similarity coefficient (DSC) outputs were

tested. One predicted the DSC quality level of each slice ([0.95, 1] for “good,” [0.8, 0.95]

for “medium,” and [0, 0.8] for “bad” quality), and the other predicted the DSC value of

each slice directly. The performances of the method to predict the quality levels were

evaluated with quantitative metrics: balanced accuracy, F score, and the area under the

receiving operator characteristic curve (AUC). The mean absolute error (MAE) was used

to evaluate the DSC value outputs.

Results: The proposed methods involved two types of output, both of which achieved

promising accuracy in terms of predicting the quality level. For the good, medium,

and bad quality level prediction, the balanced accuracy was 0.97, 0.94, and 0.89,

respectively; the F score was 0.98, 0.91, and 0.81, respectively; and the AUC was 0.96,

0.93, and 0.88, respectively. For the DSC value prediction, the MAE was 0.06 ± 0.19.

The prediction time was approximately 2 s per patient.

Conclusions: Our method could predict the segmentation quality automatically. It can

provide useful information for physicians regarding further verification and revision of

automatic contours. The integration of our method into current automatic segmentation

pipelines can improve the efficiency of radiotherapy contouring.

Keywords: radiotherapy, quality assurance, automatic segmentation, deep learning, convolutional

neural networks
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INTRODUCTION

Patients are scanned using computed tomography or magnetic
resonance imaging at the start of radiotherapy. This generates
the simulation images on which physicians manually contour the
tumor target and organs at risk (OARs). The radiotherapy plan
and the radiation dose are, respectively, designed and calculated
as per these images.

Accurate contouring of the tumor target and OARs is a
critical step in the development of effective radiotherapy plans
because all subsequent steps in the planning of radiotherapy
and treatment delivery process are dependent on these contours
and are prerequisites for achieving the optimal curative
effect for patients. The process of contouring is usually
performed manually by physicians, making it time-consuming
and subjective.

Automatic contouring can be a very useful tool in clinical
practice to reduce the inter- and intra-observer variability and
save time. With the application of deep learning methods in
radiotherapy, automatic segmentation of tumor target and OARs
becomes possible. The convolutional neural network (CNN)
is a class of deep neural network that is usually applied to
analyze visual imagery. The use of CNN (1, 2) in radiotherapy
has been shown to be a state-of-the-art method for organs
and tumor segmentation in several disease sites (3–11). Various
notable developments in the use of deep learning methods for
organ segmentation have improved the precision of automatic
segmentation (12–15). However, considerable variability in
medical images can cause unpredictable errors, even with the use
of the best model. Hence, human interventions are still necessary.
Physicians must spend a considerable amount of time examining
andmodifying the contours slice by slice. This greatly reduces the
benefit of the segmentation tool’s automaticity.

Physicians are interested in the accuracy of automatic
segmentation generated by deep learning. The segmentation
quality is traditionally evaluated on a separate test set using
various metrics (16). These metrics reflect the agreement of
predicted contours compared to the reference “ground truth.”
However, the assessment of quality using traditional evaluation
measures is not possible owing to the lack of the ground truth
of the contour. Information about the quality of the contours
generated by the segmentation model is lacking. Therefore, it
is crucial to develop a method for evaluating the quality of
segmentation and identifying the flawed contours. Although
some studies (17, 18) have used statistical metrics derived from
geometric distributions to determine the accuracy of contouring,
these metrics are not always good indicators of organ contouring.
Zhang et al. (19) proposed a texture-based method to validate
the automatic contour propagation based on deformable image
registration. This model exhibited good performance on two very
complex organs. Regarding deep learning-based segmentation,

Abbreviations: CNN, convolutional neural networks; CTV, clinical target volume;

AUC, area under the receiving operator characteristic curve; OARs, organs at risk;

GT, ground truth; CT, computed tomography; DSC, Dice similarity coefficient; BA,

balanced accuracy; Caffe, convolutional architecture for fast feature embedding;

ART, adaptive radiotherapy.

some scholars have tried to predict the quality using “reverse
testing,” (20, 21) whereby a new model is trained using the
predictions of the test set and evaluated again on the training
set. The reverse testing method requires many predicted results
for training and cannot assess the quality of the automatic
segmentation software output directly; therefore, it cannot
provide individual evaluations in real time.

