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Comprehensive multi-omics analysis reveals m7G-related signature for 
evaluating prognosis and immunotherapy efficacy in osteosarcoma 
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H I G H L I G H T S  

• We identified N7-methylguanosine methylation prognostic molecular subtypes and signature in osteosarcoma for the first time. 
• The N7-methylguanosine-related signature was effective in predicting survival and immune landscape in osteosarcoma patients. 
• Dual validation of N7-methylguanosine regulators with bulk and single cell transcriptome data. 
• EIF4E3 may promote the growth, invasion, and migration of osteosarcoma cells as verified in-vitro experiments.  

A R T I C L E  I N F O   

Keywords: 
Osteosarcoma 
M7G modification 
EIF4E3 
Immunotherapy 
Single-cell analysis 

A B S T R A C T   

Background: Osteosarcoma is one of the most prevalent bone malignancies with a poor prognosis. The N7- 
methylguanosine (m7G) modification facilitates the modification of RNA structure and function tightly associ-
ated with cancer. Nonetheless, there is a lack of joint exploration of the relationship between m7G methylation 
and immune status in osteosarcoma. 
Methods: With the support of TARGET and GEO databases, we performed consensus clustering to characterize 
molecular subtypes based on m7G regulators in all osteosarcoma patients. The least absolute shrinkage and 
selection operator (LASSO) method, Cox regression, and receiver operating characteristic (ROC) curves were 
employed to construct and validate m7G-related prognostic features and derived risk scores. In addition, GSVA, 
ssGSEA, CIBERSORT, ESTIMATE, and gene set enrichment analysis were conducted to characterize biological 
pathways and immune landscapes. We explored the relationship between risk scores and drug sensitivity, im-
mune checkpoints, and human leukocyte antigens by correlation analysis. Finally, the roles of EIF4E3 in cell 
function were verified through external experiments. 
Results: Two molecular isoforms based on regulator genes were identified, which presented significant discrep-
ancies in terms of survival and activated pathways. Moreover, the six m7G regulators most associated with 
prognosis in osteosarcoma patients were identified as independent predictors for the construction of prognostic 
signature. The model was well stabilized and outperformed traditional clinicopathological features to reliably 
predict 3-year (AUC = 0.787) and 5-year (AUC = 0.790) survival in osteosarcoma cohorts. Patients with 
increased risk scores had a poorer prognosis, higher tumor purity, lower checkpoint gene expression, and were in 
an immunosuppressive microenvironment. Furthermore, enhanced expression of EIF4E3 indicated a favorable 
prognosis and affected the biological behavior of osteosarcoma cells. 
Conclusions: We identified six prognostic relevant m7G modulators that may provide valuable indicators for the 
estimation of overall survival and the corresponding immune landscape in patients with osteosarcoma.   
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1. Introduction 

Osteosarcoma is the most common primary malignant bone tumor in 
adolescents and children, accounting for 20% of bone malignancies 
worldwide [1]. It could metastasize to almost any site or organ, mainly 
to the lungs and occasionally to other bones or lymph nodes [2]. The 
first peak of osteosarcoma incidence occurs mainly in rapidly growing 
adolescents, and the second peak appears mainly in people over 60 years 
of age [3,4]. In young patients, primary osteosarcoma predominates, 
often occurring in the long bone metaphysis [5]. In older patients, sec-
ondary osteosarcomas are more common, principally located in the axial 
skeleton with a history of radiation or underlying bone abnormality- 
related disease (e.g., Paget’s disease) [6,7]. In the early stages of oste-
osarcoma, clinical symptoms are not obvious or specific, making it 
difficult for patients to capture the best treatment opportunities [8]. In 
addition, the prognosis of patients with metastatic or recurrent osteo-
sarcoma remains poor due to the ineffectiveness of current treatment 
options [9,10]. During treatment, osteosarcoma could also acquire drug 
resistance through multiple mechanisms, such as activation or mutation 
of proto-oncogenes or altered expression levels of drug targets, as well as 
a highly dynamic tumor microenvironment (TME), which makes the 
anti-cancer efficacy of drugs progressively less effective [11]. Therefore, 
it is imperative to increase the understanding of the genetic and epige-
netic mechanisms underlying osteosarcoma and to explore reliable 
prognostic biomarkers and therapeutic targets. 

Dysregulation of gene expression plays a vital role in tumor biology, 
and RNA modification is an approach to manipulate gene expression at 
the post-transcriptional level [12,13]. Numerous RNA modifications 
have been identified to date, such as N5-methylcytosine, N1-methyl-
adenosine, N6-methyladenosine (m6A), and N7-methylguanosine 
(m7G), among others [14]. Nucleotide modifications of mRNA and 
non-coding RNAs are essential in regulating various aspects of RNA 
metabolism, including transcription, translation, splicing, and stability 
[15–17]. Among them, m6A is the most abundant internal modification 
in mRNA, which dysregulation is responsible for the development, 
progression, drug resistance, metastasis, and refractory treatment of 
various cancers [18,19]. Distinct from m6a, m7G is one of the most 
prevalent methylation modifications on tRNAs contributing to the 
maintenance of tRNA stabilization [20]. Importantly, tRNA modifica-
tion is integrally linked to codon recognition and efficient protein syn-
thesis, affecting multiple aspects of mitochondrial disease, neurological 
disorders, and tumorigenesis [21]. Moreover, m7G has been found in 
both the 5′ caps and interior regions of eukaryotic transcripts, which 
could be installed by various methyltransferases into different mRNA 
sequences or secondary structure motifs to perform a diversity of func-
tions, including translation effects [22,23]. Reportedly, the metabolism 
of transcripts also relies on binding the m7G caps present on the 5′

terminal of mRNAs to the eukaryotic translation initiation factor eIF4E 
[24]. M7G regulators, including METTL1/WDR4 complex, WBSCR22/ 
TRMT112 complex, RNMT/RAM complex, and others, enable the 
addition of m7G modifications to target RNAs, thereby affecting RNA 
production, structure, and maturation, which ultimately mediate a 
myriad of critical biological processes [22]. Specifically, m7G modifi-
cation on tRNA is mediated by the METTL1-WDR4 complex [25]. 
RNMT/RAM is actively involved in the m7G modification apparatus in 
the 5′ cap of mRNA, while the modification on rRNA is accounted for by 
WBSCR22/TRMT112 [26]. 

There is accumulating evidence that changes in m7G modification 
levels are significantly associated with carcinoma progression and 
prognosis [23]. M7G methyltransferases are commonly aberrantly 
expressed in cancer and catalyze m7G modifications in tRNA, rRNA, or 
miRNA, eventually affecting target gene expression and regulating 
tumor-associated biological functions [22]. For instance, METTL1 is 
severely upregulated in bladder cancer (BC) tissues while also exerting 
oncogenic roles in BC initiation and progression by altering the m7G 
modification of tRNAs to specifically affect the translation of EGFR/ 

EFEMP1 [27]. On the other hand, m7G-modified tRNAs dominated by 
METTL1/WDR4 could also enhance cell cycle gene expression by 
reshaping mRNA translation activity, thus driving the pathogenesis in 
acute myeloid leukemia (AML) [28]. Also, Xia et al. [29] indicated that 
m7G regulator WDR4 overexpression increased m7G methylation levels 
in Hepatocellular carcinoma (HCC) and was strongly associated with 
poorer clinical survival. Mechanistically, WDR4 enhances CCNB1 mRNA 
stability and translation by driving the binding of EIF2A to CCNB1 
mRNA, thereby promoting epithelial-mesenchymal transition (EMT) 
and sorafenib resistance in HCC cells. The specific implications of RNA 
methylation modifications in osteosarcoma have also been increasingly 
studied in recent years. Numerous investigations have revealed that 
methylation modifications extensively regulate osteosarcoma prolifer-
ation, apoptosis, migration, invasion, and tumor microenvironment 
[30–32]. Furthermore, aberrant expression of methylation modification 
regulators is intimately correlated with poor prognosis and chemo-
therapy resistance in osteosarcoma [30,33]. Although the functions and 
mechanisms of RNA modifications have been identified in the complex 
epigenomic and transcriptomic environment of osteosarcoma, the bio-
logical significance and essential target genes of m7G regulators in os-
teosarcoma remain elusive to date. 

In the current study, we comprehensively analyzed single-cell RNA- 
seq (scRNA-seq) and bulk RNA-seq data from multiple osteosarcoma 
cohorts based on the GTEx, TARGET, and GEO databases. The rela-
tionship between m7G-related molecular clusters, clinical outcomes, 
and immune cell infiltration characteristics was investigated. Consid-
ering the heterogeneity of osteosarcoma development, we then screened 
prognosis-related m7G modulators and established a validated six-gene 
panel for predicting the prognosis, drug sensitivity, tumor immune 
microenvironment (TIME), and immunotherapeutic targets of individ-
ual patients. Finally, we examined the expression of crucial genes in 
different cell types using scRNA-seq datasets and preliminarily validated 
the effect of EIF4E3 on osteosarcoma cell lines in vitro. 

2. Materials and methods 

2.1. Cohort collection and pre-processing 

Transcriptomic and clinical data for 88 osteosarcoma samples and 
396 normal control samples were downloaded from the TARGET 
(https://ocg.cancer.gov/programs/target) and GTEx (https://gtexport 
al.org) databases, respectively, for screening differential genes 
[34,35]. Subsequently, scRNA-seq and bulk RNA-seq data for osteosar-
coma were obtained from the GEO database (https://www.ncbi.nlm.nih 
.gov/geo/) for the construction of the validation cohort. Among them, 
fifty-three osteosarcoma samples from GSE21257 and six osteosarcoma 
samples from GSE162454 were included in the study. All gene expres-
sion levels were normalized with log2 (FPKM+1), and combined data 
were batch corrected for bias using the “sva” package. 

