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Abstract

The stepped wedge cluster randomized design has received increasing attention in pragmatic clinical trials and imple-

mentation science research. The key feature of the design is the unidirectional crossover of clusters from the control to

intervention conditions on a staggered schedule, which induces confounding of the intervention effect by time. The

stepped wedge design first appeared in the Gambia hepatitis study in the 1980s. However, the statistical model used for

the design and analysis was not formally introduced until 2007 in an article by Hussey and Hughes. Since then, a variety of

mixed-effects model extensions have been proposed for the design and analysis of these trials. In this article, we explore

these extensions under a unified perspective. We provide a general model representation and regard various model

extensions as alternative ways to characterize the secular trend, intervention effect, as well as sources of heterogeneity.

We review the key model ingredients and clarify their implications for the design and analysis. The article serves as an

entry point to the evolving statistical literatures on stepped wedge designs.
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1 Introduction

Cluster-randomized trials (CRTs), also known as group-randomized trials, are frequently designed to evaluate the
effect of an intervention administered at the cluster level, such as clinics, hospitals or geographical units.1–4

Common reasons for randomizing at the cluster level include minimization of treatment contamination, admin-
istrative convenience, among others. The design and analysis of CRTs have been an active area of research over
the past four decades and comprehensive reviews of recent methodological developments can be found in Turner
et al.5,6 and Murray et al.7 In parallel designs, usually half of the clusters are randomized to each arm. While
parallel randomization ensures valid comparisons of post-treatment outcomes at the same point in time, concur-
rent implementation of the intervention may demand extensive administrative planning and logistical
infrastructure.8
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The stepped wedge CRT is an alternative design that allows for phased implementation of an intervention. In a

stepped wedge CRT, clusters are randomized to intervention sequences that differ by the time points when the

intervention starts to roll out.9,10 An attractive feature of the stepped wedge CRT is that all clusters eventually

receive the intervention, which can help facilitate recruitment when cluster stakeholders perceive the intervention

to be beneficial.11–13 Stepped wedge designs have also received increasing attention in recent pragmatic clinical

trials (PCTs) embedded in health care delivery systems; see, for example, the Lumbar Imaging with Reporting of

Epidemiology study (LIRE)14 and the Trauma Survivors Outcomes and Support study (TSOS)15 as two recent

Demonstration Projects supported by the U.S. National Institutes of Health (NIH) Health Care Systems

Research Collaboratory.16 Because of their unique features, stepped wedge CRTs usually require more complex

statistical considerations compared to parallel CRTs. Mixed-effects regression is one of several approaches pro-

posed for CRTs, and has been the most commonly used approach in analyzing stepped wedge CRTs. The

objective of this article is to provide an overview of mixed-effects models developed for stepped wedge CRTs.

In an effort to clarify their assumptions and implications, this article provides an entry point to the evolving

statistical literatures on stepped wedge CRTs.
Several systematic reviews emphasized the conducting and reporting related to both the design and analysis of

stepped wedge CRTs. For example, Martin et al.17 and Grayling et al.18 assessed the quality of reporting and

design features of stepped wedge CRTs and found that many studies did not adhere to the guidelines recom-

mended in the earlier CONSORT extension to CRTs.19 In particular, statistical methods for the sample size

determination varied across studies, and insufficient details on modeling assumptions were provided. Variations in

statistical models had been first observed in an earlier systematic review by Brown and Lilford,20 even before the

standard method was published in Hussey and Hughes.9 Davey et al.21 and Barker et al.22 surveyed the statistical

methodology used for stepped wedge CRTs in practice and also noticed substantial variations in model specifi-

cation, to which the sample size calculation and model-based inference could be sensitive. The various model

specifications in practice motivated us to integrate the current toolkit of analytical models for stepped

wedge designs.
Hemming et al.23,24 recently introduced the CONSORT extension for the stepped wedge CRTs and encouraged

clear reporting of analytical models specified for sample size calculation (item 7a) as well as for the primary and

secondary analyses (items 12a and 12 b). In what follows, we consider the specification of the secular trend, the

intervention, and sources of heterogeneity as three essential components of a model, and describe different

formulations of each component. Our overview complements the CONSORT extension in clarifying the similar-

ities and differences among models and in facilitating their proper application. The scope of this article differs

from previous systematic reviews due to the fact that it is focusing on the statistical formulations and assumptions

of the models used to describe the individual-level outcome trajectories. We took a top-down approach by

providing a general model representation that separates the three essential components (i.e. secular trend, inter-

vention effect, and sources of heterogeneity). We then cast a number of model variants as special cases of the

general representation to explain their assumptions and implications for the design and analysis.
The rest of this article is organized as follows. Section 2 introduces the notation and the general model rep-

resentation. Section 3 provides an overview of existing mixed-effects models and clarifies their assumptions and

properties. Section 4 reviews the estimation and inference strategies in stepped wedge trials, and Section 5

concludes with a discussion.

2 A general model representation

2.1 Notation

Throughout the paper, we consider a stepped wedge CRT with I participating clusters followed over J (J � 3) time

periods. We assume that individuals are included in each cluster and the outcome assessment is scheduled during

each period at the individual level; in other words, we only consider complete designs,25 and refer readers to Kasza

and Forbes26 and Kasza et al.27 for methodological developments on incomplete designs. Based on the terminol-

ogy of Murray and Hannan28 and Feldman and Mckinlay,29 we will distinguish between cross-sectional and

closed-cohort stepped wedge designs. In a cross-sectional design, different individuals are observed in each cluster

over time, whereas in a closed-cohort design, individuals are identified at the start of the trial and scheduled for

repeated outcome assessment. In addition, Copas et al.30 discussed a third option, the open-cohort design, which

allows for attrition of members from and addition of new members to the original cohort in each cluster. We will
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describe the notation for each one of these three designs, and consistently use these notation when discussing

model development.
For the cross-sectional design, we assume Nij individuals are included during period j (j ¼ 1; . . . ; J) in cluster i

(i ¼ 1; . . . ; I); the cluster-period sizes may vary. For the closed-cohort design, we define Ni as the cohort size

in cluster i as repeated measurements are taken from the same individuals. The open-cohort design can be

considered as a mix of a cross-sectional design and a closed-cohort design, and we still assume Nij individuals

are included during period j in cluster i. However, in this case, there exists an overlapping number

0 � niðj; lÞ � minfNij;Nilg
� �

of individuals for period j and period l in cluster i, depending on the degree of

cohort openness. The notation of the open-cohort design generalizes that of the previous two designs, because the

cross-sectional design is obtained as a special case with niðj; lÞ ¼ 0 for all j and l (maximum degree of openness)

and the closed-cohort design is obtained with niðj; lÞ ¼ Nij ¼ Nil for all j and l (minimum degree of openness). Such

notation becomes useful in Section 3.6. For all three types of designs, each cluster typically starts out in the

control condition; clusters or sets of clusters are then randomized to intervention sequences and all clusters will be

exposed to the intervention condition before the end of the trial. Figure 1 provides a schematic illustration of a

design with I¼ 8 clusters and J¼ 5 periods. Notably, each one of the four distinct intervention sequences is fully

determined by the time period during which the intervention is first implemented. We define the total number of

distinct intervention sequences by S (S � J� 1), and there are in total S¼ 4 pre-planned sequences in Figure 1.