An increasing number of deep learning-based automatic
segmentation tools is being introduced for routine clinical use.
Although automatic segmentation is rapid, careful examination,
and modification by the physicians are required. In this study,
we proposed a fully automatic quality assurance (QA) method
for deep learning-based segmentation with a CNN. We adopted
a well-knownCNN framework with high performance for quality
prediction. To our knowledge, this is the first attempt of the
application of a deep learning method in the field of radiotherapy
for the QA of automatic segmentation. The proposedmethod can
automatically assess the quality of the automatic segmentation.
The promising results indicate a potentially wide application
in the field of medicine. In combination with the automatic
segmentation software, it can identify the regions of interest
that need radiotherapy more quickly and accurately, thereby
improving the efficiency of physicians.

MATERIALS AND METHODS

Patient Data
The study cohort comprised 680 patients with early-stage breast
cancer who were treated with breast-conserving lumpectomy and
whole breast radiation at our hospital. These patients received
adjuvant radiotherapy after lumpectomy. Our study only
included patients who had received whole breast radiotherapy.
Patients who had undergone axillary or supraclavicular
radiotherapy were excluded. Thus, 340 patients had left-sided
breast cancer, and the others had right-sided breast cancer.
The CTV of breast cancer included most ipsilateral breast
tissue. It was contoured on the CT image by one physician
(with >5 years of working radiotherapy experience), rechecked,
and approved by senior experts (with >10 years of working
radiotherapy experience). All the physicians are credentialed
radiation oncologists. Manual CTV delineations by experts were
set as the ground truth of segmentation in this study. The CTV
size on each 2D CT slice ranged from 440 to 12,440 pixels (4,510
± 2,285).

The data for the planning CT were acquired using Somatom
Definition AS 40 (Siemens Healthcare, Forchheim, Germany) or
Brilliance CTBig Bore (PhilipsHealthcare, Best, theNetherlands)
systems set on helical scan mode with voltage, tube current,
and CIDI of 120 kVp, 150 mAs, and 10.96 mGy for Siemens
CT and 120 kVp, 250 mAs, and 13.2 mGy for Siemens CT,
respectively. CT images were reconstructed with a matrix size of
512 × 512 and a thickness of 5mm. The pixel size was 0.98–1.27
(mean, 1.05)mm. CT images were resampled to an isotropic pixel
resolution of 1.00 × 1.00 mm2. This protocol changed the size
of the image matrix. We subsequently used cropping or zeroing
to transform all the images into a uniform size of 512 × 512. A

Frontiers in Oncology | www.frontiersin.org 2 April 2020 | Volume 10 | Article 524

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Quality-Assurance for Automatic Segmentation

FIGURE 1 | The architecture of the proposed method.

contrast-limited adaptive histogram equalization algorithm (22)
was applied to enhance the image contrast.

We randomly selected the data from 520 cases (left: 260; right:
260) as the training dataset (to train the model), used 80 cases
(left: 40; right: 40) for the validation set (to find the optimal
model), and used the remaining 80 cases (left: 40, right: 40) as
the test set (to assess the performance of the proposed method).

Workflow of QA for Segmentation
We introduced a QA workflow for segmentation with deep
learning (Figure 1 illustrates the overall architecture). It had the
following two main parts: a deep learning-based segmentation
model and a QA network. The network of the segmentation
model and that of the QA are independent of each other. The
two networks were based on the CNN. The proposed pipeline
included the following four main steps: (i) running the automatic
segmentation method to obtain segmentation probability maps;
(ii) calculating the uncertainty maps using the segmentation
probability; (iii) predicting the segmentation quality using a
classification model based on the CT images, probability maps,
and uncertainty maps; and (iv) physician revision of the
automatic segmentation according to their knowledge and the
predicted quality.

We used the deep learning method (8) to build models for
segmenting the CTVs of left- and right-sided breast cancers. We
trained an automatic QA network with the data from both sides
of breast cancer CTV to predict the quality of the segmentation
models. Thus, it can be used for patients with breast cancer on
either side.

Automatic Segmentation Network
Our study was not focused on the segmentation method.
Therefore, we used an existing CNN (8) that had demonstrated
high performance. Two-dimensional (2D) CT images were the
inputs, while the corresponding 2D segmentation probability
maps were the outputs. The “segmentation probability map”
has the same resolution as the CT image. The value of each

pixel represents the probability that the pixel belongs to the
contour to be segmented. Most existing segmentation networks
can achieve this. With this module, we can obtain contours that
the segmentation model “thinks” is correct; however, we do not
know the quality of the automatic segmentation before we have
the ground truth of the contour.