2.2. Processing of Single-Cell RNA-Seq data 

The six samples in the GSE162454 dataset were all from patients 
with primary osteosarcoma and not receiving neoadjuvant chemo-
therapy. Patient details are shown in Supplementary Table S1. The final 
single-cell suspension of each sample was loaded onto a 10× Genomics 
Chromium Single-Cell Chip and sequenced on an Illumina HiSeq X Ten 
instrument [36]. TISCH2 (https://tisch.comp- genomics.org/home/) is 
a research platform that enables interactive single-cell transcriptome 
visualization of the TME [37]. We analyzed the GSE162454 dataset 
through the above online tool to investigate the heterogeneous expres-
sion pattern of m7G regulators in osteosarcoma cells and different im-
mune cells at the single cell level. Clusters were visualized by 
performing uniform manifold approximation and projection (UMAP) 
analysis through the TISCH2 platform and annotated against the refer-
ence genome and differential gene expression. 
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2.3. Differential expression analysis and enrichment analysis of the m7G 
regulators 

The m7G modulators were identified by the search method of the 
previous study, and the results are shown in Supplementary Table S2 
[38]. Afterwards, the “limma” package was implemented to detect the 
differential expression of m7G regulators between normal and osteo-
sarcoma tissues. The average value is taken as the gene expression when 
multiple probes correspond to the same gene. The “reshape2,” “Corr-
plot,” and “circlize” packages were used to determine the correlation 
between m7G regulators. Information regarding the location of m7G 
modulators on chromosomes was mapped using the “RCircos” package. 
Finally, we applied the “clusterProfiler,” “ggplot2,” and “enrichplot” R 
packages to perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis and visualize the results 
given an adjusted p-value < 0.05. 

2.4. Identification of molecular subtypes defined by m7G regulators 

Unsupervised clustering analysis was performed to identify m7G- 
associated molecular subtypes based on differentially expressed m7G 
modulators (DEm7Gs) by applying the “ConsensusClusterPlus” package 
in osteosarcoma patients from the TARGET cohort. The Single-sample 
Gene Set Enrichment Analysis (ssGSEA) algorithm enables accurate 
estimation of immune cell infiltration level based on the RNA-seq data 
from the osteosarcoma cohort to compare differences in the immune 
characteristics of distinct phenotypes. Kaplan-Meier (KM) survival 
curves were then used for subgroup survival analysis by the “survival” 
and “survminer” packages. The subset (c2.cp.kegg.v7.4.symbols.gmt) 
was obtained from the MSigDB database (https://www.gsea-msigdb. 
org/gsea/index.jsp). Then, GSEA was applied to identify differences in 
biological function between diverse clusters using the “GSEABase” and 
“GSVA” packages with p < 0.05 considered statistically significant. 

2.5. Generation of m7G-regulated risk score 

To further understand the molecular characteristics of each osteo-
sarcoma sample, risk scores quantifying the m7G modification pattern of 
individual patients were constructed by univariate Cox regression 
analysis and Lasso regression analysis. Univariate Cox analysis was 
conducted to examine the prognostic significance of DEm7Gs in osteo-
sarcoma. Following this, we used Lasso regression analysis to avert 
overfitting with 10-fold cross-validation to determine the optimal pen-
alty parameter (λ). The m7G-related risk score (termed MRRS) was 
calculated as follows: MRRS = Σ (βi × Expi) (β: coefficient, Exp: 
expression level of m7G modulators). After calculating MRRS for each 
patient separately in the TARGET and GSE21257 cohort, KM analysis 
was applied to assess the survival outcomes of patients with distinct 
MRRS. The reliability of the risk score was verified by performing ROC 
analysis using the “timeROC” package to calculate the AUC values at 
different time points. Finally, PCA analysis was performed to verify the 
usefulness of the MRRS in differentiating individual patients. 

2.6. Analysis of immune landscape and immune checkpoint genome 

The CIBERSORT, ssGSEA, and ESTIMATE algorithms were used to 
obtain further evidence on the utility of MRRS in anticipating the im-
mune landscape of osteosarcoma, respectively. The CIBERSORT algo-
rithm was implemented to quantify the extent of immune infiltration of 
22 immune cell subtypes in osteosarcoma samples based on bulk RNA- 
seq data. Pearson correlation analysis was then performed to calculate 
the correlation coefficient between immune cells and the MRRS. We 
executed the ssGSEA algorithm to analyze the differential profiles of 
various immune cells and functions in distinct MRRS subgroups and 
visualize the results by “limma,” “reshape2,” “GSEABase,” and “ggpubr” 
packages. The ESTIMATE algorithm is a widely used method for 

inferring the content of mesenchymal and immune cells in malignant 
tissues using gene expression features [39]. We predicted immune 
scores, stromal scores, and tumor purity for each osteosarcoma patient 
using the “estimate” package. Based on available studies, immune 
checkpoint expression and human leukocyte antigen (HLA) genotype 
may be associated with clinical outcomes of immune checkpoint in-
hibitor (ICI) treatment [40,41]. Then, we applied the “limma,” 
“reshape2”, “plyr,” “ggplot2”, and “ggpubr” packages to investigate the 
divergent expression of immune checkpoint genes as well as HLA genes 
between high and low MRRS subgroups to predict the response to ICI in 
patients with osteosarcoma. 

2.7. Clinical correlation analysis 

Clinical information of patients with osteosarcoma in the TARGET 
dataset was extracted and subdivided for each clinical parameter. Spe-
cifically, two groups were classified according to age (≤18 and >18 
years), gender (female and male), and metastatic status (metastatic and 
non-metastatic) [42]. Categorical variables were used to assess the 
relationship between MRRS and clinical characteristics by chi-square 
test. Kaplan-Meier survival analysis stratified by clinicopathological 
characteristics was subsequently performed. We screened for indepen-
dent prognostic factors from clinical variables and MRRS by conducting 
univariate and multivariate Cox regression analyses. 

2.8. Evaluation of drug sensitivity 

The “pRRophetic” package can be implemented to predict pheno-
typic and drug response based on gene expression data to explore po-
tential therapeutic agents for osteosarcoma. We calculate the half 
maximal inhibitory concentration (IC50) of common chemotherapeutic 
agents for drug sensitivity analysis in different MRRS groups of osteo-
sarcoma patients by applying the “pRRophetic” package. The CellMiner 
database (https://discover.nci.nih.gov/cellminer) contains NCI-60 
compound activity data and RNA-seq expression profiles from which 
FDA-approved drugs were screened to predict the correlation between 
core gene expression levels and drug sensitivity (P < 0.05 was used as a 
screening criterion). 

2.9. Methylation modification analysis 

MEXPRESS is a database used to visualize the relationship between 
genomic location, methylation modifications and gene expression in the 
TCGA database [43,44]. We used this database (https://mexpress.be/) 
to analyze the expression of six signature-contained m7G modulators in 
relation to the methylation level of CpG in sarcoma. 

2.10. Cell lines culture and quantitative real-time polymerase chain 
reaction (qRT-PCR) 

All cell lines were obtained through the Cell Bank of the Chinese 
Academy of Sciences (Shanghai, China). HFOB1.19 cells were cultured 
in DMEM/F12 medium (BI, USA) at 33.5 ◦C. U2OS cells were main-
tained in McCoy’s 5A medium (Gibco, USA). MNNG/HOS and MG63 
cells were cultivated in high-glucose DMEM (Gibco, USA), while 143B 
cells were maintained in RPMI 1640 medium (BI, USA). All three oste-
osarcoma cells were incubated at 37 ◦C, 5% CO2. The media were 
supplemented with 10% fetal bovine serum (Gibco, USA) and 1% pen-
icillin–streptomycin (Solarbio, Beijing, China). 

Total RNA was prepared using RNA-easyTM isolation reagent 
(Vazyme Biotech Co., Ltd., Nanjing, China) and then reverse transcribed 
into cDNA with HiScript III RT SuperMix (Vazyme, China). Finally, qRT- 
PCR was performed using the UltraSYBR Mixture Kit (CWBIO, China). 
The relative mRNA expression of genes was calculated by 2− ΔΔCt 

methods and normalized to GAPDH. Primer sequences for relevant genes 
are described in Supplementary Table S3. 
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2.11. Cell proliferation assay and Transwell assay 

Osteosarcoma cells were transfected with the human EIF4E3 over-
expression plasmid and incubated in serum-free, antibiotic-free medium 

for 4 to 6 h before replacing the complete medium. Following this, cell 
viability was assessed by a colony formation assay in which 1 × 10 3 

osteosarcoma cells were inoculated in 6-well plates and cultured for 12 
days before staining with crystal violet. For the CCK-8 assay, 5 × 103 

Fig. 1. Expression levels and chromosome localization of m7G modulators. (A-B) Heatmap (A) and boxplot (B) of DEm7Gs in osteosarcoma and normal tissues. (C) 
The association network shows the interactions between m7G modulators. (D) Location of m7G modulators on the chromosome. (E-F) GO enrichment analysis (E) 
and KEGG pathway analysis (F) of DEm7Gs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEm7Gs, differentially expressed m7G mod-
ulators. *p < 0.05; **p < 0.01; ***p < 0.001. 
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transfected osteosarcoma cells were incorporated into a 96-well culture 
plate for 24 h. Afterward, 10 μL of CCK-8 reagent (Yeasen, China) was 
added to measure the absorbance at 450 nm. Transwell assays were 
conducted to analyze the effect of EIF4E3 on osteosarcoma cell migra-
tion and invasion. In the upper chamber, osteosarcoma cells were 
inoculated at 5 × 104/well into serum-free medium, and in the lower 

chamber, 500 μL of medium containing 10% FBS was added. Cells were 
seeded into the upper chamber with precoated Matrigel For invasion. 
One day later, cells migrating to the subsurface of the PET membrane 
were immobilized with 4% paraformaldehyde and stained with crystal 
violet. 