2.2 Outcome model

The analysis of stepped wedge CRTs usually involves the characterization of a cluster-level, time-specific outcome

trajectory. Here, we focus on the class of conditional models that require specification of fixed effects for the

group-average structure and random effects for the heterogeneity. We will return to a brief discussion of marginal

models in Section 5. The conditional models and marginal models have their own advantages and disadvantages,

and our experience suggests there are more off-the-shelf software routines to fit conditional models with a com-

plex random-effects structure. The review of Barker et al.22 also suggested that 61 out of 102 stepped wedge CRTs

specified a linear or generalized linear mixed model for the primary analysis.
We define YijkðsÞ as the potential outcome of individual k during period j in cluster i, had cluster i received,

possibly to contrary to fact, an intervention sequence s.31 We borrow the potential outcome framework of

Rubin32 to clearly indicate the dependence of elements on intervention sequences. We index each distinct sequence

by s, which is defined as the time interval when the intervention will be first introduced. Formally,

s 2 S � f2; . . . ; Jg, and the total number of sequences is the cardinality, S ¼ cardðSÞ. Define lijkðsÞ as the expec-
tation of YijkðsÞ. We use a generalized linear mixed model to characterize the mean potential outcome as

g½lijkðsÞ� ¼ Fiðj; sÞ0hþ Rikðj; sÞ0ai (1)

where g is a link function. Similar model representation has been previously introduced by Sitlani et al. in the

context of longitudinal observational studies.33

On the link function scale, Fiðj; sÞ0h represents the group-average component and vector h includes the param-

eter of interest (i.e. the intervention effect), while Rikðj; sÞ0ai represents the cluster-specific, time-specific, and/or

individual-specific departure from the group average. By design, the assignment of intervention to clusters is

monotone and confounded with time. Hence, it is common practice to separate Fiðj; sÞ into a baseline component

F0ðjÞ characterizing the background secular trend in the absence of intervention, and a time-dependent interven-

tion component F1
i ðj; sÞ ¼ I½j�s�. Then, the group-average component can be expressed as

Fiðj; sÞ0h ¼ F0ðjÞ0bþ F1
i ðj; sÞDðj; sÞ (2)

where b is the parameter encoding the secular trend without intervention, and Dðj; sÞ is the change in the mean

outcome at period j due to sequence s. To summarize, the ingredients for a potential mean outcome model are

g½lijkðsÞ� ¼ F0ðjÞ0b|fflfflffl{zfflfflffl}
secular trend

þ F1
i ðj; sÞDðj; sÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

intervention effect

þRikðj; sÞ0ai|fflfflfflfflfflffl{zfflfflfflfflfflffl}
heterogeneity

(3)
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With such a formulation, the potential outcome YijkðsÞ is then assumed to follow a parametric distribution with

mean lijkðsÞ and variance as a function of lijkðsÞ. For example, if the potential outcome is continuous and assumed

normally distributed, we use an identity link for g and obtain the linear mixed model

YijkðsÞ ¼ F0ðjÞ0bþ F1
i ðj; sÞDðj; sÞ þ Rikðj; sÞ0ai þ �ijk (4)

where �ijk’s are independent and identically distributed as Nð0; r2� Þ. Assume that there are no hidden variations of

the intervention (i.e. the intervention is well defined), and we can link the observed outcome to the potential

outcome by equating Yijk ¼ YijkðsÞ, if cluster i receives sequence s. This allow us to use the observed data to

estimate all model parameters. As will be seen in Section 3, another typical assumption of models (3) and (4) is

that the heterogeneity parameter ai is assumed independent across clusters and follows a common parametric

distribution. This assumption implies that the potential outcomes are independent across clusters, and would not

be affected by the intervention sequences received by other clusters.31 On the other hand, the heterogeneity

parameter ai can induce correlation between potential outcomes of different individuals in the same cluster.

Finally, because the majority of the literature on stepped wedge designs has focused on a continuous outcome,

we will start with the identity link function and review existing models as special cases of the general represen-

tation (4).

3 Modeling considerations and implications

3.1 The Hussey and Hughes model

The standard analytical model for stepped wedge designs was proposed in the seminal paper by Hussey and

Hughes.9 Assuming an identity link function g, the observed outcome Yijk is modeled as

Yijk ¼ lþ bj þ dXij þ ai þ �ijk (5)

where l is the grand mean, bj is the jth period effect (with b1 ¼ 0 for identifiability), Xij is a time-varying inter-

vention indicator for cluster i during period j (Xij¼ 1, if exposed to intervention; and Xij¼ 0, otherwise), d is the

intervention effect, ai is the random cluster effect assumed to follow Nð0; s2aÞ, and �ijk �Nð0; r2� Þ is the residual

error independent of ai.
The Hussey and Hughes model is a special case of model (4). We observe that the secular trend is assumed as

F0ðjÞ0b ¼ lþ b2I½j¼2� þ � � � þ bJI½j¼J�

Figure 1. A schematic illustration of a stepped wedge CRTwith I¼ 8 clusters and J¼ 5 periods. Each white cell indicates a cluster-
period under the control condition and each gray cell indicates a cluster-period under the intervention condition. There are in total
S¼ 4 distinct intervention sequences.
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where I½�� is an indicator function. Because the average secular trend is assumed to be a distinct value during each
period, this representation requires J parameters and is considered saturated. Further, the intervention effect,
Dðj; sÞ ¼ d, does not depend on the time interval during which the intervention was initiated. Finally, inherited
from the models for analyzing parallel CRTs, the heterogeneity term, Rikðj; sÞ0ai ¼ ai, captures the cluster-specific
departure from the average but is assumed to be homogeneous across time periods, intervention sequences, and
individuals.

The assumptions of the Hussey and Hughes model may be considered restrictive. For example, the intervention
effect Dðj; sÞ could be cumulative and explicitly depend on the time when the intervention was initiated, which is
not captured by a constant intervention effect. In addition, the single cluster random effect postulates a simple
exchangeable within-cluster correlation structure. In other words, the correlation between any pair of observations
k, m in any two periods j, l and across all sequences s is assumed to be a nonnegative constant

corr½YijkðsÞ;YilmðsÞ� ¼ q ¼ s2a=ðs2a þ r2� Þ (6)

where corr½x; y� is a symmetric correlation operator. The value of q is referred to as the intraclass correlation
coefficient (ICC).1 Such a simple correlation structure also does not account for repeated measurements from the
same individual, and so applies only to the cross-sectional setting.

The Hussey and Hughes model has been frequently used to estimate the required sample size for cross-sectional
stepped wedge CRTs. Assuming equal cluster-period sizes Nij ¼ N and known variance components, Hussey and
Hughes derived the variance of the intervention effect estimator.9 Let k1 ¼ 1� q and k2 ¼ 1þ ðJN� 1Þq, we can
re-write the variance of the intervention effect estimator as

varðd̂Þ ¼ ðr2tot=NÞIJk1k2
ðU2 þ IJU� JW� IVÞk2 � ðU2 � IVÞk1 (7)

where r2tot ¼ s2a þ r2� is the total variance, U ¼
XI

i¼1

XJ

j¼1
Xij; W ¼

XJ

j¼1

XI

i¼1
Xij

� �2
and V ¼XI

i¼1

XJ

j¼1
Xij

� �2
are design constants that depend on the assignment of intervention sequences to clusters.

Using the results in Li et al.,34 we can show that k1 and k2 are two distinct eigenvalues of the simple exchangeable
correlation matrix. In fact, we will see in due course that expression (7) is a general form that applies to several
other model variants, with slight changes in values for the total variance and the eigenvalues. The Hussey and
Hughes variance formula is the basis for a number of subsequent methodological investigations. For instance,
Woertman et al.35 used the variance to derive a design effect, or variance inflation factor, relative to the individ-
ually randomized trial, under a balanced allocation of clusters to intervention sequences. The variance formula or
design effect also motivated the study of optimal stepped wedge designs in the cross-sectional setting; see, for
example, Lawrie et al.36 and Thompson et al.37 Girling and Hemming38 considered optimal designs within a larger
design space that includes hybrid designs (i.e. designs having both parallel and stepped wedge components), and
found that the most efficient design was a hybrid design. Grayling et al.39 proposed a group sequential design for
stepped wedge CRTs. Rhoda et al.40 and Hemming and Girling41 studied the relative efficiency between stepped
wedge and parallel designs, and found that the relative efficiency depends on the number of periods J, cluster-
period sizes N and the intraclass correlation coefficient q. The impact of variable cluster sizes, based on the Hussey
and Hughes model, was studied in Kristunas et al. and Martin et al.42,43 Even though the reduction in efficiency
due to unequal cluster sizes can be dramatic in a given randomization scheme,43 the average reduction in efficiency
is generally smaller in a stepped wedge CRT compared to that in a parallel CRT. Harrison et al.44 further
developed an optimization algorithm for power calculation that accounts for unequal cluster sizes.