The Inputs of QA Networks
The inputs of the network included the following three types of
images: the 2D CT image, the generated probability map, and the
uncertainty map.

The probability map (p) can be generated by the automatic
segmentation model. Each pixel (i, j) denotes the probability
that the pixel (i, j) belongs to the region to be segmented. The
“probability map” represents the predicted contour to some
extent. In addition, we added the 2D uncertainty map (u)
to predict the segmentation quality. The uncertainty map is
calculated as follows:

u(i, j) =







p(i, j), 0 ≤ p(i, j) ≤ 0.5
1− p(i, j), 0.5 < p(i, j) < 1
0, p(i, j) = 1

(1)

where u(i, j) denotes the uncertainty of the pixel (i, j). The pixels
with higher uncertainty correspond to the ones that lie close to
the decision boundary of the segmentation model. Hence, the
CNN model does not conclude how to segment such regions.
Therefore, the uncertainty map is related closely to the quality
of the automatic segmentation. Although the “uncertainty map”
was calculated from the “probability map” using (Equation 1),
we believe that both are necessary because the former map
represents the confidence of the model. We intended to directly
input these two parameters into the network to increase the speed
and quality of learning.

In addition, the segmentation results are related to human
anatomy and image, including geometric information and image
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contrast. Therefore, we also provide the CT image as an input to
the network for the extraction of useful features.

The Outputs of QA Networks
Usually, the segmentation quality is quantified using the Dice
similarity coefficient (DSC) (23) that measures the degree of
overlap between the automated segmentation (A) and manual
segmentation (B). In this study, the corresponding DSC of each
slice is calculated as follows:

DSC(A,B) =
2
∣

∣A
⋂

B
∣

∣

|A| + |B|
(2)

where A represents the ground truth, B denotes the auto-
segmented structure, and A

⋂

B is the intersection of A and B.
DSC ranges from 0 (indicating no spatial overlap between the two
segmentations) to 1 (indicating perfect concordance). We also
define the DSC as 1 for the slice with no contour generated by
the automatic segment method (B = 0) or by physicians (A = 0)
because the performance of automatic segmentation is perfect.

We used the DSC as the index of segmentation quality. This
study tests two types of DSC outputs. One predicts the quality
levels for each slice, while the other predicts the DSC value
for each slice directly. We divided the DSC range into three
quality levels (0: good; 1: medium; 2: bad) based on our clinical
experience and a review of the literature. The “good” level of DSC
was set as [0.95, 1], the “medium” level as [0.8, 0.95], and the
“bad” as [0, 0.8].

The Architecture of QA Networks
We applied convolutional architecture for fast feature embedding
(Caffe) (24) on an NVIDIA TITAN X graphics card as the deep
learning framework to implement the training and testing.

The CNN that can predict the segmentation quality is
of a typical classification network. Theoretically, any CNN
classification network can be applied in this study; however,
we chose ResNet-101 (2) because of its excellent performance
owing to its relation to image classification. The ResNet-101
classification network has five residual blocks (Figure 1). It has
101 convolutional layers and can extract low-level, middle-level,
and high-level visual features. A batch-normalized option was
used after each convolutional layer, followed by the application
of a rectified-linear non-linearity (ReLU) max (0, x). Pooling
was conducted in Res_3, Res_4, and Res_5 with a stride of
two. After convolution and pooling operations, the output of
Pool 5 had dimensions of 2,048 × 1 × 1. These final extracted
features were utilized for quality classification prediction. A fully
connected layer reduced the output dimensions to 3 × 1 × 1.
Subsequently, a softmax layer classified the segmentation quality
into the following three categories: good, medium, and bad.

In order to keep the details of human tissues, the input
image had a larger size of 512 × 512 when we performed the
segmentation. For predicting the segmentation quality, we down-
sampled all the input images to 224 × 224 pixels to fit the
requirement of the adopted ResNet-101 as well as to make the
model small and fast.