Fig. 2. Identification of m7G modification patterns in osteosarcoma by consensus clustering. (A) Two clusters identified by consistent clustering analysis (k = 2). (B) 
The discrepancies in the abundance of immune cell infiltration between the two m7G clusters. (C) The distinction in immune checkpoint expression levels between 
the two m7G clusters. (D) Kaplan-Meier survival curves of osteosarcoma patients with different m7G modification patterns. (E) Variation in clinical features and 
expression levels of m7G modulators between the two m7G clusters. (F) GSVA enrichment analysis of osteosarcoma patients with different m7G modification patterns 
for ascertaining the activation status of biological pathways. GSVA, gene set variation analysis; *p < 0.05; **p < 0.01; ***p < 0.001; NS, no significance. 
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2.12. Statistical analysis 

The statistical analysis of bioinformatics results in this study was 
performed by R software (v4.2.1). Univariate and Lasso Cox regression 
analyses were applied to determine prognostic indicators in osteosar-
coma. The KM method was carried out to measure the survival 
discrepancy between subgroups. The Spearman correlation method was 
used to analyze the association between risk scores and immune cell 
infiltration abundance. Statistical differences between groups were 
calculated by t-test or one-way ANOVA using GraphPad Prism 8.0. P <
0.05 was considered statistically significant. 

3. Results 

3.1. The landscape of m7G modulators in osteosarcoma 

In this study, we collected m7G-related genes and proceeded to 
compare the expression discrepancies in osteosarcoma and normal 
samples before assessing their prognostic performance. The results 
indicated that mRNA expression of 15 m7G regulators was significantly 
higher in osteosarcoma tissues than in normal tissues, whereas 14 m7G 
regulators were downregulated (Fig. 1A, B). These DEm7Gs served as 
candidate genes for the construction of prognostic features. Following 
this, the network of m7G modulators was plotted according to the 
expression abundance of each regulator to illustrate their internal as-
sociations (Fig. 1C). Fig. 1D shows the detailed location of RNA 
methylation regulators on the chromosomes. Additionally, we per-
formed GO and KEGG functional enrichment analysis to delve into po-
tential biological functions. According to GO enrichment analysis, 
DEm7Gs are involved in several biological processes, such as trans-
lational initiation, regulation of translation, nucleotide catabolic pro-
cess, and nucleobase-containing small molecule biosynthetic process; 
concerning cellular component, DEm7Gs were primarily enriched in 
RNA cap binding complex and mRNA cap binding complex. Also, these 
DEm7Gs have a complex set of molecular functions, including nucleo-
tide diphosphatase activity, RNA 7-methylguanosine cap binding, and 
translation regulator activity (Fig. 1E, Supplementary Table S4). More-
over, KEGG enrichment results revealed that DEm7Gs are prominently 
involved in RNA degradation and nucleocytoplasmic transport among 
others (Fig. 1F, Supplementary Table S4). We accordingly hypothesized 
that the potential biological functions of DEm7Gs are relevant to mRNA 
translation, m7G modification, and epigenetic regulation. In conclusion, 
the above results indicate the heterogeneous expression and molecular 
regulatory mechanisms of m7G modulators in osteosarcoma. 

3.2. Consensus clustering identified m7G modification patterns in 
osteosarcoma 

We executed an unsupervised consensus clustering to segment the 
osteosarcoma samples with different m7G patterns according to the 
expression of 29 m7G regulators, and k = 2 showed the best cluster 
stability (Fig. 2A). Two distinguishable m7G patterns were finally 
identified, named m7G-cluster 1 to 2. Then, we performed the ssGSEA 
algorithm to evaluate the immune microenvironment features in the two 
m7G modification patterns. As shown in Fig. 2B, the enrichment score of 
B cells and Th2 cells were significantly downregulated in m7G- 
cluster1compared to m7G-cluster2. In addition, there were significant 
discrepancies in the expression of several immune checkpoint genes 
between two m7G modification subtypes. The m7G-cluster1 showed 
impaired expression of immune checkpoint genes, including BTLA, 
CD200R1, ICOS, VTCN1, PDCD1LG2, CD27, TNFSF15, TIGIT, TNFSF4, 
CD44, and TNFRSF9 (Fig. 2C). This result suggests m7G-cluster2 is more 
likely to benefit from immune checkpoint inhibitor (ICI) therapy. 
Interestingly osteosarcoma patients in the m7G-cluster2 also showed a 
matched survival advantage using KM survival analysis (Fig. 2D). The 
correlation between clinicopathological features and m7G modification 

patterns is shown in Fig. 2E, but no significant discrepancies were 
detected. Next, the biological functions activated in distinct phenotypes 
were assessed by GSVA, and our results demonstrated that metabolism- 
related pathways, including glycine, serine, threonine, fructose, 
mannose, and sulfur metabolism pathways, were all significantly upre-
gulated in the m7G-cluster1. In contrast, functions, specifically primary 
bile acid biosynthesis, extracellular matrix (ECM) receptor interaction, 
and focal adhesion, are prominently activated in m7GCluster2 (Fig. 2F, 
Supplementary Table S5). 

3.3. Establishment and validation of m7G-related risk score 

To estimate the m7G methylation modification patterns in individual 
patients, we obtained 22 survival-associated m7G regulators by uni-
variate Cox regression analysis (Supplementary Fig. S1A). Subsequent 
Lasso regression analysis identified six m7G regulators for constructing 
the m7G-related risk score termed MRRS to characterize the immune 
microenvironment and predict overall survival (OS) (Supplementary 
Fig. S1B, C). The MRRS was calculated as follows: MRRS = (− 0.27242 ×
NUDT11 expression) + (− 1.21282 × NUDT16 expression) + (− 3.09094 
× CYFIP1 expression) + (− 0.15031 × EIF4E3 expression) + (0.50841 ×
LARP1 expression) + (0.40932 × EIF4A1 expression). Osteosarcoma 
patients in the TARGET (training set) and GSE21257 (test set) cohorts 
were divided into low-MRRS and high-MRRS groups based on the me-
dian MRRS, and the survival status of patients with different MRRS was 
examined (Fig. 3A, B). Kaplan-Meier analysis revealed a significantly 
higher survival probability for patients with low MRRS relative to those 
with high MRRS in both cohorts, suggesting that MRRS contributes to 
differentiating the prognosis of osteosarcoma patients with various m7G 
modification patterns (Fig. 3C, D). ROC analysis demonstrated the 
robustness of the MRRS in forecasting the outcome of osteosarcoma 
patients in the TARGET cohort with the area under the curves (AUCs) of 
0.654, 0.787, and 0.790 for 1-, 3-, and 5-year survival, respectively 
(Fig. 3E). Again this was also confirmed in the external validation set 
with AUCs greater than 0.7 for 1-, 3-, and 5-year OS (Fig. 3F). PCA 
mapping revealed differences in the distribution between patients with 
high and low MRRS in both osteosarcoma cohorts (Fig. 3G, H). 