Taljaard et al.45 and Bond46 pointed out a possible limitation of the Hussey and Hughes model from a variance
perspective. Specifically, one can show that the variance of the intervention effect estimator, varðd̂Þ, converges to
zero if the cluster-period sizes N ! 1. This implies that the required number of clusters for an anticipated power
converges to unity as N increases indefinitely, which may not be realistic. Nevertheless, both Barker et al.22 and
Martin et al.17 found in their systematic reviews that the Hussey and Hughes model was the most widely used
approach for designing and analyzing stepped wedge CRTs.

In what follows, we will review extensions of the Hussey and Hughes model, with an emphasis on alternative
considerations on modeling F0ðjÞ0b; Dðj; sÞ and Rikðj; sÞ0ai. The considerations for modeling the group-average
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component (i.e. secular trend and intervention effect) are typically the same between cross-sectional, closed-cohort
and open-cohort designs; therefore, we will not consider them separately. However, the considerations for model-
ing heterogeneity can differ between designs, and will be separately discussed in Sections 3.4, 3.5 and 3.6.

3.2 Considerations for modeling the secular trend

Because the intervention is confounded with time, modeling the background secular trend is necessary to remove
the bias in estimating the effect attributed solely to the intervention.9,47 Recall that F0ðjÞ0b models the group-
average secular trend in the absence of intervention across J time periods, and one may generally write

F0ðjÞ0b ¼ b1B1ðjÞ þ � � � þ bpBpðjÞ (8)

where F0ðjÞ ¼ ðB1ðjÞ; . . . ;BpðjÞÞ0 is a p-dimensional basis function, and p is generally no larger than J for identifi-
ability. Different choices of the basis function results in different formulations of the average secular trend. For
instance, the Hussey and Hughes model assumes a saturated J-dimensional basis function with

F0ðjÞ ¼ ð1; I½j¼2� . . . ; I½j¼J�Þ0

while Hemming et al.47 explored a linear trend specification such that p¼ 2 and F0ðjÞ ¼ ð1; jÞ0. In principle, as long
as p � J is required for identifiability, one could expand on the linear trend specification by including higher-
order polynomial terms or their orthogonal counterparts.48 In a recent simulation study, Nickless et al.49 exam-
ined the quadratic specification with F0ðjÞ ¼ ð1; j; j2Þ0 and found that such models performed generally well in
terms of bias when the approximation to the true secular trend was adequate, even if the data were generated from
complex nonlinear time effects.

From a bias perspective, it is natural to consider a nonparametric representation of F0ðjÞ0b, which would favor
the saturated specification as in the Hussey and Hughes model. For example, when the true secular trend is
nonlinear, the saturated specification could adequately control for the time effect, while the linear trend specifi-
cation may lead to a biased intervention effect estimate. While the saturated time parameterization is adequate for
trials with a limited number of discrete periods (J¼ 5) such as in the Washington State EPT Study,50 it may not be

the most efficient if there are a large number of periods relative to the number of clusters, due to the reduced
degree of freedom available for estimating the intervention effect. For example, Hemming et al.47 analyzed a
stepped wedge CRT of 10 midwifery teams (with each team forming a cluster) to evaluate the effectiveness of a
training package to promote sweeping membranes in post-term women in the UK. The trial collected outcomes
from each team during each of the 40weeks of the study, and would have required 39 categorical time parameters
if the Hussey and Hughes model had been considered. In general, including many fixed-effects parameters with a
limited number of clusters may decrease the precision of the intervention effect, so that it becomes much less likely
to locate a true effect signal.47,51 In this particular case, it seems attractive to look at a parsimonious specification
of F0ðjÞ0b, such as the linear trend or a polynomial specification to a fixed degree.

Grantham et al.52 provided an interesting result on time parameterization in stepped wedge CRTs from a
variance perspective. In the planning stage, sample size and power calculation critically depend on the variance of
the intervention effect, varðd̂Þ. In the linear mixed model setting with equal cluster-period sizes Nij ¼ N,
Grantham et al.52 showed that varðd̂Þ was invariant to time parameterization as long as the sum of the interven-
tion sequences across clusters

XI
i¼1

Xi1; . . . ;
XI
i¼1

XiJ

 !0

lay in the column space of F0, where F0 ¼ ðF0ð1Þ; . . . ;F0ðJÞÞ0 is the design matrix for the secular trend. An
implication from this result is that, if there is a balanced allocation of clusters to each sequence ranging from

ð0; . . . ; 0; 1Þ0 to ð0; 1; . . . ; 1Þ0, the saturated time specification in the Hussey and Hughes model and the linear trend
specification yield the same expression for varðd̂Þ. Further, varðd̂Þ does not change with polynomial specifications
as long as the linear time term is included. This invariance property suggests that, with the same trial configu-
ration, the sample size estimates become identical irrespective of the above two time parameterizations.52
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However, it is important to realize that such variance comparisons assume known variance components, and are
relevant only for design purposes. In the analysis stage, under-specification of the secular trend could result in bias
relative to the true intervention effect, and thus variance appears to be a secondary consideration.49

For sample size and power calculation, Heo et al.53 used a linear mixed model that forwent any secular trend,
namely assuming F0ðjÞ0b ¼ 0. While Zhou et al.54 argued that ignoring the secular trend might be reasonable in
trials with a very short duration, a number of authors9,47 have cautioned against the general application of models
without a secular trend due to the potential of bias. In fact, one can show analytically that, holding all other
conditions equal, the variance of the intervention effect estimator, varðd̂Þ, becomes strictly smaller when the
secular trend is omitted.54 This implies that the required sample size could be underestimated when it is incorrectly
assumed that there is no time effect.

3.3 Considerations for modeling the intervention effect

In the general model formulation (4), the intervention effect, Dðj; sÞ, depends on both period index j and sequence
index s, which suggests the possibility for going beyond a constant treatment effect. Formal extensions on model-
ing a time-varying intervention effect appeared in Hussey and Hughes9 and Hughes et al.55 From Hughes et al.,55

a saturated but stationary intervention effect representation is given by the general time-on-treatment effect, where

Dðj; sÞ ¼ dj�s ¼ d0I½j¼s� þ d1I½j¼sþ1� þ � � � þ dJ�sI½j¼J� (9)

We call this representation stationary because Dðj; sÞ is not a saturated function of (j, s) but a saturated function of
j – s for j � s. The general time-on-treatment effect allows the group-average intervention effect to be different
depending on the elapsed number of time intervals since the intervention was first introduced. For example, the
model assumes that the intervention effect at time j � s is dj�s, if the intervention is introduced at time s. In this
case, the global test for H0: d0 ¼ d1 ¼ � � � ¼ dJ�2 ¼ 0 is used to assess the overall intervention effect. Nickless
et al.49 reported that a linear mixed model with the time-on-treatment effect assumption had minimum bias and
carried close-to-nominal coverage in estimating the average intervention effect under a wide range of scenarios.
Further, because the constant intervention effect representation is nested within equation (9), a global test for H0:
d0 ¼ d1 ¼ � � � ¼ dJ�2 provides a mechanism to assess the plausibility of constant intervention effect assumption.

The general time-on-treatment model requires J – 2 parameters for the intervention effect (as compared to only
1 parameter in the Hussey and Hughes model (5)), and could be challenging to estimate in trials with a
limited number of clusters. Parsimonious versions of the time-on-treatment effect model have been suggested.
Assuming that the periods are equally spaced, Hughes et al.55 introduced the linear time-on-treatment effect
representation, where

Dðj; sÞ ¼ d0 þ d1ðj� sÞ (10)

or more simply, Dðj; sÞ ¼ dðj� sþ 1Þ, which was assumed as a linear function of the elapsed number of periods
since the intervention was first introduced. Such parameterizations are especially useful when the intervention
takes more than a single time period to fully develop, or when there is a strengthening or weakening of inter-
vention effect over time. Alternatively, representation (10) can be considered as a constant treatment effect plus a
treatment-by-linear-time interaction.