During the training phase, we adopted random left–right
flipping, cutting, and rotation (between 5 and 5 degrees) for data
augmentation (25). This expanded the existing training dataset
and avoided network over fitting. We oversampled the cases of
the minority class (i.e., class with fewer training cases) to solve
the imbalance problem (26) (where the classes were unequal). To
accelerate training, the quality prediction networks were trained
with the initial parameters from the ResNet-101model trained on
ImageNet and were then fine-tuned using the data of the breast
cancer CTV. No parameter of the model was frozen during the
fine-tuning. The network was trained using a batch size of 16,
momentum of 0.9, weight decay of 0.0005, learning rate policy
of poly, initial learning rate of 0.00025, and power of 0.9. The
training was stopped after 100 K iterations.

Quantitative Analysis of Prediction
Accuracy
The performance of the QA model regarding quality levels
prediction was evaluated using quantitative metrics (27) that
included the balanced accuracy (BA), F score, and the area under
the receiving operator characteristic (ROC) curve (AUC). They
were defined as follows:

BA =
1

2
(

TP

TP + FN
+

TN

TN + FP
) (3)

F score =
2TP

2TP + FN + FP
(4)

where TP is the number of true-positives, FP is the number of
false-positives, TN is the number of true-negatives, and FN is
the number of false-negatives. BA and F score are usually chosen
for data with only binary output; however, our experiment had
the following three classes: good, medium, and bad. Here, we
computed the TP, TN, FP, and FN for every class I ∈ G =

{good,medium, bad}, such that the ith matrix considered class
gi as the positive class and all other classes gj with j 6= i as
the negative class. In the “good” class, for example, TP meant
“good” contour was correctly identified as “good,” FP meant
“good” contour was incorrectly identified (classified as “medium”
or “bad”), TN meant “medium” or “bad” contour was correctly
rejected as “good,” and FN meant “medium” or “bad” contour
was incorrectly rejected (classified as “good”). We also performed
the experiments using different combinations of the three inputs
(CT image, probabilitymap, or uncertaintymap) for comparison.

The performance of the QA model regarding DSC values
prediction was evaluated using mean absolute error (MAE). It is
defined as shown in Equation (5).

MAE =
1

N

N
∑

i=1

∣

∣DSCpred(i)− DSCGT(i)
∣

∣ (5)

Where i is the index of the slice of each patient in the test set,
N is the total number of slices for all patients in the test set,
and DSCpred and DSCGT are the predict and ground truth of
DSC, respectively.
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RESULTS

Prediction Accuracy of the Quality Levels
Table 1 lists the quality prediction results of the test set. The
CNN model with CT image, probability map, and uncertainty
map demonstrated the best performance with AUC values of
0.96, 0.93, and, 0.88 for “good,” “medium,” and “bad” quality,
respectively. The BA of all the quality levels was>0.89, indicating
that >89% of automatic segmentation could be classified
accurately into a quality level. The performance was inferior
with only one of the three labels. This comparative experiment
indicated that including all three labels as input produced the
optimal quality level prediction model. The model only with
the CT label performed the worst for all quality levels. The
performances of the two models were comparable only when
the uncertainty or probability label was used. When either the

TABLE 1 | Results of quality prediction.

Model input GT BA F score AUC

All three labels Good 0.97 0.98 0.96

Medium 0.94 0.91 0.93

Bad 0.89 0.81 0.88

CT image Good 0.92 0.92 0.91

Medium 0.89 0.87 0.88

Bad 0.83 0.76 0.80

Probability map Good 0.96 0.97 0.95

Medium 0.93 0.91 0.93

Bad 0.87 0.80 0.86

Uncertainty map Good 0.96 0.97 0.95

Medium 0.93 0.91 0.93

Bad 0.87 0.80 0.86

CT image + probability map Good 0.97 0.98 0.96

Medium 0.93 0.91 0.93

Bad 0.88 0.80 0.87

CT image + uncertainty map Good 0.97 0.97 0.96

Medium 0.93 0.91 0.93

Bad 0.89 0.81 0.88

probability or the uncertainty map was removed from the input,
the results of the models were very close to those obtained using
all the three inputs, although the performance was slightly worse.
This result may be due to the generation of the uncertainty map
from the probability map, such that additional information was
not added to the model.

We also analyzed the DSC for incorrect prediction. Figure 2
shows the distribution. Nearly half of the contours that were
misclassified as “good” quality (Figure 2A) had a DSC of ∼0.95,
the boundary between “good” and “medium.” Most contours
misclassified as “medium” quality (Figure 2B) were also at the
boundary of the quality classification. However, the contours
misclassified as “bad” quality (Figure 2C) had a wider DSC range.
In addition, few contours with a DSC of 0 or 1 were not identified
correctly. A classification of “0” meant that the segmentation
model missed or generated redundant contours, whereas “1”
meant that no contour was generated by the segmentation model
or by physicians. These slices were usually located at the top or
bottom boundaries of the CTV, where the classification model
could be inaccurate.