3.4. Extended application of MRRS in immune infiltration and 
immunotherapy 

Studies have shown that osteosarcoma creates a locoregional 
immune-tolerant TME by regulating the recruitment and polarization of 
immune cells [45]. Notably, the composition and content of immune 
infiltrating cells in the TME are critical determinants of tumor pro-
gression and immunotherapeutic outcome [46,47]. Therefore, we uti-
lized a combination of the CIBERSORT, ssGSEA, and ESTIMATE 
algorithms to investigate the effectiveness of MRRS in predicting the 
immune landscape. The correlation between immune cells and MRRS 
was obtained by calculating the content of 22 immune cell subsets in 
osteosarcoma patients by the CIBERSORT algorithm. As shown in 
Fig. 4A, four infiltrating immune cells, including regulatory T cells 
(Tregs), naive B cells, activated memory CD4+ T cells, and CD8+ T cells 
were significantly negatively related to MRRS. In addition, we illustrate 
the association between the six m7G regulators involved in the MRRS 
and the abundance of 22 immune cells (Fig. 4B). The ssGSEA was per-
formed to assess the relative abundance of immune cell infiltration and 
immune function in osteosarcoma TME. Compared with the high MRRS 
group, the low MRRS group exhibited generally increased levels of 
infiltrating immune cells, including B cells, CD8+ T cells, macrophages, 
neutrophils, natural killer (NK) cells, plasmacytoid dendritic cells 
(pDCs), T helper (Th) cells, Th1 cells, tumor-infiltrating lymphocytes 
(TILs), and Tregs (P < 0.05, Fig. 4C). We also examined a variety of 
immune-related functions, among which antigen-presenting cell (APC) 
co-stimulation, cytolytic activity, human leukocyte antigen, 
inflammation-promoting, checkpoint, T cell co-inhibition, APC co- 
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Fig. 3. Construction and validation of the 
m7G-related risk score. (A-B) The MRRS dis-
tribution of osteosarcoma patients in the 
TARGET (A) and GSE21257 (B) cohort. (C-D) 
Kaplan-Meier survival curves for osteosarcoma 
patients in the TARGET (C) and GSE21257 (D) 
cohort. (E-F) ROC curves for 1-, 3-, and 5-year 
survival in the TARGET (E) and GSE21257 (F) 
cohort. (G-H) PCA analysis for patients with 
diverse MRRS in the TARGET (G) and 
GSE21257 (H) cohort. ROC, receiver operating 
characteristic; PCA, principal components 
analysis; MRRS, m7G-related risk score.   
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Fig. 4. Extended application of MRRS in the immune landscape. (A) Correlation analysis between MRRS and immune infiltrating cells. (B) Correlation analysis 
between m7G modulators involved in the MRRS and immune infiltrating cells. (C) ssGSEA analysis of diverse MRRS subgroups. (D) ESTIMATE analysis of diverse 
MRRS subgroups. (E) Heatmap for visualization of differences in the immune score, stromal score, ESTIMATE score, tumor purity, immune cells, and function in 
distinct MRRS subgroups. ssGSEA, single-sample gene-set enrichment analysis; MRRS, m7G-related risk score. *p < 0.05; **p < 0.01; ***p < 0.001. 
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inhibition, and T cell co-stimulation were also more active in the low 
MRRS (P < 0.05, Fig. 4C). Concerning the ESTIMATE algorithm, the 
results demonstrated that low MRRS had a higher immune score, stro-
mal score, ESTIMATE score, and lower tumor purity compared to high 
MRRS, which also corresponded to the results of the CIBERSORT, 
ssGSEA algorithm (Fig. 4D). Considering the lower enrichment of most 
immune cells and functions, we hypothesized that the low MRRS group 
with high tumor purity might exhibit an immune-desert phenotype. 
Finally, we combined the above results to produce the heatmap visually 
expressing the differences in immune scores, interstitial scores, esti-
mated scores, tumor purity, immune cells, and functions of different 
MRRS subgroups (Fig. 4E). 

Immune checkpoints play a pivotal position in predicting the efficacy 
of ICI therapy as well as immune escape [48,49]. We further analyzed 
the differential expression of common immune checkpoints in MRRS 
subgroups to assess the impact of MRRS in immunotherapy. Our 
investigation revealed that osteosarcoma patients with low MRRS 
manifested enhanced expression of CD200, TNFRSF14, NRP1, LAG3, 
CD200R1, CTLA4, CD48, HAVCR2, LGALS9, VTCN1, PDCD1LG2, CD27, 
TNFSF15, TIGIT, CD274, and TNFSF4 (P < 0.05, Fig. 5A). In addition, 
four immune checkpoints (CTLA4, HAVCR2, PDCD1LG2, and CD274) 
were negatively correlated with MRRS (P < 0.05, Fig. 5B). The structural 
and functional variability of HLA is the basis for an effective adaptive 
immune response to tumor antigens, and individual variation in HLA 
genotype patterns could affect the clinical outcome of ICI therapy 
[41,50]. Therefore, we also evaluated the relationship between MRRS 
and HLA-related gene expression. Osteosarcoma patients with high 
MRRS exhibited elevated expression of HLA class I genes (including 
HLA–E, HLA–H, and HLA–L) and HLA class II genes (including 
HLA–DMB, HLA–DOA, HLA–DPA1, HLA–DPB1, HLA–DQA1, HLA–DQB1, 
HLA–DRA, HLA–DRB1, and HLA–DRB5) (P < 0.05, Fig. 5C). In conclu-
sion, the above results suggest that osteosarcoma patients with diverse 
MRRS present variations in immune checkpoints, immune cells, and 
function. The MRRS may be instrumental in reflecting the TME infil-
tration characteristics of individual osteosarcoma patients and 
providing a valuable reference in selecting appropriate immunothera-
peutic agents in the clinical treatment of osteosarcoma. 

3.5. Characterization of the relationship between MRRS and clinical 
features 

We compared the clinicopathologic features of high and low MRRS 
groups and determined whether MRRS could be an independent pre-
dictor for osteosarcoma. Distant metastasis was associated with high 
MRRS in patients with osteosarcoma but without significant differences 
in gender and age between MRRS subgroups (Fig. 6A). The high pro-
pensity of osteosarcoma to spread and metastasize is the most influential 
intrinsic factor for poor patient prognosis [51]. Again, this validates the 
consequences of MRRS-based survival analysis that clinical outcomes 
are worse in the high MRRS subgroup (Fig. 3C). Additionally, low MRRS 
portended a better prognosis in all subgroups, including non-metastatic 
subgroups, different gender and age subgroups, with the exception of 
metastatic subgroups (Fig. 6B). We subsequently identified MRRS and 
metastatic status as independent indicators for osteosarcoma patients by 
univariate and multivariate Cox regression analysis (Fig. 6C, D). More-
over, the 5-year AUC of MRRS was greater than the AUC of metastasis in 
the TARGET cohort (Fig. 6E). The C-index also indicated higher 
discriminatory strength of MRRS as a predictor of OS than other clinical 
features (Fig. 6F). Finally, we created a nomogram integrating MRRS 
and clinical parameters to predict the likelihood of survival in patients 
with osteosarcoma (Fig. 6G). Calibration curves were plotted for 1-, 3-, 
and 5-year OS to assess the accuracy of the nomogram (Fig. 6H). 

3.6. Characterization of the relationship between MRRS and drug 
sensitivity 

We appraised the value of MRRS in predicting drug sensitivity to 
common chemotherapeutic agents and molecularly targeted drugs by 
analyzing the IC50. Our results indicated significantly stronger response 
sensitivity in patients with low MRRS than in patients with high MRRS, 
as the IC50 of bortezomib, dasatinib, gemcitabine, midostaurin, obato-
clax mesylate, shikonin, tipifarnib, and vinorelbine were more elevated 
in the high MRRS subgroup, suggesting a possibly more significant 
benefit from the above drug treatments (Fig. 7A). Furthermore, we 
explored the association between the expression of m7G regulators 
involved in MRRS and chemotherapies sensitivity. The expression of 
CYFIP1 and NUDT16 was negatively correlated with sensitivity to most 
drugs, i.e., the higher the expression of CYFIP1 and NUDT16 in patients, 
the more resistant they were to drugs such as bendamustine, etoposide, 
teniposide, valrubicin, epirubicin, and nelarabine among others 
(Fig. 7B). All the results are shown in Supplementary Table S6. 

3.7. Single-cell transcriptomic analysis of m7G regulators 

The bulk RNA-seq data has more samples and facilitates reflection of 
inter-population characteristics, whereas scRNA-seq data provides 
transcript abundance of individual cells with higher sensitivity. In this 
study, we also examined the expression levels of m7G regulators 
involved in MRRS by using the TISCH platform to analyze osteosarcoma 
scRNA-seq data (GSE162454). After dimensionality reduction, UMAP- 
based cell clustering delineates 29 major clusters (Fig. 8A). According 
to the lineage markers, these clusters were labeled as conventional 
CD4+ T cells (CD4Tconv), exhausted CD8+ T cells (CD8Tex), endo-
thelial cells, fibroblasts, malignant cells, monocytes or macrophages 
(Mono/Macro), osteoblasts, and plasmocytes (Fig. 8B). It is worth 
mentioning that osteoblasts form four cell clusters, whereas malignant 
cells form two cell clusters. Genetic and phenotypic heterogeneity of 
osteosarcoma is widespread in terms of cell morphology, differentiation 
stage, microenvironment, treatment response, and function [52–54]. 
Hence we hypothesize that this phenomenon may be caused by intra- 
and inter-tumor heterogeneity in the tested osteosarcoma. Following 
this, we investigated the expression profiles of six m7G regulators in the 
above cell types. The result revealed a significant upregulation of 
EIF4A1 in osteosarcoma and immunocytes, while the transcript abun-
dance of EIF4E3 was reduced in all major cell types (Fig. 8C). As shown 
in Fig. 8D-I, we visualized the abundance distribution of the six core 
m7G modulators in various cell types by UMAP plots, with CYFIP1 
markedly enriched in endothelial cells, osteoblasts, monocytes, or 
macrophages. 