In the presence of a delayed treatment effect, one could also incorporate prior knowledge to such delay
and model

Dðj; sÞ ¼ dp0I½j¼s� þ dI½j>s� (11)

where p0 2 ½0; 1� is a constant value representing how effective the intervention will be during the time interval
when it is just introduced.55 For example, if the intervention is known to be 50% effective when it is first
introduced and 100% effective afterwards, we can set p0 ¼ 1=2. Had one known from prior knowledge that
the intervention will be 100pj�s percent effective when it has been introduced j – s periods (with pj�s ¼ 0 if
j< s), the general delayed treatment effect representation can be formalized as

Dðj; sÞ ¼ dp0I½j¼s� þ dp1I½j¼sþ1� þ � � � þ dpJ�sI½j¼J� (12)
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Clearly, when prior knowledge suggests an arithmetic increase in effectiveness such that

p1 � p2 ¼ p2 � p3 ¼ . . . ¼ pJ�s�1 � pJ�s, representation (12) is an equivalent parameterization to equation (10).
Finally, Hughes et al.55 provided an example of a nonlinear model for the time-on-treatment effect, where the

intervention effect is considered to increase nonlinearly over time until it reaches the maximum long-term effect.

In that model, the time indicator j indexes the exponential rate of increase, and so the model is no longer nested

within equation (9). To facilitate the understanding of various intervention effect assumptions, we provide sche-

matic illustrations of four typical examples in Figure 2.

3.4 Considerations for modeling heterogeneity in cross-sectional designs

There have been extensive discussions of alternative strategies for modeling the random-effects structure

in stepped wedge trials, especially for those involving cross-sectional designs. Because such discussion

has been centered on extensions to the Hussey and Hughes model, they have almost exclusively adopted

the constant intervention effect and the categorical time parameterization. We conjecture that assuming no

treatment-by-time interaction in the analytical model has gained popularity since trial planning and sample

size estimation are more convenient once a scalar target parameter is assumed. To focus on ideas and stay

consistent with the current literature, we will review variants of random-effects structures by assuming a

linear link, categorical secular trend (except for the random coefficient model which uses a linear trend specifi-

cation) as well as a time-invariant intervention effect. To provide a quick reference, we also list selected model

variants in Table 1.

3.4.1 Nested exchangeable correlation model

The first notable extension to the Hussey and Hughes model was found in Hooper et al.56 and Girling and

Hemming.38 This model has also been referred to as the Hooper/Girling model,57 and is written as

Yijk ¼ lþ bj þ dXij þ ai þ cij þ �ijk (13)

Compared to the Hussey and Hughes model, there is an additional term, cij �Nð0; s2cÞ, representing the random

cluster-by-time interaction. This additional random effect is assumed independent of the random cluster effect ai.
As a special case of the general model representation, the nested exchangeable correlation model specifies the

heterogeneity term as

Rikðj; sÞ0ai ¼ ai þ cij (14)

and therefore allows the deviation from the group average to be both cluster-specific and period-specific.

Notice that similar ideas on random cluster-by-time interaction date back to the earlier work of

Murray et al.58 for parallel CRTs with repeated measurements. Hemming et al.47 pointed out that it might be

convenient to consider cij as a latent factor arising from the unmeasured time-varying characteristics within

a cluster.
The nested exchangeable correlation model distinguishes between two different types of correlation parameters:

the within-period ICC and the between-period ICC. Specifically

corr½YijkðsÞ;YilmðsÞ� ¼
qw ¼ ðs2a þ s2cÞ=ðs2a þ s2c þ r2� Þ; j ¼ l

qb ¼ s2a=ðs2a þ s2c þ r2� Þ; j 6¼ l

(

where the within-period ICC, qw, describes the correlation between two within-cluster observations collected

during the same period, and the between-period ICC, qb, describes the correlation between two within-cluster

observations collected in different periods. Since the variance components are positive, the between-period ICC is

constrained to be no larger than the within-period ICC. Such a nested exchangeable correlation model has also

been previously studied in three-level and crossover CRTs.59,60 An example matrix form of the nested exchange-

able correlation structure is provided in Table 2.
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On the other hand, Hooper et al.56 characterized the nested exchangeable correlation structure based on qw and
the cluster autocorrelation (CAC), which was defined as

CAC ¼ s2a=ðs2a þ s2cÞ ¼ qb=qw (15)

Different from the individual-level correlation qb, the CAC has been interpreted as the correlation between two
population means from the same cluster at different times (also see Feldman and Mckinlay29 for this interpre-
tation). Here we clarify that CAC should actually be interpreted as the limit of the correlation between two

(a)

(b)

(c)

(d)

Figure 2. Schematic illustrations of four intervention effect representations in a stepped wedge design with I¼ 4 clusters and J¼ 5
periods. Each cell with a zero entry indicates a control cluster-period and each cell with a non-zero entry indicates an intervention
cluster-period.
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cluster-period means. Specifically, if we define the cluster-period mean as �Yijþ ¼ N�1
ij

XNij

k¼1
Yijk, then the variance,

covariance and correlation of cluster-period means can be calculated as

varð �YijþÞ ¼ r2tot
1þ ðNij � 1Þqw

Nij

( )
; covð �Yijþ; �YilþÞ ¼ r2totqb

corrð �Yijþ; �YilþÞ ¼ covð �Yijþ; �YilþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð �YijþÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð �YilþÞ

p
¼ Nijqb

1þ ðNij � 1Þqw
! CAC; as Nij ! 1

and CAC is the limit of correlation between �Yijþ and �Yilþ when the cluster-period size Nij increases indefinitely.

Girling and Hemming38 also defined the cluster mean correlation (CMC) as the proportion of the variance of a

cluster mean �Yiþþ ¼
XJ

j¼1

XNij

k¼1
Yijk that came from random effects that were independent of time. Assuming

equal cluster-period sizes Nij ¼ N, the CMC is the proportion of variability of �Yiþþ explained by ai, and can

actually be rewritten as

CMC ¼ NJqb
1þ ðN� 1Þqw þNðJ� 1Þqb

¼ NJ	 CAC

1=qw þ ðN� 1Þ þNðJ� 1ÞCAC

(16)

which is a function of CAC, within-period ICC, number of periods and the cluster-period size. In what follows, we

will use the individual-level ICCs to characterize different correlation structures, but the CAC and CMC are two

alternative parameterizations.

Table 1. Example extensions to the Hussey and Hughes model for stepped wedge cluster randomized trials in cross-sectional and
closed-cohort designs; all models assume a continuous outcome and an identity link function.

Design Extension Feature Example references

Cross-sectional Nested Exchangeable
 Distinguish between within-period and

between-period ICCs

Hooper et al.;56

Girling and

Hemming38

Exponential Decay
 Allow the between-period ICC to decay

at an exponential rate over time

Kasza et al.57

Kasza and Forbes61

Random Intervention Include random cluster-specific intervention

effects, and ICC depends on intervention status

Hughes et al.55

Hemming et al.47

Random Coefficient Include random cluster-specific time slopes;

ICC tends to be an increasing function

of distance in time

Murray et al.58

Closed-cohort Basic Include cluster-level and subject-level random

effects to separate between-individual

ICC and within-individual ICC

Baio et al.65

Block Exchangeable
 Include three random effects to distinguish

between within-period ICC, between-period

ICC, and within-individual ICC

Hooper et al.56

Girling and

Hemming38

Proportional Decay
 Allow the between-period ICC and within-individual

ICC to decay over time at the same exponential rate

Li60

Random Intervention Include random cluster-specific intervention

effects, and ICC depends on intervention status

Kasza et al.27

Note: The choice of terminology with the ‘*’ symbol is based on the following. The nested exchangeable correlation model was defined in Teerenstra

et al.59 and Li et al.60 in the context of three-level CRTs and crossover CRTs. Li et al.34 introduced the block exchangeable correlation model for

closed-cohort design and pointed out the nested exchangeable correlation model is a special case. The exponential decay correlation model is

proposed in Kasza et al. and Kasza and Forbes.57,61 The proportional decay correlation model is introduced in Li60 and dates back to the earlier work

of Liu et al.72 in the context of longitudinal parallel CRTs.
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Hooper et al.56 and Girling and Hemming38 provided a closed-form expression for the variance of the inter-

vention effect based on model (13). Assuming equal cluster-period sizes Nij ¼ N, one can use the results in Li

et al.34 to show that the form of the variance formula is identical to equation (7), except that we replace

r2tot ¼ s2a þ s2c þ r2�
k1 ¼ 1þ ðN� 1Þqw �Nqb
k2 ¼ 1þ ðN� 1Þqw þNðJ� 1Þqb

In particular, the two parameters, k1 and k2, have been shown to be two distinct eigenvalues of the nested

exchangeable correlation matrix.34 Interestingly, the cluster mean correlation (16) also depends only on the two

eigenvalues as we can show CMC ¼ 1� k1=k2. Further, unlike the Hussey and Hughes model, the nested

exchangeable correlation model is considered to be more realistic for cross-sectional studies since the limit of

the variance

lim
N!1

varðd̂Þ ¼ r2totIðqw � qbÞfqw þ ðJ� 1Þqbg
ðIU�WÞfqw þ ðJ� 1Þqbg þ ðU2 � IVÞqb

> 0 (17)

is a positive quantity as long as qw 6¼ qb.