Figure 3 shows six representative examples of accurate and
inaccurate predictions. The first column shows the CT images
with the ground truth (Red line) and auto-segmentation (Blue
line); the second column shows the probability maps; and the
third column shows the uncertainty maps. Rows 1–3 show
the contours of the “good,” “medium,” and “bad” levels that
were classified correctly, respectively, while rows 4–6 show the
contours of the “good,” “medium,” and “bad” levels that were
misclassified as “medium,” “bad,” and “medium,” respectively.

Prediction Accuracy of the DSC Value
We also tried to predict the DSC directly instead of the quality
levels of “good,” “medium,” or “bad,” as a discretized version
of the DSC. The output (DSC) was set to 101 classes (i.e., 0
to 100 with an interval of 1). Figure 4 shows the scatter plots
of predicted vs. real DSC values for all the test contours. The
two dashed lines represent a margin of error of ±10% relative
to the true value. The points should form a diagonal line if the
prediction is good. The predicted DSC value was close to its real

FIGURE 2 | Histogram of the DSC for incorrect prediction. (A) Misclassified as “good,” (B) misclassified as “medium,” (C) misclassified as “bad”.
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FIGURE 3 | Six representative examples of accurate and inaccurate predictions. The first column shows the CT images with ground truth (Red line) and

auto-segmentation (Blue line). The second column shows the probability maps. The third column shows the uncertainty maps. Rows 1–3 show the contours of the

“good,” “medium,” and “bad” levels that had been classified accurately. Rows 4–6 show the contours of the “good,” “medium,” and “bad” levels that were

misclassified as “medium,” “bad,” and “medium,” respectively.
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FIGURE 4 | The result of DSC prediction.

value, with a mean absolute error of 0.06 ± 0.19. The correlation
coefficient was 0.75. Specifically, 80, 85, and 93% of the prediction
had an absolute error within 0.03, 0.05, and 0.10, respectively,
compared to the reality. There was no significant correlation
between the prediction error and CTV size that had a correlation
coefficient of 0.05.

As shown in Figure 4, the predicted DSC values were
discretized to <101 levels. Possibly, because the tasks were
divided into 101 categories, there were insufficient training
samples for each category. As such, the model could not yield
accurate predictions. We continue to accumulate samples and
hope to improve this effect.

Prediction Time
We tested the time cost for quality prediction using an NVIDIA
TITAN X graphics card. The speed was fast with a mean time
of 2 s per patient, while a physician took about 10min to review
the CTV.

DISCUSSION

We proposed a QA process for automatic segmentation. A
CNN-based method can predict the segmentation quality
automatically. Our QA method can be used to efficiently
differentiate between high-quality and low-quality contours.
These low-quality contours can be automatically selected for
physicians in order to perform further verification and revision.
This can improve the efficiency of the existing automatic
contouring process.

We adopted a well-known network (ResNet-101) in our
method. The network structure is not novel in the traditional

computer vision community. However, the application of using
an old method for a new problem is also recognized as
innovative. To our knowledge, this is the first attempt at
applying this method in the field of radiotherapy for the QA of
auto-segmentation. The promising results indicate a potentially
wide application in medicine. The proposed method is novel
and has four main contributions. First, the proposed method
can predict, in real time, the performance of a segmentation
model on each individual slice to help physicians review
the contours. Second, maps of segmentation probability and
uncertainty were introduced to predict the contours’ quality.
These two kinds of maps can directly reflect the confidence
of the segmentation model that is closely related to its
performance. Third, the proposed method can predict the
segmentation quality slice by slice based on the DSC that can
provide a quantitative index for the physicians to use their
judgment. Finally, the proposed method can be integrated
into the current segmentation pipelines in clinical practice to
improve efficiency.