3.8. Overexpression of EIF4E3 inhibits osteosarcoma cell proliferation 
and migration 

EIF4E3 belongs to the eukaryotic translation initiation factor 4E 
(eIF4E) family. It was previously reported that EIF4E3 acts as a specific 
tumor suppressor, binding to m7G caps atypically to inhibit the onco-
genic transformation of cells [55]. In prostate cancer, EIF4E3 was 
implicated in hyaluronan-mediated invasion and metastasis of 
androgen-independent tumor cells [56]. However, the prognostic value 
of EIF4E3 and its relationship to the malignant phenotype of osteosar-
coma remains virtually unknown. Our pan-cancer analysis revealed 
thwarted expression of EIF4E3 in most cancers, including bladder can-
cers, breast carcinoma, colon adenocarcinoma, and lung adenocarci-
noma, among others (Fig. 9A). Moreover, the content of EIF4E3 was 
positively associated with the expression of NUDT10, NUDT11, 
NUDT16, NUDT4B, and CYFIP1, but negatively related to the expression 
of LARP1, WDR4, and NSUN2 in osteosarcoma (Fig. 9B). Following this, 
survival curves showed that osteosarcoma patients in the EIF4E3 high- 
expression group exhibited superior OS in both cohorts (Fig. 9C). In 
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Fig. 5. Extended application of MRRS in immunotherapy response. (A) Discrepancies in immune checkpoint gene expression between diverse MRRS subgroups. (B) 
Correlation analysis between MRRS and immune checkpoint genes. (C) Discrepancies in human leukocyte antigen gene expression between diverse MRRS subgroups. 
MRRS, m7G-related risk score. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Fig. 6. Clinical application potential of MRRS. (A) Discrepancies in clinical features between different MRRS subgroups. (B) Kaplan-Meier survival analysis stratified 
by clinical characteristics. (C-D) Univariate (C) and multivariate (D) independent prognostic analysis of MRRS and clinical variables. (E) Comparison of the predictive 
performance of MRRS and different clinical features by ROC analysis. (F) Comparison of the C-index between MRRS and clinical variables. (G) Nomogram for 
predicting the overall survival of osteosarcoma patients at 1, 3, and 5 years. (H) Calibration curve of the nomogram. MRRS, m7G-related risk score. 
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Fig. 7. MRRS-based chemotherapy sensitivity analysis in osteosarcoma. (A) Discrepancies in drug sensitivity between diverse MRRS subgroups. (B) Correlation 
analysis of m7G modulators involved in MRRS with drug sensitivity. MRRS, m7G-related risk score. 
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Fig. 8. Expression patterns of m7G modulators at the single-cell profiles. (A) Cells were clustered into 29 types by the UMAP dimensionality reduction algorithm, 
with each color representing an annotated phenotype. (B) UMAP plot of 8 predominant cell types from osteosarcoma scRNA-seq data. (C) Violin plot for displaying 
the expression levels of m7G modulators in all cell types. (D-H) UMAP plots for visualizing the abundance distribution of core m7G modulators, including NUDT11 
(D), NUDT16 (E), CYFIP1 (F), EIF4E3 (G), LARP1 (H), and EIF4A1 (I). 
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addition, fifteen methylation CpG sites were associated with EIF4E3 
expression in MEXPRESS (Fig. 9D). Regarding the level of immune cell 
infiltration in osteosarcoma, EIF4E3 was positively correlated with the 
abundance of gamma delta T cells, plasma cells, and naive B cells 
(Fig. 4B). 

We further validated the expression levels of EIF4E3 in osteosarcoma 
by qRT-PCR. EIF4E3 exhibited poor expression in all osteosarcoma cell 
lines compared to osteoblasts, consistent with our comprehensive 
analysis derived from scRNA-seq and bulk RNA-seq data (Fig. 10A). 
Subsequently, we overexpressed EIF4E3 in 143B and MNNG/HOS cells 
to further determine the impact of EIF4E3 on the biological function of 
osteosarcoma (Fig. 10B). Cell viability was verified by subjecting the 
transfected 143B and MNNG/HOS cells to CCK-8 assay and clone for-
mation assay, which suggested that the upregulation of EIF4E3 inhibited 
cell proliferation (Fig. 10C, D). In addition, reduced migration and in-
vasion of 143B and MNNG/HOS cells were observed after transfection 
with EIF4E3 compared to the control group (Fig. 10E, F). These results 
imply that EIF4E3 may be a potential functional biomarker for 
osteosarcoma. 

4. Discussion 

Osteosarcoma typically occurs in childhood and adolescence and is 
now the second leading cause of tumor-related death in adolescents due 
to its high metastatic rate, aggressiveness, and increasing annual prev-
alence [57,58]. The definition of early-stage osteosarcoma is tremen-
dously challenging owing to the non-specific presentation, which leads 
to the vast majority of patients with micrometastatic lesions at the time 
of diagnosis [59,60]. Remarkably, distant metastasis is a principal cause 
of treatment failure and death in patients with osteosarcoma [61]. 
Therefore, it is crucial to determine novel diagnostic markers and 
therapeutic targets in patients with osteosarcoma. The intimate corre-
lation between epigenetic changes and tumor progression has been 
extensively characterized [62]. Although the complexity of cancer 
pathogenesis is implicated in cumulative genetic and epigenetic alter-
ations, it is not negligible that epigenetic regulation occurs more 
frequently and significantly than somatic mutations [63,64]. The m7G 
modification facilitates the modification of RNA structure and function 
to manipulate specific gene expression as a hotspot in recent epigenetic 
studies [22]. It has extensive impacts on mRNA, tRNA, and rRNA along 
with serving in diverse biological processes such as transcriptional 
elongation and pre-mRNA splicing [65]. Accumulating evidence 

Fig. 9. Expression level and survival analysis of EIF4E3 in osteosarcoma. (A) Pan-cancer analysis of differential expression EIF4E3 in different cancers. (B) Cor-
relation analysis of the expression of EIF4E3 and other m7G regulators in osteosarcoma. (C) Overall survival analysis of osteosarcoma patients with diverse EIF4E3 
expression levels in the GSE21257 (top) and TARGET cohort (bottom). (D) Associations between EIF4E3 expression and methylation CpG sites in MEXPRESS. *p <
0.05; **p < 0.01; ***p < 0.001. 
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emphasized that addressing aberrant m7G modifications in cancer is 
expected to be a practical therapeutic approach [66]. Therefore, we 
investigated m7G regulators as potentially valuable targets to enhance 
treatment and ameliorate prognosis in osteosarcoma. 

In the present study, we first screened 29 m7G regulators differen-
tially expressed in osteosarcoma and found them abundant in biological 
functions such as initiation and regulation of translation and RNA 
catabolic processes by enrichment analysis. In fact, m7G methylation, as 
a critical component of post-transcriptional modification, is involved in 
various aspects of cancer RNA metabolism that have been extensively 
characterized, including miRNA maturation, mRNA translation, and 
mRNA decay [22,67,68]. In hepatocellular carcinoma, METTL1- 
mediated m7G tRNA modification enhanced mRNA translation in a 
codon frequency-dependent manner and accelerated tumorigenesis and 
progression in vitro and in vivo [20]. In another study, Pandolfini et al. 
identified m7G-cap methylation as a novel modification pathway of 
miRNA structure and suggested that METTL1 promotes let-7 miRNA 
processing and specifically affects cell migration via m7G methylation 
[69]. Orellana et al. also demonstrated that increased m7G modification 
of Arg-TCT tRNA helps prevent mRNA decay and reduce ribosomal ar-
rest to drive oncogenic transformation, which is associated with poor 
survival in human cancers [28]. Considering the extraordinary potential 
of these distinctively expressed m7G regulators in regulating tumor 
progression, we subsequently identified the expression patterns of m7G 
regulators in individual osteosarcoma patients in an attempt to explore 
their association with prognosis, immune microenvironment charac-
teristics, drug sensitivity, along with clinical factors. Based on Cox 
regression analysis, we screened for prognosis-related m7G regulators 
and constructed MRRS. In different cohorts, KM survival analysis and 
ROC analysis indicated that MRRS predicts outcomes of patients with 
osteosarcoma effectively. In addition, we revealed that MRRS was 
significantly higher in osteosarcoma patients with metastasis, suggest-
ing that MRRS may contribute to distinguishing patients with different 
disease states when early symptoms of osteosarcoma are insidious and 
not easily detectable. We also constructed a nomogram based on MRRS 
and different clinicopathological parameters to further improve clinical 
applications. 

Multidrug resistance is a fundamental cause of chemotherapy failure 
in osteosarcoma [70]. Due to acquired or intrinsic resistance, 

conventional chemotherapeutic agents are inevitably limited in patients 
with primary and metastatic osteosarcoma [71]. Therefore, we investi-
gated the association between MRRS and chemotherapeutic drug 
sensitivity in osteosarcoma to provide new insights into individualized 
patient management. The results showed significant discrepancies in the 
IC50 of numerous drugs in different MRRS subgroups. Patients with 
lower MRRS appeared more sensitive to these chemotherapeutic agents, 
including bortezomib, dasatinib, gemcitabine, midostaurin, and obato-
clax mesylate, among others. The therapeutic efficacy and promise of 
these agents in osteosarcoma have now been elucidated in studies. For 
example, bortezomib is a proteasome inhibitor endorsed for treating 
multiple myeloma and mantle cell lymphoma [72]. Preclinical studies 
have documented that human osteosarcoma cell lines are susceptible to 
bortezomib in vitro [57]. Bortezomib induces apoptosis and autophagy 
in osteosarcoma cells by inhibiting extracellular regulated protein ki-
nase phosphorylation [73]. Dasatinib is a Src family kinase and Bcr-Abl 
inhibitor that has demonstrated activity in preclinical models of multi-
ple sarcomas [74]. Beck et al. also observed that the ceritinib and 
dasatinib combination was exceedingly safe and well tolerated in oste-
osarcoma patients with a long history of pulmonary metastases and that 
the extent of tumor necrosis was proportional to the drug concentration 
[75]. Gemcitabine, the most prominent cytidine analogue developed, is 
an effective radiosensitizer for multiple solid tumors and has synergistic 
activity with other chemotherapeutic agents [76,77]. In osteosarcoma, 
the aerosol gemcitabine significantly inhibited the growth of the pri-
mary tumor and prevented metastatic spread without toxicity to normal 
tissue [78]. Midostaurin, an orally available small molecule inhibitor of 
FMS-like tyrosine kinase 3 (FLT3), has been shown to reduce relapse and 
improve overall and event-free survival in FLT3-mutant acute myeloid 
leukemia [79,80]. Obatoclax mesylate, a pan-Bcl-2 inhibitor with BH3 
domain mimicry, enhances the sensitivity of tumor cells to different 
cytotoxic drugs [81]. Our results suggest that MRRS may help to inform 
the appropriate chemotherapy strategy for patients. However, further 
studies are necessary to evaluate the effectiveness of these drugs in 
treating osteosarcoma. 