3.4.2 Exponential decay model

Kasza et al.57 extended the nested exchangeable correlation model (13) by allowing the between-period correlation

to decay exponentially over time. The model is written as

Yijk ¼ lþ bj þ dXij þ cij þ �ijk (18)

Table 2. Illustration of the non-decaying (exchangeable) and decaying within-cluster correlation structure implied
by the random-effects model in cross-sectional, closed-cohort, and open-cohort designs.

Note: In each correlation matrix, each block represents the correlation structure in a given cluster-period or between two

cluster-periods, and the total number of periods is T¼ 3. The cluster-period sizes are assumed to be equal (Nij¼ 2). In the open-

cohort design, we assume only one individual is followed through all periods, and a new individual will be supplemented in each

period. Each correlation matrix is defined for the vector of observations collected across all periods in the same cluster.
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where the heterogeneity term is

Rikðj; sÞ0ai ¼ cij

The collection of random effects in cluster i is assumed to follow ci ¼ ðci1; . . . ; ciJÞ0 �Nð0; s2c ~MÞ, and ~M had a
symmetric Toeplitz structure

~M ¼

1 r12 r13 . . . r1J

r21 1 r23 . . . r2J

..

. ..
. ..

. . .
. ..

.

rJ1 rJ2 rJ3 . . . 1

0
BBBBB@

1
CCCCCA (19)

where rjl¼ rlj for all l and j.
Clearly, an unrestricted Toeplitz correlation structure could include up to JðJ� 1Þ=2 unknown parameters,

which may not be easy to interpret from a design perspective. Therefore, Kasza et al.57 focused on the following
autoregressive structure for trial planning. Specifically, the structure matrix ~M could include two parameters r0
and r and is written as

~M ¼ Mðr0; rÞ ¼

1 r0r r0r
2 . . . r0r

J�1

r0r 1 r0r . . . r0r
J�2

..

. ..
. ..

. . .
. ..

.

r0r
J�1 r0r

J�2 r0r
J�3 . . . 1

0
BBBBB@

1
CCCCCA (20)

The Hussey and Hughes model and the nested exchangeable correlation model are returned by Mð1; 1Þ and
Mðr0; 1Þ, while the exponential decay model of Kasza et al.57 is returned by Mð1; rÞ. Although the Hussey and
Hughes model is a special case of the nested exchangeable correlation model, it is important to realize that the
exponential decay and nested exchangeable correlation models do not have a clear nesting relationship. The
exponential decay model implies the following correlation structure

corr½YijkðsÞ;YilmðsÞ� ¼
qw ¼ s2c=ðs2c þ r2� Þ; j ¼ l

qb;jj�lj ¼ s2cr
jj�lj=ðs2c þ r2� Þ; j 6¼ l

(

An example matrix form the exponential decay correlation structure is provided in Table 2.
For sample size estimation, the variance of d̂ may not be obtained analytically with the exponential decay model,

but could be computed numerically following the general variance formula of Kasza et al.57 Kasza et al.57 compared
varðd̂Þ using the nested exchangeable correlation model and the exponential decay model, and concluded that varðd̂Þ
was sensitive to the random-effects assumptions. Specifically, when the exponential decay model is the true model,
the variance could either be overestimated or underestimated if the nested exchangeable correlation model is incor-
rectly assumed, and vice versa. Therefore, Kasza et al.57 recommended examination of the plausibility of alternative
correlation structures based on preliminary data, whenever possible. From a data analytic perspective, Kasza and
Forbes61 further considered the misspecification of the random-effects structure on the estimation of the treatment
effect and variance components. They found that incorrectly omitting the decay parameter r (namely assuming the
Hussey and Hughes model or the nested exchangeable correlation model when the true model induces an expo-
nential correlation decay) might lead to an inflated type I error rate and invalid inference.

The exponential decay model (18) assumes that the correlation decay is a function of the distance between time
periods, which is considered appropriate if all individuals in the same period are measured at approximately the
same time. For this reason, this model is also more explicitly referred to as the discrete-time exponential decay
model. Grantham et al.62 extended the discrete-time exponential decay model to accommodate continuous enroll-
ment, and allowed for the correlation decay to depend on the distance between the actual measurement times of each
individual. They concluded that incorrectly assuming the Hussey and Hughes model in the presence of continuous-
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time correlation decay would likely underestimate the required sample size in the design stage. We are not aware of

any existing numerical studies that examine the implications for the statistical analysis due to continuous correlation

decay. In fact, Hooper and Copas indicated that the current literature on stepped wedge designs had not differen-

tiated between continuous enrollment and discrete individual sampling, and therefore new statistical models and

methods would be required to address the challenges associated with continuous enrollment.63

3.4.3 Random intervention model

Several authors have suggested extensions to the Hussey and Hughes model and accounted for potential variation

across clusters in the magnitude of intervention effects.47,55,64 For example, Hemming et al.47,64 considered a

model parameterized as

Yijk ¼ lþ bj þ dXij þ a1iXij þ a0ið1� XijÞ þ �ijk (21)

where

a1i
a0i

� 	
�N

0
0

� 	
;

s21 r10
r10 s20

� 	
 �
and r10 is the possibly non-zero covariance between random effects a1i and a01. Within our general model rep-

resentation (4), this model assumes the heterogeneity term to be

Rikðj; sÞ0ai ¼ a1iI½j�s� þ a0iI½j< s�

and now depends on the intervention sequence assigned for cluster i. The heterogeneity term can also be consid-

ered as an interaction between the random cluster effect and treatment assignment. An implication of this inter-

action term is that the intervention not only affects the group average through F1
i ðj; sÞ0Dðj; sÞ ¼ dXij, but also

affects the marginal dispersion through the variance components. Hemming et al.64 showed that the following

within-cluster correlation structure holds

corr½YijkðsÞ;YilmðsÞ�
q0 ¼ s20=ðs20 þ r2� Þ; j < s; l < s

q1 ¼ s21=ðs21 þ r2� Þ; j � s; l � s

q10 ¼ r10=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ r2�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ r2�

q� 
; j � s; l < s; or j < s; l � s

8>>>><
>>>>:

where q0 is the correlation for two observations collected under the control condition, q1 is the correlation for two

observations collected under the intervention condition, and q10 is the correlation for two observations collected

under different conditions (one under control and the other under intervention condition). The random inter-

vention model does not permit a closed-form derivation of the variance, varðd̂Þ, and therefore sample size

estimates must proceed by numerical calculations. To date, only simulation-based approaches have been exam-

ined to estimate sample size from the random intervention model.65

An alternative parameterization of (21) is to directly include a random cluster-by-treatment interaction in the

Hussey and Hughes model.55 The model can be written as

Yijk ¼ lþ bj þ ðdþ �iÞXij þ ai þ �ijk (22)

where

ai
�i

� 	
�N

0
0

� 	
;

s2a ra�
ra� s2�

� 	
 �
and ra� is a possibly non-zero covariance between ai and �i. This model assumes the heterogeneity term

Rikðj; sÞ0ai ¼ ai þ �iI½j�s�
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Hemming et al.64 discussed alternative parameterizations that allowed for treatment effect heterogeneity, and

recommended the use of equations (21) and (22) because other parameterizations induced unnecessary and

sometimes implausible assumptions on the correlation structure. Baio et al.65 pointed out that term ðdþ �iÞ in

model (22) could be interpreted as a cluster-varying random slope for the intervention effect.