We also investigated the influence of each channel. Our
comparison showed that using only one of the three labels
(CT image, probability map, or uncertainty map) led to
degradation of the prediction performance. When we used
“CT image + probability map” or “CT image + uncertainty
map” as inputs, the results of the models were very similar to
but slightly worse than that obtained using all three inputs.
This shows that the CNN can extract useful information from
the three types of labels and improve the robustness and
accuracy of the model. In this study, the uncertainty map
was generated from the probability map of the automatic
segmentation model; the performance of the two models
was comparable only when uncertainty or probability
was used as the input. The “probability map” reflects the
segmentation result, and the “uncertainty map” represents
the confidence of the model. Both the maps should be useful
for predicting the contour quality. The model using only
CT demonstrated the worst performance that was expected
because CT images do not contain contour information for
automatic segmentation and cannot accurately evaluate the
contour quality.

We selected the threshold for good, medium, and bad
segmented quality levels according to our experience and
previous reports. Several studies have shown the existence
of some interobserver variability in the clinical target for
breast cancer, with the corresponding DSC results ranging
from 0.88 to 0.93 (8, 28–31). As such, based on published
literatures and our clinical experience, the “good” level range
of DSC was set ≥0.95 in this study. A good level of slices
means that the radiation oncologists do not need to perform
many changes of automatic contouring. It is widely considered
that DSC ≥ 0.7 is an acceptable consistency (32, 33). In
order to reduce the DSC bias of the large target, we set a
DSC of 0.8 as the boundary of “bad” level that suggested
manual contouring. The “medium” level means that the
radiation oncologist needs to make moderate modifications.
Regardless of the threshold that is used, we believe that the
misclassification will always be close to the boundary. We will
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explore more reasonable threshold determination methods in
the future.

This study also tested the methods of predicting DSC values
directly. However, the accuracy of prediction may decrease with
an increase in the classification types. This low accuracy may be a
result of small differences in the characteristics between samples
with similar DSC that made it difficult for the classifier to make
an accurate prediction.

This method potentially plays an important role in online
adaptive radiotherapy (ART); automatic contouring is a very
critical step here. It is necessary to manually review the
automatically generated contours slice by slice although the
automatic segmentation tools can reduce time. This is a big
challenge for ART because it increases a physician’s workload and
lowers the patient’s comfort. The proposed method highlights the
low-quality contours for manual review, thereby improving the
efficiency of ART.

There are three main limitations of this preliminary study.
First, we used the CTV of breast cancer to demonstrate the
proposed QA method; however, we did not investigate the CTVs
for other types of cancers and OARs. The potential for reducing
the time required to evaluate contours improves further if the
method is applied to both OARs and CTV because a single case
always has many OARs. In addition, the segmentation of a CTV
of breast cancer is relatively easy because this tumor type is
known to exhibit good contrast with the surrounding tissues. The
auto-segmentation methods achieved very good performances
on this structure, indicating that the proposed QA model is
reliable. However, for other tumor sites or even OARs, the auto-
segmentation model would demonstrate poorer performance or
even fail. Future research should focus on broader experiments
across all treatment sites, as well as on OARs. Second, DSC is
sensitive to the absolute volume of the contour. For a small-
volume contour, a low DSC value does not necessarily indicate an
inaccurate contour. We only used the general DSC for modeling
that may have caused mislabeling of the contour slices. The
Hausdorff distance or surface DSC (6) is a possible alternative
metric for evaluating the segmentation performance, and this can
be adopted in our newly developed segmentation QA networks.
Third, a small uncertainty means that the segmentation model
is more confident that the pixel does or does not belong to the
CTV. However, the uncertainty may not be related directly to
the performance of the segmentationmodel. Network confidence
about a prediction does not necessarily correlate with an accurate
prediction. Rather, network confidence in an area with systematic
errors from themodelmay be attributable to the unrepresentative
training datasets or intra- and inter-observer variation.

In our future potential research, the QA method will
be incorporated into the automatic segmentation process.
Segmentation can benefit from a quality-assurance-in-the-
loop workflow that can be used to predict the quality for
the segmentation model to “tune” the parameters further.
In addition, the proposed segmentation QA method can be
adopted in radiotherapy and in other fields of segmentation,
including radiology.

CONCLUSIONS

The QA of automatic segmentation is an important step in
radiotherapy. We used a convolutional network for the QA
of automatic segmentation in this study. The network can
learn the useful features from the three types of images,
classify the contouring into different quality levels, or
predict the DSC value directly with both high efficiency
and high speed. The proposed method can provide useful
information for physicians for rapid verification and revision.
The performance can be improved if such information
can be integrated into the computer-assisted automatic
segmentation system.
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