In the last decades, there has been increasing evidence that cancer 
initiation and procession are related not only to the abnormal genetic 
and epigenetic alterations of tumor cells but also to TME [82,83]. It is 
now widely recognized that an appropriate local microenvironment is 

Fig. 10. Validation of EIF4E3 expression levels and cell functions assay. (A) Expression of EIF4E3 was detected in osteosarcoma cell lines by qRT-PCR. (B-F) 
Overexpression of EIF4E3 (B) inhibited the proliferation (C, D), migration (E), and invasion (F) abilities of osteosarcoma cells. *p < 0.05; **p < 0.01. 
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non-negligible for the development of osteosarcoma [84]. The immune 
environment of osteosarcoma consists mainly of T lymphocytes and 
macrophages but also contains other subpopulations, including B lym-
phocytes and mast cells [85]. Osteosarcoma controls the recruitment 
and differentiation of immune infiltrating cells to establish a local 
immune-tolerant TME conducive to tumor growth, drug resistance, and 
metastases [86]. TME is inextricably linked to immunotherapy, and 
targeting TME components, such as immunoregulatory cells and their 
secreted factors, helps guide and ameliorate various immunotherapies 
[87]. We characterized the immune microenvironment of osteosarcoma, 
intending to provide breakthroughs in immunotherapy. Our study spe-
cifically focused on the relationship between m7G modulators and im-
mune cell infiltration in osteosarcoma. We stratified patients according 
to their respective TME and found that patients with high and low MRRS 
exhibited a significantly distinct abundance of immune cell infiltration, 
such as CD8+ T cells, macrophages, NK cells, pDCs, TILs, and Tregs. 
Accumulation of tissue-resident memory T cells at neoplastic sites ex-
plains a more excellent prognosis and is related to the efficacy of ICI 
therapy in some cancers [88]. In addition, NK cells are crucial to tumor 
immunosurveillance, rapidly recognizing and eliminating tumor cells or 
influencing the activity of other immune cells by secreting various cy-
tokines and chemokines, and their infiltration level is likewise a prog-
nostic indicator [89]. In another study, Buddingh et al. reported that M1 
macrophages are associated with low metastasis and high survival in 
patients with osteosarcoma, whereas M2 macrophages have the oppo-
site effect [90]. M1-polarized macrophages have the potential to kill 
tumor cells and enhance the immune response; however, most tumors 
typically tend for M2-polarized macrophages to facilitate angiogenesis, 
extravasation, and immune escape, ultimately leading to tumor pro-
gression and metastasis [91]. Our results are consistent with these 
findings. Patients with high MRRS had lower levels of tumor immune 
cell infiltration and immune function enrichment, and accordingly, their 
survival was worse. Additionally, as the heterogeneous and highly dy-
namic expression of immune checkpoint genes in primary or metastatic 
tumors, it is necessary to detect these molecules before and during 
treatment to improve the therapeutic effect of ICI [92,93]. From our 
analysis, MRRS could distinguish the expression levels of immune 
checkpoints in different osteosarcoma patients. In conclusion, MRRS 
helps to understand the immune profile of osteosarcoma TME, which is 
crucial for better predicting antitumor immune responses and selecting 
current immunotherapeutic approaches. 

Six m7G regulators used to construct MRRS have been reported to be 
associated with tumors; however, the exact mechanism and functional 
effect of EIF4E3 in osteosarcoma remain unclear. EIF4E3 belongs to the 
eIF4E family capable of binding the mRNA 5′ cap and regulating pro-
teome and cellular phenotype [94]. EIF4E family members generally 
recognize the m7G cap by inserting the m7G caps between two aromatic 
residues; however, EIF4E3 interacts more extensively with the m7G caps 
using an atypical cap-binding strategy of a pocket defined by Trp98, 
S1–S2 loop, among others [55]. EIF4E3 uses its cap-binding activity to 
compete with eIF4E1 for downstream target mRNAs, such as VEGF and 
c-MYC, to impair oncogenic transformation [55]. In another study, 
Landon et al. reported that EIF4E3 could maintain cell viability without 
rapid proliferation by regulating the translation of key transcription 
factors and inducing the expression of pro-proliferative genes [95]. Hu 
et al. also observed that MiR-584-5p targets EIF4E3 to promote DNA 
impairment, cell cycle arrest, and radiosensitivity in medulloblastoma 
[96]. This seemingly contradictory result makes us interested in the 
function of EIF4E3. In our study, EIF4E3 expression was downregulated 
in multiple cancers, including osteosarcoma. In terms of immune cell 
infiltration, EIF4E3 positively correlated with the abundance of gamma 
delta T cells, plasma cells, and naive B cells in the immune microenvi-
ronment of osteosarcoma. Gamma delta T cells are recognized as a 
bridge between innate and adaptive immunity, along with a widespread 
favorable prognostic feature in 39 malignancies [97,98]. Numerous 
studies have shown gamma delta T cells can directly target tumor cells 

through the granule exocytosis pathway, antibody-dependent cellular 
cytotoxicity effect, and secretion of cytokines (interferon-γ, tumor ne-
crosis factor-α), as well as indirectly impact antitumor immunity by 
activating other immune cells and coordinating downstream immune 
responses [99,100]. The absence of infiltrating gamma delta T cells may 
be one of the reasons for the poor overall survival demonstrated by os-
teosarcoma patients with low expression of EIF4E3. We subsequently 
confirmed that overexpression of EIF4E3 inhibited the proliferation and 
migration of osteosarcoma in vitro, indicating a tumor suppressor role 
for EIF4E3. These results suggest that the function of EIF4E3 is complex, 
and it appears to have opposing capabilities in different tumors. 

Our findings may contribute to a further understanding of the mo-
lecular mechanisms of osteosarcoma, but of course, there are some un-
avoidable limitations. First, key experiments to verify the correlation of 
m7G genes with immune phenotype are required; for example, detect T 
cells, B cells, HLA, CD274, and TNFSF4 in patients with different MRRS. 
Secondly, Predicting drugs that are more sensitive in patients with low 
MRRS needs to be validated by experiments using commercial cell lines 
or patient tissues in vitro. Moreover, we have only preliminarily 
explored the role of EIF4E3 in osteosarcoma, and a further under-
standing of the function and specific mechanisms of these prognostic 
m7G modulators is promising. 

5. Conclusion 

In summary, this study systematically designed and validated a 
robust signature consisting of m7G modulators, which may contribute to 
survival prediction and the design of personalized treatment strategies 
in osteosarcoma. Among them, EIF4E3 may be a potential biomarker for 
osteosarcoma, as its elevated expression indicated a favorable prognosis 
and affected the proliferation and migration of osteosarcoma cells. 
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at https://doi.org/10.1016/j.jbo.2023.100481. 

References 

[1] G. Khalili-Tanha, M. Moghbeli, Long non-coding RNAs as the critical regulators of 
doxorubicin resistance in tumor cells, Cell. Mol. Biol. Lett. 26 (1) (2021) 39. 

[2] W. Cai, Y. Xu, W. Zuo, Z. Su, MicroR-542-3p can mediate ILK and further inhibit 
cell proliferation, migration and invasion in osteosarcoma cells, Aging 11 (1) 
(2019) 18–32. 

[3] K.H. Lu, R.C. Lin, J.S. Yang, W.E. Yang, R.J. Reiter, S.F. Yang, Molecular and 
cellular mechanisms of melatonin in osteosarcoma, Cells 8 (12) (2019). 

[4] Y. Liu, A. Leng, L. Li, B. Yang, S. Shen, H. Chen, E. Zhu, Q. Xu, X. Ma, P. Shi, 
Y. Liu, T. Liu, L. Li, K. Li, D. Zhang, J. Xiao, AMTB, a TRPM8 antagonist, 
suppresses growth and metastasis of osteosarcoma through repressing the TGFβ 
signaling pathway, Cell Death Dis. 13 (3) (2022) 288. 

[5] J. Fellenberg, B. Lehner, H. Saehr, A. Schenker, P. Kunz, Tumor suppressor 
function of miR-127-3p and miR-376a-3p in osteosarcoma cells, Cancers 11 (12) 
(2019). 

[6] Z. Wang, B. Wu, Y. Zhou, X. Huang, W. Pan, M. Liu, X. Yan, N. Lin, Z. Ye, 
Predictors of the survival of primary and secondary older osteosarcoma patients, 
J. Cancer 10 (19) (2019) 4614–4622. 

[7] M.S. Dray, M.V. Miller, Paget’s osteosarcoma and post-radiation osteosarcoma: 
secondary osteosarcoma at Middlemore Hospital, New Zealand, Pathology 40 (6) 
(2008) 604–610. 

[8] L. Cui, J.Y. Zhang, Z.P. Ren, H.J. Zhao, G.S. Li, APLNR promotes the progression 
of osteosarcoma by stimulating cell proliferation and invasion, Anticancer Drugs 
30 (9) (2019) 940–947. 