3.4.4 Random coefficient model

Another modeling technique, proposed for analyzing parallel longitudinal CRTs, is the random coefficient

model.58 Although such a model has not yet been formally investigated in the context of stepped wedge designs,

there has been recent interest in exploring their operating characteristics (Section 4 of Kasza and Forbes61 men-

tioned such models), and we briefly discuss the model assumptions here. The random coefficient model usually

specifies a linear secular trend but allows for cluster-specific time slopes

Yijk ¼ lþ ðbþ niÞTj þ dXij þ ai þ �ijk (23)

In this model, we use Tj ¼ j to represent the linear time basis function, b as the fixed time slope and ni as the

random slope. Within the general model representation, the heterogeneity term is written as

Rikðj; sÞ0ai ¼ ai þ jni

The random intercept and slope are assumed to be independent of the residual error, but could covary following a

bivariate normal distribution

ai
ni

� 	
�N

0
0

� 	
;

s2a ran
ran s2n

 !" #

The following within-cluster correlation structure between a pair of outcomes results from the above model

corr½YijkðsÞ;YilmðsÞ� ¼ qjl ¼
s2a þ ðjþ lÞran þ jls2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2a þ 2jran þ j2s2n þ r2�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2a þ 2lran þ l2s2n þ r2�

q

which is specific to both time period indices j and l. It is not immediate what correlation pattern is implied from

the above expression, except that it is symmetric, namely, qjl ¼ qlj. Therefore, we plot the within-period and

between-period ICCs in a hypothetical trial with J¼ 5 periods in Figure 3 under different assumptions of the

covariance parameters. When ran � 0 as in panels (b) and (c), our finding suggests that the within-period ICC is

often an increasing function of time j. In addition, the between-period ICC also increases as the distance in time,

jj� lj, increases, which is opposite to the correlation structure implied by the exponential decay model. Finally,

when the covariance ran < 0, the random coefficient model could imply negative between-period ICCs. These

observations point out that the within-cluster correlation structure induced from the random coefficient model

may be challenging to interpret, especially because the pattern of the between-period ICC contradicts that of the

exponential decay model, and the latter has been considered plausible in several settings.57 Further simulation and

methodological investigations are required to study the performance and interpretation of the random coefficient

model versus other alternatives in the context of stepped wedge designs.

3.5 Considerations for modeling heterogeneity in closed-cohort designs

3.5.1 The basic model

Considerations for closed-cohort designs were discussed in Copas et al.,30 and a simple extension to the Hussey

and Hughes model was introduced in Baio et al.65 Specifically, the basic model is written as

Yijk ¼ lþ bj þ dXij þ ai þ /ik þ �ijk (24)
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where /ik �Nð0; s2/Þ is the random effect for the repeated measures from individual k in cluster i, and it is assumed
to be independent of random cluster effect ai. The heterogeneity term

Rikðj; sÞ0ai ¼ ai þ /ik (25)

is modeled as a function of cluster index i and individual index k. This model assumption induces the following
nested exchangeable within-cluster correlation structure

corr½YijkðsÞ;YilmðsÞ� ¼
qa ¼ ðs2a þ s2/Þ=ðs2a þ s2/ þ r2� Þ; k ¼ m

qd ¼ s2a=ðs2a þ s2/ þ r2� Þ; k 6¼ m

(

where qa is the correlation between two repeated measurements from the same individual (termed the within-
individual ICC following Li et al.34) and qd is the correlation between two observations collected from different
individuals, regardless of time periods. Although not directly pointed out by Baio et al.,65 the additive random
structure permits a closed-form derivation of the variance of the intervention effect for trial planning once we
assume equal cohort sizes, Ni¼N. In particular, using the results of Li et al.,34 one can show that varðd̂Þ shares the
same form with expression (7), except that we replace

r2tot ¼ s2a þ s2/ þ r2� ;
k1 ¼ 1� qa;
k2 ¼ 1þ JðN� 1Þqd þ ðJ� 1Þqa

where k1 and k2 are again the two eigenvalues of the within-cluster correlation matrix implied by model (24).
This basic model suggested in Baio et al.65 has the same limitation as the Hussey and Hughes model, that is,

the limit of the variance, limN!1 varðd̂Þ, converges to zero as the cohort size approaches infinity. In other
words, the required number of clusters converges to one for any given level of power as long as one
increases the cohort sizes indefinitely, which may not be realistic. Nevertheless, models assuming the
heterogeneity term (25) appeared in a few previous investigations, including all models used in the simulation
study of Nickless et al.49

(a) (b) (c)

Figure 3. Three examples of within-cluster correlation patterns implied by the random coefficient model. A trial with J¼ 5 is
assumed throughout; the diagonal cells present the within-period ICC values, while the off-diagonal cells present the between-period
ICC values. White color indicates a smaller ICC value while red color indicates a larger ICC value. The variance components
parameters are assumed as r� ¼ 6; sa ¼ 1; sn ¼ 0:5 and the covariance parameter (a) ran ¼ �0:5, (b) ran ¼ 0, (c) ran ¼ 0:5. (a)
Negative covariance ran¼� 0.5; (b) Zero covariance ran¼ 0; (c) Positive covariance ran¼ 0.5.
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3.5.2 Block exchangeable correlation model

The nested exchangeable correlation model was extended to include a similar individual-level random intercept to

account for the correlations between repeated measures. The model appeared in Hooper et al.56 and Girling and
Hemming38 as

Yijk ¼ lþ bj þ dXij þ ai þ cij þ /ik þ �ijk (26)

where /ik �Nð0; s2/Þ is the random effect for the repeated measures from individual k in cluster i, and is assumed

to be independent of ai and cij (ai and cij are defined earlier in equation (13)). Using the notation of the general
model, the block exchangeable correlation model represents the heterogeneity by

Rikðj; sÞ0ai ¼ ai þ cij þ /ik

which depends on cluster i, period j as well as individual k. Three ICC parameters are implied by the block
exchangeable correlation model in the cohort setting, as we can write

corr½YijkðsÞ;YilmðsÞ� ¼
qa ¼ ðs2a þ s2/Þ=ðs2a þ s2c þ s2/ þ r2� Þ; j 6¼ l; k ¼ m

qw ¼ ðs2a þ s2cÞ=ðs2a þ s2c þ s2/ þ r2� Þ; j ¼ l; k 6¼ m

qb ¼ s2a=ðs2a þ s2c þ s2/ þ r2� Þ; j 6¼ l; k 6¼ m

8>><
>>:

where qa is the within-individual ICC for repeated measures, qw and qb are the within-period and between-period

ICCs which have the same interpretations as their corresponding counterparts in the cross-sectional model. Constant
values are assumed for three types of ICCs, and therefore the correlation structure does not depend on the inter-

vention sequence s. An example matrix form the block exchangeable correlation structure is provided in Table 2.
In the closed-cohort setting, model (26) induces the so-called block exchangeable correlation structure, due to

the fact that if the correlation structure is written in a matrix form, the exchangeability holds both within and

across periods.34 The variance expression for the treatment effect was derived in Hooper et al.,56 Girling and
Hemming,38 and Li et al.,34,66 using different notation. In our notation, the expression of varðd̂Þ is the same as

equation (7), except that we will redefine the total variance and eigenvalues by

r2tot ¼ s2a þ s2c þ s2/ þ r2� ;
k1 ¼ 1þ ðN� 1Þðqw � qbÞ � qa;
k2 ¼ 1þ ðN� 1Þqw þ ðJ� 1ÞðN� 1Þqb þ ðJ� 1Þqa

Further, as the cohort size N increases to infinity, the limit of the variance, limN!1 varðd̂Þ, is given in equation

(17), which is a positive constant as long as qb 6¼ qw. Therefore, the block exchangeable correlation model is

considered more realistic than the basic model in the cohort setting, for the same reason argued in Taljaard et al.45

Finally, we can see that models (5), (13) and (24) are all nested in the block exchangeable correlation model (26).
The block exchangeable correlation model has facilitated the investigation of several design questions in the closed-

cohort settings. For example, Li et al.34 reported the roles of the three ICC parameters for design efficiency. In
particular, they found that larger values of the within-period ICC reduced the design efficiency, just as the traditional

