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'e bottleneck associated with the validation of the parameters of the entropy model has limited the application of this model to
modern functional imaging technologies such as the resting-state functional magnetic resonance imaging (rfMRI). In this study,
an optimization algorithm that could choose the parameters of the multiscale entropy (MSE) model was developed, while the
optimized effectiveness for localizing the epileptogenic hemisphere was validated through the classification rate with a supervised
machine learning method. 'e rfMRI data of 20 mesial temporal lobe epilepsy patients with positive indicators (the indicators of
epileptogenic hemisphere in clinic) in the hippocampal formation on either left or right hemisphere (equally divided into two
groups) on the structural MRI were collected and preprocessed. 'en, three parameters in the MSE model were statistically
optimized by both receiver operating characteristic (ROC) curve and the area under the ROC curve value in the sensitivity
analysis, and the intergroup significance of optimized entropy values was utilized to confirm the biomarked brain areas sensitive to
the epileptogenic hemisphere. Finally, the optimized entropy values of these biomarked brain areas were regarded as the feature
vectors input for a support vector machine to classify the epileptogenic hemisphere, and the classification effectiveness was cross-
validated. Nine biomarked brain areas were confirmed by the optimized entropy values, including medial superior frontal gyrus
and superior parietal gyrus (p< .01).'emean classification accuracy was greater than 90%. It can be concluded that combination
of the optimized MSE model with the machine learning model can accurately confirm the epileptogenic hemisphere by rfMRI.
With the powerful information interaction capabilities of 5G communication, the epilepsy side-fixing algorithm that requires
computing power can be integrated into a cloud platform. 'e demand side only needs to upload patient data to the service
platform to realize the preoperative assessment of epilepsy.

1. Introduction

Epilepsy is a chronic disease caused by abnormal neural
discharges that could result in abnormal functions in the
central nervous system. 'is disease could adversely impact

the patient’s quality of life and may even lead to death. 'e
positive hippocampus on the structural magnetic resonance
imaging (sMRI) is the most common pathological marker in
the medial temporal lobe epilepsy (mTLE). It is also an
indicator of epileptogenic hemisphere. 'e paroxysmal
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discharges might propagate to the large-scale brain networks
and lead to metabolic dysfunction or structural changes in
the distal brain regions connected with the primary lesion.
Surgical treatment is a preferred method for intractable
epilepsy, and more than 70% of focal epilepsy patients had
experienced favorable postsurgical seizure control and
exhibited the most positive therapeutic effect [1,2]. 'e
precise assessments such as epileptogenic hemisphere, ep-
ileptogenic zone, and propagation pathway are important
prior to the surgery [3]. 'ey can not only help remove
abnormal brain tissue, but also avoid damage to other
functional areas such as language and memory as much as
possible. In particular, the confirmation of the epileptogenic
hemisphere is a basis. Integrating machine learning to locate
epilepsy hemispheres has become a current research hotspot.
Jin et al. [4] usedmagnetoencephalograms (MEG) to find the
biomarker of functional connectivity (FC) to predict the
epileptic hemisphere by support vector machine (SVM) with
a classification rate of 76.2%. Barron et al. [5] had developed
an automatic computer-aided diagnosis tool, which can
determine the epileptogenic hemisphere by Positron
Emission Computed Tomography (PET), with an accuracy
rate of 82%.

Resting-state functional magnetic resonance imaging
(rfMRI), a modern technology, has gained prominence for
the task of revealing the pathological functions in the dif-
ferent regions in the brain, with some advantages such as
noninvasive, objective, quick (in less than 15min), con-
formable, and highly adaptive. It is therefore of great clinical
value for pre- and postoperative monitoring and treatment
of neurological diseases [6–8]. Now, based on rfMRI data,
Zheng et al. could locate the the epileptogenic hemisphere
with an accuracy of 83.8% by the combination of FC and
SVM [9]. 'erefore, the classification rate needs to be im-
proved. As the neurological diseases affect brain functions
on multiple temporal and spatial scales, Costa et al. [10]
proposed the multiscale entropy (MSE) model that com-
bined the sample entropy with the time scale to jointly
uncover the complex characteristics under different physi-
ological states. It is now extensively adopted for investigating
neural signals [11–17], such as electroencephalography
(EEG) [18–21], MRI [22,23], and magnetoencephalography
(MEG) [24]. With regard to complexity, the MSE algorithm
can reveal the physiological, pathological, and functional
changes in the brain. 'e nonlinearity of the rfMRI signal of
an epileptic patient is higher than corresponding signal for a
healthy individual [25, 26], and thus the entropy model has
the potential to evaluate the functions in an epileptic brain.