[9] H.J. Siegel, J.G. Pressey, Current concepts on the surgical and medical 
management of osteosarcoma, Expert Rev. Anticancer Ther. 8 (8) (2008) 
1257–1269. 

[10] Z.J. Bian, H.J. Shan, Y.R. Zhu, C. Shi, M.B. Chen, Y.M. Huang, X.D. Wang, X. 
Z. Zhou, C. Cao, Identification of Gαi3 as a promising target for osteosarcoma 
treatment, Int. J. Biol. Sci. 18 (4) (2022) 1508–1520. 

[11] L. Marchandet, M. Lallier, C. Charrier, M. Baud’huin, B. Ory, F. Lamoureux, 
Mechanisms of resistance to conventional therapies for osteosarcoma, Cancers 13 
(4) (2021). 

[12] R.W. Serra, M. Fang, S.M. Park, L. Hutchinson, M.R. Green, A KRAS-directed 
transcriptional silencing pathway that mediates the CpG island methylator 
phenotype, Elife 3 (2014) e02313. 

[13] W. Wang, F. Shao, X. Yang, J. Wang, R. Zhu, Y. Yang, G. Zhao, D. Guo, Y. Sun, 
J. Wang, Q. Xue, S. Gao, Y. Gao, J. He, Z. Lu, METTL3 promotes tumour 
development by decreasing APC expression mediated by APC mRNA N(6)- 
methyladenosine-dependent YTHDF binding, Nat. Commun. 12 (1) (2021) 3803. 

[14] X. Han, J. Guo, Z. Fan, Interactions between m6A modification and miRNAs in 
malignant tumors, Cell Death Dis. 12 (6) (2021) 598. 

[15] S.K. Doamekpor, E. Grudzien-Nogalska, A. Mlynarska-Cieslak, J. Kowalska, 
M. Kiledjian, L. Tong, DXO/Rai1 enzymes remove 5’-end FAD and dephospho- 
CoA caps on RNAs, Nucleic Acids Res. 48 (11) (2020) 6136–6148. 

[16] L. Trixl, T. Amort, A. Wille, M. Zinni, S. Ebner, C. Hechenberger, F. Eichin, 
H. Gabriel, I. Schoberleitner, A. Huang, P. Piatti, R. Nat, J. Troppmair, A. Lusser, 
RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell 
differentiation by promoting mitochondrial activity, Cell. Mol. Life Sci. 75 (8) 
(2018) 1483–1497. 

[17] A. Noma, Y. Sakaguchi, T. Suzuki, Mechanistic characterization of the sulfur-relay 
system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions, Nucleic 
Acids Res. 37 (4) (2009) 1335–1352. 

[18] T. Sun, R. Wu, L. Ming, The role of m6A RNA methylation in cancer, Biomed. 
Pharmacother. 112 (2019), 108613. 

[19] L. He, H. Li, A. Wu, Y. Peng, G. Shu, G. Yin, Functions of N6-methyladenosine and 
its role in cancer, Mol. Cancer 18 (1) (2019) 176. 

[20] Z. Chen, W. Zhu, S. Zhu, K. Sun, J. Liao, H. Liu, Z. Dai, H. Han, X. Ren, Q. Yang, 
S. Zheng, B. Peng, S. Peng, M. Kuang, S. Lin, METTL1 promotes 
hepatocarcinogenesis via m(7) G tRNA modification-dependent translation 
control, Clin. Transl. Med. 11 (12) (2021) e661. 

[21] T. Suzuki, The expanding world of tRNA modifications and their disease 
relevance, Nat. Rev. Mol. Cell Biol. 22 (6) (2021) 375–392. 

[22] Y. Luo, Y. Yao, P. Wu, X. Zi, N. Sun, J. He, The potential role of N(7)- 
methylguanosine (m7G) in cancer, J. Hematol. Oncol. 15 (1) (2022) 63. 

[23] Y. Chen, H. Lin, L. Miao, J. He, Role of N7-methylguanosine (m(7)G) in cancer, 
Trends Cell Biol. 32 (10) (2022) 819–824. 

[24] M.J. Osborne, L. Volpon, M. Memarpoor-Yazdi, S. Pillay, A. Thambipillai, 
S. Czarnota, B. Culjkovic-Kraljacic, C. Trahan, M. Oeffinger, V.H. Cowling, K.L. 

B. Borden, Identification and characterization of the interaction between the 
methyl-7-guanosine cap maturation enzyme RNMT and the cap-binding protein 
eIF4E, J. Mol. Biol. 434 (5) (2022), 167451. 

[25] W. Cheng, A. Gao, H. Lin, W. Zhang, Novel roles of METTL1/WDR4 in tumor via 
m(7)G methylation, Mol. Ther. Oncolyt. 26 (2022) 27–34. 

[26] C. Tomikawa, 7-Methylguanosine modifications in transfer RNA (tRNA), Int. J. 
Mol. Sci. 19 (12) (2018). 

[27] X. Ying, B. Liu, Z. Yuan, Y. Huang, C. Chen, X. Jiang, H. Zhang, D. Qi, S. Yang, 
S. Lin, J. Luo, W. Ji, METTL1-m(7) G-EGFR/EFEMP1 axis promotes the bladder 
cancer development, Clin. Transl. Med. 11 (12) (2021) e675. 

[28] E.A. Orellana, Q. Liu, E. Yankova, M. Pirouz, E. De Braekeleer, W. Zhang, J. Lim, 
D. Aspris, E. Sendinc, D.A. Garyfallos, M. Gu, R. Ali, A. Gutierrez, S. Mikutis, G.J. 
L. Bernardes, E.S. Fischer, A. Bradley, G.S. Vassiliou, F.J. Slack, K. Tzelepis, R. 
I. Gregory, METTL1-mediated m(7)G modification of Arg-TCT tRNA drives 
oncogenic transformation, Mol. Cell 81 (16) (2021) 3323–3338.e14. 

[29] P. Xia, H. Zhang, K. Xu, X. Jiang, M. Gao, G. Wang, Y. Liu, Y. Yao, X. Chen, W. Ma, 
Z. Zhang, Y. Yuan, MYC-targeted WDR4 promotes proliferation, metastasis, and 
sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma, 
Cell Death Dis. 12 (7) (2021) 691. 

[30] Y. Wu, Z. Wang, J. Shen, W. Yan, S. Xiang, H. Liu, W. Huang, The role of m6A 
methylation in osteosarcoma biological processes and its potential clinical value, 
Hum. Genomics 16 (1) (2022) 12. 

[31] P. Yadav, P. Subbarayalu, D. Medina, S. Nirzhor, S. Timilsina, S. Rajamanickam, 
V.K. Eedunuri, Y. Gupta, S. Zheng, N. Abdelfattah, Y. Huang, R. Vadlamudi, 
R. Hromas, P. Meltzer, P. Houghton, Y. Chen, M.K. Rao, M6A RNA methylation 
regulates histone ubiquitination to support cancer growth and progression, 
Cancer Res. 82 (10) (2022) 1872–1889. 

[32] H. Huang, X. Cui, X. Qin, K. Li, G. Yan, D. Lu, M. Zheng, Z. Hu, D. Lei, N. Lan, 
L. Zheng, Z. Yuan, B. Zhu, J. Zhao, Analysis and identification of m(6)A RNA 
methylation regulators in metastatic osteosarcoma, Mol. Ther. Nucleic Acids 27 
(2022) 577–592. 

[33] Y. Zhang, Y. Wang, L. Ying, S. Tao, M. Shi, P. Lin, Y. Wang, B. Han, Regulatory 
role of N6-methyladenosine (m(6)A) modification in osteosarcoma, Front. Oncol. 
11 (2021), 683768. 

[34] D. Liu, Z. Hu, J. Jiang, J. Zhang, C. Hu, J. Huang, Q. Wei, Five hypoxia and 
immunity related genes as potential biomarkers for the prognosis of 
osteosarcoma, Sci. Rep. 12 (1) (2022) 1617. 

[35] P. Thanindratarn, R. Wei, D.C. Dean, A. Singh, N. Federman, S.D. Nelson, F. 
J. Hornicek, Z. Duan, T-LAK cell-originated protein kinase (TOPK): an emerging 
prognostic biomarker and therapeutic target in osteosarcoma, Mol. Oncol. 15 (12) 
(2021) 3721–3737. 

[36] Y. Liu, W. Feng, Y. Dai, M. Bao, Z. Yuan, M. He, Z. Qin, S. Liao, J. He, Q. Huang, 
Z. Yu, Y. Zeng, B. Guo, R. Huang, R. Yang, Y. Jiang, J. Liao, Z. Xiao, X. Zhan, 
C. Lin, J. Xu, Y. Ye, J. Ma, Q. Wei, Z. Mo, Single-cell transcriptomics reveals the 
complexity of the tumor microenvironment of treatment-naive osteosarcoma, 
Front. Oncol. 11 (2021), 709210. 

[37] Y. Han, Y. Wang, X. Dong, D. Sun, Z. Liu, J. Yue, H. Wang, T. Li, C. Wang, TISCH2: 
expanded datasets and new tools for single-cell transcriptome analyses of the 
tumor microenvironment, Nucleic Acids Res. 51(D1) (2023) D1425-d1431. 