ICC did in a parallel design. However, larger values of both the between-period ICC and/or within-individual ICC
increase the design efficiency. Further, optimal closed-cohort designs were reported in Li et al.,66 who generalized the

earlier findings in Lawrie et al. based on the Hussey and Hughes model.36 Girling and Hemming38 derived the optimal

design within a larger design space that includes hybrid designs, and found the hybrid design to be the most efficient
within the larger design space. Their results apply to both cross-sectional and closed-cohort designs. Grayling et al.67

developed an algorithm to search for admissible (cohort) stepped wedge designs in the presence of multiple interven-
tion arms.68 Girling69 studied the relative efficiency of unequal cluster sizes versus balanced cluster sizes in closed-

cohort designs, and reported that the loss of precision due to unequal cluster sizes was usually no more than 12%,

which was consistent with prior investigations in cross-sectional designs.42 Defining CV as the coefficient of variation
for cohort sizes, Girling69 showed that inflating the required cohort size by a factor of ð1þ CV2Þ, as one would do in a

parallel CRT,70 provided a valid but conservative sample size estimate for cohort stepped wedge trials. Finally, because
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the nested exchangeable correlation model is a special case of the block exchangeable correlation model, these results

derived under the latter model apply to the cross-sectional setting by setting s2/ ¼ 0.

3.5.3 Proportional decay model

Li71 proposed a model for the design and analysis of cohort stepped wedge designs that allowed the exponential

decay of between-period ICC and within-individual ICC over time. However, Li71 focused on a population-averaged

model that allowed the direct characterization of the within-cluster correlation structure, but did not consider a

mixed-effects model counterpart. With a continuous outcome Yijk, we are able to find a conditional model that leads

to the same inference as the marginal model discussed in Li.71 Specifically, the conditional model that allows

correlation decay in the closed-cohort design setting shares the same form as the exponential decay model

Yijk ¼ lþ bj þ dXij þ cij þ �ijk (27)

where the heterogeneity term is

Rikðj; sÞ0ai ¼ cij

However, in addition to assuming ci ¼ ðci1; . . . ; ciJÞ0 �Nð0; s2cMð1; rÞÞ, we could further assume a similar autor-

egressive structure for residual errors of the kth person in cluster i as

�ik ¼ ð�i1k; . . . ; �iJkÞ0 �Nð0; r2�Mð1; rÞÞ; �ik?�im; k 6¼ m

where r is the decay rate shared by ci and �ik, and ci?�ik.
The above decay model implies a proportional decay correlation structure that dates back to the analysis of

multilevel longitudinal data.72,73 The within-cluster correlations between each pair of observations is

corr½YijkðsÞ;YilmðsÞ� ¼
qa;jj�lj ¼ rjj�lj; j 6¼ l; k ¼ m;

qw ¼ s2c=ðs2c þ r2� Þ; j ¼ l; k 6¼ m;

qb;jj�lj ¼ s2cr
jj�lj=ðs2c þ r2� Þ; j 6¼ l; k 6¼ m

8>><
>>:

where qa;jj�lj is the within-individual ICC that decays exponentially over time, qw and qb;jj�lj are the within-period
and between-period ICCs just as their counterparts in the exponential decay model. This correlation model is

termed the proportional decay model as the same decay rate r applies to both the within-individual ICC and the

between-period ICC for different individuals. An example matrix form the proportional decay correlation struc-

ture is provided in Table 2. A unique feature of the proportional decay correlation structure is that the correlation

matrix can be written as a Kronecker product between an exchangeable correlation and a first-order autoregres-

sive matrix.73 This separability property allows one to derive a closed-form variance for the intervention effect to

facilitate sample size and power calculation.
Under equal cohort sizes Ni¼N, Li71 showed that

varðd̂Þ ¼ ðr2tot=NÞIð1� r2Þf1þ ðN� 1Þqwg
ðIU�WÞð1þ r2Þ � 2ðIP�QÞr (28)

where U ¼
XI

i¼1

XJ

j¼1
Xij and W ¼

XJ

j¼1

XI

i¼1
Xij

� �2
are defined earlier as in the Hussey and Hughes model,9

and P ¼
XI

i¼1

XJ�1

j¼1
XijXi;jþ1; Q ¼

XJ�1

j¼1

XI

i¼1
Xij

� � XI

i¼1
Xi;jþ1

� �
are cross-product terms resulting from the

first-order autoregressive decay. As the cohort size increases to infinity

lim
N!1

varðd̂Þ ¼ r2totIð1� r2Þqw
ðIU�WÞð1þ r2Þ � 2ðIP�QÞr > 0
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which is a positive constant as long as jrj < 1. This variance expression suggests that the proportional decay

model is not subject to the same criticism as the basic model (24). The variance expression also permits us to study

the role of decay, r, on design efficiency. Li71 further presented a closed-form expression of the design effect based

on equation (27), and demonstrated the parabolic relationship between varðd̂Þ and r, when all other parameters

were held constant.

3.5.4 Random intervention model

The random intervention model in the closed-cohort design has been considered in Kasza et al.,27 although in the

context of incomplete designs where outcomes may not be measured in certain cluster-periods (e.g. trials with

implementation periods where outcome data are not collected). The model can be represented by

Yijk ¼ lþ bj þ ðdþ �iÞXij þ cij þ /ik þ �ijk (29)

where /ik �Nð0; s2/Þ is the random effect for the repeated measures from individual k in cluster i, �ijk �Nð0; r2� Þ is
the residual error, �i is the cluster-specific random intervention effect, and cij is the cluster-period-specific random
deviation from the group average, as in the exponential decay model. Clearly, the heterogeneity term is modeled as

Rikðj; sÞ0ai ¼ cij þ /ik þ �iI½j�s�

Kasza et al.27 assumed the following correlation pattern for the remaining set of random effects

ðci1; ci2; . . . ; ciJ; �iÞ0 �N
0J	1

01	1

 !
;

s2c ~M rc�1

rc�1
0 s2�

 !" #

and the vector ðci1; ci2; . . . ; ciJ; �iÞ0 was assumed to be independent of /ik and �ijk. In the above covariance struc-

ture, s2c ; s2� are variance components for cij and �i, rc� is the possibly non-zero covariance between them, 1 is the

J	 1 matrix of ones, and ~M is the symmetric Toeplitz matrix defined in equation (19). The complicated random-

effects structure in fact distinguishes between eight types of ICC parameters. Specifically, when two observations

are measured under the control condition (namely, j < s; l < s), the within-period, between-period and within-

individual ICCs are

corr½YijkðsÞ;YilmðsÞ� ¼

qw ¼ s2c
s2c þ s2/ þ r2�

; j ¼ l; k 6¼ m

qb ¼ s2crjl
s2c þ s2/ þ r2�

; j 6¼ l; k 6¼ m

qa ¼
s2crjl þ s2/

s2c þ s2/ þ r2�
; j 6¼ l; k ¼ m

8>>>>>>>>>><
>>>>>>>>>>:

When two observations are measured under the intervention condition (namely, j � s; l � s), the within-period,

between-period, and within-individual ICCs become

corr½YijkðsÞ;YilmðsÞ� ¼

qw ¼ s2c þ s2� þ 2rc�
s2c þ s2/ þ s2� þ 2rc� þ r2�

; j ¼ l; k 6¼ m

qb ¼ s2crjl þ s2� þ 2rc�
s2c þ s2/ þ s2� þ 2rc� þ r2�

; j 6¼ l; k 6¼ m

qa ¼
s2crjl þ s2� þ 2rc� þ s2/

s2c þ s2/ þ s2� þ 2rc� þ r2�
; j 6¼ l; k ¼ m

8>>>>>>>>>><
>>>>>>>>>>:

Li et al. 629



Finally, when one observation is measured under the control condition while the other one under the intervention

condition (j � s; l < s or j < s; l � s), the correlations are

corr½YijkðsÞ;YilmðsÞ� ¼

qb ¼ s2crjl þ rc� þ s2/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2c þ s2/ þ s2� þ 2rc� þ r2�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2c þ s2/ þ r2�

q ; k ¼ m

qa ¼
s2crjl þ rc�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2c þ s2/ þ s2� þ 2rc� þ r2�
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2c þ s2/ þ r2�
q ; k 6¼ m

8>>>>>>><
>>>>>>>:

As we explained when we reviewed the exponential decay model in Section 3.4, parsimonious parameterization

of ~M may lead to simpler and more interpretable models. For example, when ~M ¼ Mð1; 1Þ, model (29) is a direct

extension of model (22) by the addition of the random intercept /ik. When ~M ¼ Mðr0; 1Þ, model (29) extends the

block exchangeable correlation model (26) with the addition of a random intervention component. When
~M ¼ Mð1; rÞ, model (29) extends the exponential decay model (18) by the addition of random intercept /ik

and random intervention effect �i. Notice that in the last case, there is no guarantee that the between-period

ICC for any pair of observations decays at an exponential rate, and therefore model (29) does not nest the

proportional decay model (27), even though both models are developed for closed-cohort designs.