However, the selection of parameter dimension m and
similarity r of MSE model depends on experiences and lacks
an objective basis from the past to the present. 'e values of
these parameters in different studies in the pertinent liter-
ature were m� 1, r� 0.35 [27], m� 1, r� 0.3 [28], m� 1,
r� 0.35 [29], and m� 2, r� 0.6 [30]. Evidently, there is a
problem of no uniform parameter standard or specification
forMSE to process biomedical signals, leading to subjectivity
in the entropy calculation. In this study, for the task of
localizing the epileptogenic hemisphere, we developed an
optimization algorithm for the parameters of theMSEmodel

based on the rfMRI data scanned on the mTLE patients with
a positive indicator in the hippocampal formation on sMRI.
'e hemisphere of these patients was considered epilepto-
genic in a clinic. 'e proposed approach for selecting the
parameters of the entropy model in the epileptic rfMRI is
demonstrated to be objected.

We investigated the extant literature on parameter op-
timization, with the help of the sensitivity analysis indexes-
receiver operating characteristic (ROC) curves and the area
under the ROC curve (AUC). After the parameters of ep-
ileptic entropy model were optimized, the entropy model
was employed to extract the sensitive functional image
markers, whose entropy values were considered as feature
vectors and input to the support vector machine (SVM) to
assess the feasibility and accuracy of optimal entropy model.
Since the SVM is a supervised machine learning model and
needs to be run on correctly labeled samples, the rfMRI data
of mTLE patients with the positive hippocampus of sMRI
were analyzed using the SVM. 'e study flowchart is shown
in Figure 1.

2. Materials and Methods

2.1. Data Acquisition. 'e rfMRI data of 20 mTLE were
collected from the Department of Medical Imaging, General
Hospital of Eastern 'eater of PLA, China, including nine
males and 11 females, aged 19−33 (25.7± 3.7) years, who
underwent a routine preoperative evaluation to localize the
epileptogenic discharge areas. 'ere were 10 patients (left
group) with the positive indicator on the left hippocampus
and the other 10 patients (right group) on the right hip-
pocampus on sMRI.

When scanning, participants were asked to keep their
eyes closed, stay awake, and think nothing. All rfMRI data
were collected using a 3.0 T Magnetom Vision plus MR-
scanner (Siemens, Erlangen Germany) and blood-oxygen-
level-dependent (BOLD)-sensitive echo plane imaging se-
quence. 'e parameters were set as follows: TE/TR� 30/
2000ms, FA� 90°, FOV� 240mm, voxel size� 3× 3× 3
mm3, and slice thickness� 4mm [31]. 'is study was ap-
proved by the Medical Ethics Committee of General Hos-
pital of Eastern 'eater of PLA in China, and the patients
were provided with the requisite information and signed the
informed consent form.

2.2. Data Processing. Data processing was accomplished
using both pre- and postprocessing techniques.

All rfMRI data were preprocessed using FMRIB software
[32,33]. Preprocessing procedure and quality inspection
(framewise displacement (FD) < 0.2mm) were conducted at
Martinos Center for Medical Imaging, Harvard Medical
School, USA [34,35]. 'e processing station used was Intel
Xeon Sliver 4112×16 with the operating system of Centos
7.6, and the preprocessing time was about 15 hours for each
subject.

'e different steps for data preprocessing can be enu-
merated as follows: (1) removal of the first four acquisition
time series to stabilize the signal, (2) slice timing correction
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(SPM2, Wellcome Department of Cognitive Neurology,
London, UK), (3) rigid body correction for head motion
with the FMRIB software library package (http://fsl.fmrib.
ox.ac.uk/fsl) [36], (4) normalization for global mean signal
intensity across runs and registration of the signal to the
standard space of Montreal neurological institute, and (5)
band-pass temporal filtering (0.01Hz−0.08Hz).

During postprocessing, data were projected to the brain
region AAL1 (Anatomical Automatic Labeling, Version 1)
using DPABI of MATLAB R2018b in the Windows V.10
operating system. 'e whole brain of each subject was di-
vided into 116 brain regions, and each brain region has 246
time points in a 490 s time length.'e overall postprocessing
time was about 14 hours. Among 116 brain regions, 90
cortical cortex regions were examined in this study.