[38] M. Chen, Z. Nie, Y. Gao, H. Cao, L. Zheng, N. Guo, Y. Peng, S. Zhang, m7G 
regulator-mediated molecular subtypes and tumor microenvironment in kidney 
renal clear cell carcinoma, Front. Pharmacol. 13 (2022), 900006. 

[39] K. Yoshihara, M. Shahmoradgoli, E. Martínez, R. Vegesna, H. Kim, W. Torres- 
Garcia, V. Treviño, H. Shen, P.W. Laird, D.A. Levine, S.L. Carter, G. Getz, 
K. Stemke-Hale, G.B. Mills, R.G. Verhaak, Inferring tumour purity and stromal 
and immune cell admixture from expression data, Nat. Commun. 4 (2013) 2612. 

[40] Y. Liu, J. Cai, W. Liu, Y. Lin, L. Guo, X. Liu, Z. Qin, C. Xu, Y. Zhang, X. Su, K. Deng, 
G. Yan, J. Liang, Intravenous injection of the oncolytic virus M1 awakens 
antitumor T cells and overcomes resistance to checkpoint blockade, Cell Death 
Dis. 11 (12) (2020) 1062. 

[41] D. Chowell, L.G.T. Morris, C.M. Grigg, J.K. Weber, R.M. Samstein, V. Makarov, 
F. Kuo, S.M. Kendall, D. Requena, N. Riaz, B. Greenbaum, J. Carroll, E. Garon, D. 
M. Hyman, A. Zehir, D. Solit, M. Berger, R. Zhou, N.A. Rizvi, T.A. Chan, Patient 
HLA class I genotype influences cancer response to checkpoint blockade 
immunotherapy, Science (New York, N.Y.) 359 (2018) 582–587. 

[42] Z.L. Wu, Y.J. Deng, G.Z. Zhang, E.H. Ren, W.H. Yuan, Q.Q. Xie, Development of a 
novel immune-related genes prognostic signature for osteosarcoma, Sci. Rep. 10 
(1) (2020) 18402. 

[43] A. Koch, J. Jeschke, W. Van Criekinge, M. van Engeland, T. De Meyer, MEXPRESS 
update 2019, Nucleic Acids Res. 47(W1) (2019) W561-w565. 

[44] A. Koch, T. De Meyer, J. Jeschke, W. Van Criekinge, MEXPRESS: visualizing 
expression, DNA methylation and clinical TCGA data, BMC Genomics 16 (1) 
(2015) 636. 

[45] M.F. Heymann, F. Lézot, D. Heymann, The contribution of immune infiltrates and 
the local microenvironment in the pathogenesis of osteosarcoma, Cell. Immunol. 
343 (2019), 103711. 

[46] M.F. Wedekind, L.M. Wagner, T.P. Cripe, Immunotherapy for osteosarcoma: 
Where do we go from here? Pediatr. Blood Cancer 65 (9) (2018) e27227. 

[47] T. Li, J. Fu, Z. Zeng, D. Cohen, J. Li, Q. Chen, B. Li, X.S. Liu, TIMER2.0 for analysis 
of tumor-infiltrating immune cells, Nucleic Acids Res. 48(W1) (2020) W509- 
W514. 

[48] G.T. Gibney, L.M. Weiner, M.B. Atkins, Predictive biomarkers for checkpoint 
inhibitor-based immunotherapy, The Lancet. Oncology 17(12) (2016) e542-e551. 

[49] Y.W. Choo, M. Kang, H.Y. Kim, J. Han, S. Kang, J.R. Lee, G.J. Jeong, S.P. Kwon, S. 
Y. Song, S. Go, M. Jung, J. Hong, B.S. Kim, M1 macrophage-derived nanovesicles 

Y. Zhang et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.jbo.2023.100481
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0005
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0005
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0010
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0010
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0010
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0015
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0015
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0020
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0020
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0020
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0020
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0025
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0025
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0025
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0030
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0030
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0030
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0035
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0035
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0035
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0040
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0040
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0040
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0045
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0045
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0045
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0050
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0050
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0050
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0055
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0055
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0055
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0060
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0060
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0060
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0065
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0065
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0065
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0065
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0070
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0070
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0075
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0075
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0075
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0080
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0080
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0080
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0080
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0080
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0085
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0085
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0085
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0090
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0090
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0095
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0095
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0100
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0100
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0100
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0100
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0105
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0105
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0110
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0110
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0115
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0115
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0120
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0120
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0120
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0120
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0120
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0125
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0125
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0130
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0130
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0135
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0135
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0135
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0140
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0140
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0140
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0140
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0140
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0145
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0145
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0145
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0145
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0150
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0150
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0150
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0155
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0155
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0155
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0155
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0155
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0160
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0160
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0160
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0160
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0165
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0165
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0165
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0170
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0170
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0170
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0175
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0175
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0175
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0175
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0180
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0180
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0180
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0180
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0180
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0190
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0190
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0190
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0195
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0195
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0195
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0195
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0200
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0200
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0200
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0200
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0205
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0205
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0205
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0205
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0205
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0210
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0210
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0210
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0220
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0220
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0220
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0225
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0225
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0225
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0230
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0230
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0245
http://refhub.elsevier.com/S2212-1374(23)00014-3/h0245


Journal of Bone Oncology 40 (2023) 100481

18

potentiate the anticancer efficacy of immune checkpoint inhibitors, ACS Nano 12 
(9) (2018) 8977–8993. 

[50] S. Pagliuca, C. Gurnari, M.T. Rubio, V. Visconte, T.L. Lenz, Individual HLA 
heterogeneity and its implications for cellular immune evasion in cancer and 
beyond, Front. Immunol. 13 (2022), 944872. 

[51] S.S. Bielack, B. Kempf-Bielack, G. Delling, G.U. Exner, S. Flege, K. Helmke, 
R. Kotz, M. Salzer-Kuntschik, M. Werner, W. Winkelmann, A. Zoubek, H. Jürgens, 
K. Winkler, Prognostic factors in high-grade osteosarcoma of the extremities or 
trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative 
osteosarcoma study group protocols, J. Clin. Oncol. 20 (3) (2002) 776–790. 

[52] G.A. Odri, J. Tchicaya-Bouanga, D.J.Y. Yoon, D. Modrowski, Metastatic 
progression of osteosarcomas: a review of current knowledge of environmental 
versus oncogenic drivers, Cancers 14 (2) (2022). 

[53] Y. Chen, J. Cao, N. Zhang, B. Yang, Q. He, X. Shao, M. Ying, Advances in 
differentiation therapy for osteosarcoma, Drug Discov. Today 25 (3) (2020) 
497–504. 

[54] Y. Zhou, D. Yang, Q. Yang, X. Lv, W. Huang, Z. Zhou, Y. Wang, Z. Zhang, T. Yuan, 
X. Ding, L. Tang, J. Zhang, J. Yin, Y. Huang, W. Yu, Y. Wang, C. Zhou, Y. Su, 
A. He, Y. Sun, Z. Shen, B. Qian, W. Meng, J. Fei, Y. Yao, X. Pan, P. Chen, H. Hu, 
Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive 
microenvironment in advanced osteosarcoma, Nat. Commun. 11 (1) (2020) 6322. 

[55] M.J. Osborne, L. Volpon, J.A. Kornblatt, B. Culjkovic-Kraljacic, A. Baguet, K.L. 
Borden, eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of 
methyl-7-guanosine cap recognition, Proc. Natl. Acad. Sci. U. S. A. 110(10) 
(2013) 3877-82. 

[56] S.L. Lin, D. Chang, S.Y. Ying, Hyaluronan stimulates transformation of androgen- 
independent prostate cancer, Carcinogenesis 28 (2) (2007) 310–320. 

[57] C.M. Van Stiphout, A.K. Luu, A.M. Viloria-Petit, Proteasome inhibitors and their 
potential applicability in osteosarcoma treatment, Cancers 14 (19) (2022). 

[58] P.S. Meltzer, L.J. Helman, New horizons in the treatment of osteosarcoma, 
N. Engl. J. Med. 385 (22) (2021) 2066–2076. 

[59] K. Chen, Y. Chen, X.D. Zhu, Y.S. Bai, X.Z. Wei, C.F. Wang, Z.Q. Chen, M. Li, 
Expression and significance of Kruppel-like factor 6 gene in osteosarcoma, Int. 
Orthop. 36 (10) (2012) 2107–2111. 

[60] M.T. Harting, M.L. Blakely, Management of osteosarcoma pulmonary metastases, 
Semin. Pediatr. Surg. 15 (1) (2006) 25–29. 

[61] L.C. Marais, J. Bertie, R. Rodseth, B. Sartorius, N. Ferreira, Pre-treatment serum 
lactate dehydrogenase and alkaline phosphatase as predictors of metastases in 
extremity osteosarcoma, J Bone Oncol 4 (3) (2015) 80–84. 

[62] S.J. Hogg, P.A. Beavis, M.A. Dawson, R.W. Johnstone, Targeting the epigenetic 
regulation of antitumour immunity, Nat. Rev. Drug Discov. 19 (11) (2020) 
776–800. 

[63] A. Kapoor, M.S. Goldberg, L.K. Cumberland, K. Ratnakumar, M.F. Segura, P. 
O. Emanuel, S. Menendez, C. Vardabasso, G. Leroy, C.I. Vidal, D. Polsky, 
I. Osman, B.A. Garcia, E. Hernando, E. Bernstein, The histone variant macroH2A 
suppresses melanoma progression through regulation of CDK8, Nature 468 
(7327) (2010) 1105–1109. 
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