2.3. MSE Model. For one-dimensional N-length discrete
time series x1, x2, x3, . . . , xN􏼈 􏼉, the length of each coarse-
grained time series yτ

j􏽮 􏽯 is equal to the length of original time
series divided by the time scale τ in the following formula:

y
τ
j �

1
τ

􏽘

jτ

i � (j – i)τ + 1
xi, (1)

where 1≤ j≤N/τ, τ is the scale factor, and the length of {yτ
j}

is L�N/τ.
'en, a set of m-dimension vectors (m is embedding

dimension) Ym(i) are formed: Ym(i)� {yi + k, 0≤ k≤m− 1}.
For each i value, its distance from other value j is calculated,
that is, the distance between Ym(i) and Ym(j) is shown in the
following formula:

d[Ym(i), Ym(j)] � max| y(i + k) − y(j + k)|

(0≤ k≤m − 1, i, j � 1 − L − m + 1, I≠ j).

(2)

Setting the tolerance threshold (i.e., similarity factor) r (r
＞ 0), the number Bm(i) of d[Ym(i), Ym(j)]< r is calculated
for each i value, and the ratio to the total distance can be
obtainable by Cm

τ (r) � Bm(i)/L –m. And then, the average
of Cm

τ (r) is shown as follows:

C
m

(r) �
1

L –m + 1
C

m
τ (r). (3)

Likewise, for m+ 1 dimension, the average can be de-
rived as

C
m + 1

(r) �
1

L –m
􏽘

L − m

i�1
C

m + 1
τ (r). (4)

Given that the sequence length L is a finite value, the
entropy with L can be estimated, denoted as MSE using the
followig formula:

MSE(τ, m, r) � – ln
Cm+ 1

(r)
Cm

(r)
􏼢 􏼣. (5)

'e size of entropy value is related to the repeatability of
time series. 'e larger the entropy value, the greater the
complexity, and vice versa.

As the three parameters interacted with each other, they
needed to participate in the optimization of each parameter.
'e dimension m was optimized at first, followed by the
optimization of similarity r and time scale τ.

In general, the accuracy of entropy evaluation improves
with the increase in the number of vector matches in di-
mension m and m + 1. Using BOLD signal, the entropy can
be accurately estimated in the time length of 10 m−20m
[37]. On the basis of the time point length of data (246 time
points), the dimension m could be estimated in a range of
1−2; that is, the optimization of dimension m would be
conducted by m� 1 or 2.
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Figure 1: Study flowchart.
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According to previous analysis, the range of similarity r
could be selected from 0.05 to 0.6 [27–30,38,39]. However,
there were some invalid values in the entropy calculation at
r� 0.05–0.3. Accounting for a short length of time series in
this study, the similarity r could not be too small. 'us, the
similarity r could be within the range of 0.3–0.6. We con-
ducted the entropy calculation with a step size of 0.02. As
usual, the time scale τ could be optimized in a range of 1−5
with a step size of 1.

Here, both ROC curve and AUC value were used to
assess the optimization effect. Both these values converged
during the evaluation. 'at is, the more the ROC curve was
above the reference line; the greater the AUC value was, and
the better the classification effect was. However, ROC curves
below the reference signified the classification insignificance.
When the ROC curve of a brain area was above the reference
line, this brain area could be considered sensitive to the
epileptogenic hemisphere. Conversely, when the ROC curve
of a brain area was around the reference line, this brain area
could be considered insensitive to the epileptogenic hemi-
sphere.'e optimal procedures were individually conducted
for all the 90 brain areas. For the sake of explanation, the
specific brain regions were taken as examples, such as left
superior frontal gyrus, medial (SFGmed.L), right superior
parietal gyrus (SPG.R), left cuneus (CUN.L), and left thal-
amus (THA.L).

'e brain area with a significant difference (p< .05) of
the optimized entropy values between the two groups was
considered to be the functional biomarked sensitive to
epileptogenic hemisphere. 'e statistics were performed by
t-test through software of Statistical Package for the Social
Science (SPSS) (IBM SPSS Statistics 21; USA). 'e ROC
curve and the AUC value were used to verify the biomarkers.
BrainNet Viewer was employed to visualize the biomarkers
(http://www.nitrc.org/projects/bnv/) [40].

2.4. SVM. SVM-based machine learning model is not easily
influenced by the dimension of data and the limitation of the
sample size. In particular, it could simultaneously minimize
the empirical classification error and maximize the geo-
metric margin. It is thus better than other conventional
machine learning models.

'e optimized entropy values of functional biomarked
areas were considered to be the feature vectors input into the
SVM model. 'e mTLE patients in the left group were
marked as ‘‘1,’’ and those in the right group were marked as
“0”.

'e optimized MSE values of 20 subjects were taken as
the input to the SVM model. 'e data from 8 subjects were
used as the training set and from 12 subjects as the testing
set. In the SVM model, the radial basis function (RBF) was
considered as the kernel function, and the kernel parameter
σ was replaced with the proportional parameter g � 1/2σ2 to
form a set of parameter pairs (C, g). Ranges of both these
parameters were set as [−10,10] with a step size of 0.2. 'e
optimal values of C and g were confirmed by the grid search
method and then used to build the training model and the
test sets.

'e leave-one-out cross-validation (LOOCV) is often
used to test the accuracy of the algorithm model, and its
sample utilization is very high; thus, it is highly suitable for
small samples analysis. If there are N sample data, then N − 1
samples constitute the training data, and the remainder
constitutes the testing data. 'erefore, the mean accuracy of
N times (N� 20) can be used to evaluate the classification
accuracy.

3. Results and Discussion

3.1. Parametric Optimization of MSE Model. After pre-
processing, the length of BOLD signal was 246 time points in
the mTLE.'us, the value ofm can be 1 or 2. According to the
previous studies, the optimized parametric spaces were con-
firmed in a range of r� 0.3–0.6 (step size of 0.02) and τ � 1−5
(step size of 1).

3.1.1. Optimization of Dimension m and Similarity r. In
Figure 2, the dimension m was optimized by the number of
significant brain regions between two groups (p< .05) when
the time scale τ � 1−5 with a step size of 1 and the similarity
r� 0.3–0.6 with a step size of 0.02. It was found that the
number of significant brain regions of m� 1 was generally
greater than that of m� 2. 'erefore, m� 1 was selected as
the optimization parameter. Moreover, the difference is
significant at τ � 2 and τ � 3, so the optimization parameter
of τ might be derived from τ � 2−3.

Additionally, it was found that the number of significant
brain regions at r� 0.54–0.6 were generally greater than
other r values. 'at is, the optimization value of similarity r
could be derived from 0.54–0.6.

By settingm� 1 and r� 0.54–0.6 (step size of 0.02) fixed,
the ROC curves of left superior frontal gyrus, SFGmed.L,
SPG.R, CUN.L, and THA.L at different r values were taken as
examples in Figure 3. 'e results of τ � 2 and τ � 3 are
similar; therefore, only the result of τ � 3 is shown here; it
was found that the ROC curves of SFGmed.L and SPG.R
were all above the reference lines, indicating that SFGmed.L
and SPG.R could be considered sensitive to the epileptogenic
hemisphere. Conversely, the ROC curves of CUN.L and
THA.L were around the reference line and thus insensitive
to the epileptogenic hemisphere.

'e AUC value of each brain region and the corre-
sponding similarity factor (r) are presented in Table 1.
Evidently, the AUC values of SFGmed.L and SPG.R were the
largest when r� 0.56 (yellow line in Figures 3(a) and 3(b)),
which indicates that r� 0.56 was the optimized value.

3.1.2. Optimization of Time Scale τ. Setting m� 1, r� 0.56,
and τ � 1−5, the obtained ROC curves of left insula (INS.L),
left Rolandic operculum (ROL.L), CUN.L, and left superior
frontal gyrus, dorsolateral (SFGdor.L) at different τ values
are shown in Figure 4.

'e AUC value of each brain region by time scale τ is
presented in Table 2, and it was found that the AUC values of
INS.L and ROL.L were the largest at τ � 3 (green line in
Figure 4), suggesting that τ � 3 was the optimized value.
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In summary, the optimized parameters of MSE model
derived from the epileptic rfMRI data were m� 1, r� 0.56,
and τ � 3.

3.2. Feature Vector. With the optimized parameters m� 1,
r� 0.56, and τ � 3, a total of nine brain regions sensitive to
the epileptogenic hemisphere were obtained by the inter-
group entropy values (p< .01), that is, left Rolandic oper-
culum (ROL.L, AAL17), right Rolandic operculum (ROL.R,
AAL18), left superior frontal gyrus, medial (SFGmed.L,
AAL23), left insula (INS.L, AAL29), right insula (INS.R,
AAL30), left superior parietal gyrus (SPG.L, AAL60), left
precuneus (PCUN.L, AAL67), left caudate nucleus (CAU.L,
AAL73), and right temporal pole: superior temporal gyrus
(TPOsup.R, AAL84).'e projection of nine brain regions on
the cortical surface and their ROC curves are depicted in
Figure 5.

3.3. Leave-One-Out Cross-Validation. 'e MSE values of
nine biomarked brain regions were used as feature vectors
input for SVM-based classification. All classification rates
(CR) of 20 times are shown in Table 3. 'e validity of MSE

model is verified using leave-one-out cross-validation
(LOOCV), and the mean classification accuracy of LOOCV
was found to be 95%.

3.4. Discussion

3.4.1. MSE Model to Image the Brain. From a theoretical
perspective, the MSE model can comprehensively analyze
the dynamical changes of signals by calculating the com-
plexity of time series [19]. In addition, because epilepsy is a
dynamical disease, the MSE model has the potential to be
utilized in the assessment of dysfunction in epilepsy [41].
Finally, since the functional connectivity of Pearson cor-
relation (FC) is a conventional index, its relationship
between FC and entropy would provide support for the
optimized MSE to image the functional brain. Wang et al.
[42] affirmed that the relationship between MSE value of
the rfMRI time series and FC depended on the length of
time series and the size of time scale τ. By the MSEmodel of
the rfMRI data, Yang et al. [27] found that the people with
different cognitive scores can be fairly distinguished using
a MSE-based model. William et al. [43] examined if the
MSE model of EEG data can distinguish the absence
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Figure 2: Optimal value of parameter (m) estimated by number of brain regions with intergroup significant difference (p< .05). (a)τ � 1;
(b)τ � 2; (c)τ � 3; (d)τ � 4; (e)τ � 5; (f ) average number of brain regions over time scale τ.
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epilepsy patients from healthy control with high accuracy
(>95%).

3.4.2. Functional Biomarker of TLE. At present, the mTLE
lesions are identified by certain biomarked brain regions
including the insula, bilateral cingulate gyrus, and precuneus
[4,9,44]. By considering the healthy people as a control,
Zhou et al. [45] found that the left middle temporal gyrus,

right middle frontal gyrus, and the left anterior central gyrus
were significantly different in temporal lobe epilepsy by the
entropy values of the rfMRI data. In addition, by the ana-
tomical connectivity between the left and right hemispheres
in the temporal lobe epilepsy, a different connectivity pattern
was observed in the cortical-limbic network and cerebellum
[46]. 'ese biomarked brain regions have a great intersec-
tion with the current study.
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Figure 3: Effects of similarity (r) on the epileptogenic hemisphere classification of a single brain area displayed by ROC curves, settingm� 1
and τ � 3 constant, similarity (r) varying from 0.54 to 0.6 with a step of 0.02. (a) SFGmed.L; (b) SPG.R; (c) CUN.L; (d) THA.L.

Table 1: AUC value of each brain region by similarity (r).

Similarity r SFGmed.L SPG.R CUN.L THA.L
r� 0.54 0.92 0.89 0.53 0.65
r� 0.56 0.93 0.90 0.53 0.69
r� 0.58 0.89 0.86 0.50 0.56
r� 0.60 0.89 0.90 0.54 0.61
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3.4.3. Analysis in Healthcare 5.0. With the powerful in-
formation interaction capabilities of 5G communication, the
epilepsy positioning algorithm combined with multiscale
entropy can be integrated into a software package in the

future to build a cloud platform server for epilepsy posi-
tioning. Since the lateralization software combined with the
multiscale sample entropy model requires a lot of computing
power, the computing power can be provided by the server,
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Figure 4: Effects of scale factor τ on the epileptogenic hemisphere classification of a single brain area displayed by ROC curves, settingm� 1,
r� 0.56 constant and time scale (τ) variable from 1 to 5 with a step of 1. (a) INS.L; (b) ROL.L; (c) CUN.L; (d) SFGdor.R.

Table 2: AUC value of each brain region by time scale τ.

Time scale τ INS.L ROL.L CUN.L SFGdor.R
τ � 1 0.43 0.46 0.43 0.38
τ � 2 0.8 0.84 0.63 0.55
τ � 3 0.83 0.91 0.53 0.54
τ � 4 0.45 0.67 0.47 0.40
τ � 5 0.62 0.65 0.41 0.59
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and the user only needs to upload the patient’s fMRI image
to the cloud platform server to obtain the lateralization
result.

4. Conclusion

'rough the optimized MSE model, a total of nine land-
marks sensitive to the epileptogenic hemisphere of temporal
lobe epilepsy could be estimated in the left Rolandic
operculum, right Rolandic operculum, left superior frontal
gyrus, medial, left insula, and so on. 'e mean CRs attained
through LOOCV were 95%, respectively. 'is work un-
derlines the importance of an optimized entropy model and
presents an automated detection algorithm for rfMRI to aid
the preoperative assessment of epilepsy.
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