3.6 Considerations for modeling heterogeneity in open-cohort designs

The model development in the cross-sectional and closed-cohort designs have important implications for the

open-cohort design, as an open-cohort design can be considered a mix of the former two. Kasza et al.74 recently

discussed several open-cohort sampling schemes for stepped wedge designs and proposed a corresponding sample

size calculation procedure based on a linear mixed model. We will review the related model variants and their

connections to the results in Sections 3.4 and 3.5.

3.6.1 Blended exchangeable correlation model

In principle, the block exchangeable model developed for the closed-cohort design can still be used to represent

the outcome trajectory in the open-cohort design, except for a few notational caveats. Specifically, the outcome

model can still be written as

Yijk ¼ lþ bj þ dXij þ ai þ cij þ /ik þ �ijk (30)

where all the parameters are defined in Section 3.5.2. Importantly, under the attrition of members from and

addition of new members to the original cohort, we shall use a distinct subscript k to represent a distinct indi-

vidual in each cluster. The implied within-cluster correlation matrix is neither nested exchangeable nor block

exchangeable, but becomes a blend of these two. We call such a matrix a blended exchangeable correlation struc-

ture and an example formulation is provided in Table 2.
Assuming that the cluster-period sizes were identical (Nij ¼ N) and there existed the same number of over-

lapping individuals between any two periods niðj; lÞ ¼ nð Þ, Kasza et al.74 derived a closed-form variance of the

intervention effect, which could be rewritten in our notation as

varðd̂Þ ¼ ðr2tot=NÞIJfk1 þ vðqa � qbÞgfk2 � vðJ� 1Þðqa � qbÞg
ðU2 þ IJU� JW� IVÞfk2 � vðJ� 1Þðqa � qbÞg � ðU2 � IVÞfk1 þ vðqa � qbÞg

(31)

where U, V, W were design constants defined in Section 3.1

r2tot ¼ s2a þ s2c þ s2/ þ r2� ;
k1 ¼ 1þ ðN� 1Þðqw � qbÞ � qa;
k2 ¼ 1þ ðN� 1Þqw þ ðJ� 1ÞðN� 1Þqb þ ðJ� 1Þqa
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and v ¼ 1� n=N 2 ½0; 1� was the common rate of attrition or churn rate. This expression permits a convenient

sample size formula for open-cohort designs, and unifies the variance expressions derived under models (5), (13),

(24) and (26). For example, as the churn rate approaches one, the open-cohort design reduces to the cross-

sectional design and the variance (31) reduces to the variance derived under the nested exchangeable model

(13). On the other hand, as the churn rate approaches zero, the open-cohort design reduces to the closed-

cohort design and variance (31) reduces to the one derived under the block exchangeable correlation model.

This unified perspective represents a continuum between cross-sectional and closed-cohort designs, and may help

with the efficiency comparisons between these two designs. In fact, when the within-individual ICC qa is larger

than the between-period ICC qb, variance (31) is a monotonically increasing function of v over ½0; 1�. Within a

random-effects model (30), qa is constrained to be no smaller than qb, and therefore the closed-cohort design is

usually more efficient than the cross-sectional design, provided other parameters are all held equal. On the

contrary, if the within-individual ICC qa is smaller than the between-period ICC qb, variance (31) becomes a

monotonically decreasing function of v over ½0; 1�. In this case, the closed-cohort design becomes less efficient than

the cross-sectional design, providing the remaining parameters are held equal. However, even though the latter

case is mathematically valid (because the resulting correlation matrix can still be positive definite, see the eigen-

value conditions of Li et al.34), it may not be plausible in practice because serial correlation defined for the same

individual is usually believed to be stronger than correlation between individuals.

3.6.2 Blended correlation decay model

Kasza et al.74 introduced a linear mixed model that allowed correlation decay in open-cohort designs. The

model has the same conditional mean structure as the exponential decay and the proportional decay model

and is written as

Yijk ¼ lþ bj þ dXij þ cij þ �ijk (32)

where ci ¼ ðci1; . . . ; ciJÞ0 �Nð0; s2cMð1; rÞÞ and r is the decay rate at the cluster-period level. Here, we use a distinct

subscript k to represent a distinct individual in each cluster to allow for open-cohort sampling. If individual k in

cluster i contributes outcome observations in a total of Jk � J periods, the model assumes an autoregressive

structure for errors of that individual as

�ik ¼ ð�i1k; . . . ; �iJkkÞ0 �Nð0; r2�Mð1; gÞÞ; �ik?�im; k 6¼ m

where g is the decay rate at the individual level, and the two random effects are independent, ci?�ik. Notice that

this blended correlation decay model is more general than the proportional decay model because the individual-

level decay rate g is allowed to differ from the cluster-period-level decay rate r.
The blended correlation decay model implies the following correlation structure

corr½YijkðsÞ;YilmðsÞ� ¼
qa;jj�lj ¼ ðs2crjj�lj þ r2�g

jj�ljÞ=ðs2c þ r2� Þ; j 6¼ l; k ¼ m;

qw ¼ s2c=ðs2c þ r2� Þ; j ¼ l; k 6¼ m;

qb;jj�lj ¼ s2cr
jj�lj=ðs2c þ r2� Þ; j 6¼ l; k 6¼ m

8>><
>>:

where qa;jj�lj is the within-individual ICC that decays over time depending on both g and r. Furthermore, qw and

qb;jj�lj are the within-period and between-period ICCs just as their counterparts in the exponential decay model

and the proportional decay model. The blended correlation decay model unifies the exponential decay and pro-

portional decay models. For instance, when the churn rate approaches one, the open-cohort design reduces to the

cross-sectional design, and the blended correlation decay structure reduces to the exponential decay structure. On

the other hand, as the churn rate approaches zero, the open-cohort design reduces to the closed-cohort design, and

the blended correlation decay structure becomes the proportional decay structure when the two decay rates are

identical, namely g ¼ r. This indicates that the blended correlation decay model represents a continuum between

cross-sectional and closed-cohort designs, and will be helpful for comparing efficiency between cross-sectional and

closed-cohort designs under a range of correlation decay parameters. We provide an illustrative matrix form of

the blended correlation decay structure in Table 2, where we assume an equal decay rate at each level (g ¼ r). This
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illustrative formulation in Table 2 also shows that the blended correlation decay structure is a “blend” of the

exponential decay and proportional decay structures. Unlike the blended exchangeable correlation model, the

blended correlation decay structure does not admit a closed-form variance expression of the intervention effect,

even when the churn rate is assumed to be a constant. Kasza et al.74 provided a general matrix-based variance

formula for numerically computing sample size and power, with the two decay parameters as key input. However,

empirical estimates of these decay rates are lacking, and additional research effort is necessary to examine the

operating characteristics of model (32) for estimating these decay parameters in stepped wedge designs with

realistic sample sizes.

3.7 Considerations for modeling binary outcomes

The literature on stepped wedge designs has largely focused on the application of linear mixed models and a

continuous outcome, and includes few focused discussions of binary outcomes. For sample size estimation,

Hussey and Hughes9 used variance expression (5) derived from the linear mixed model, but approximated

r2��lð1� lÞ. In this particular case, the link function g is still identity and thus the intervention effect could

be interpreted as the risk difference. Although this variance approximation may be adequate when there is

minimal secular trend and a small intervention effect,25,75 it may either underestimate or overestimate the true

power in other parameter regions.76 To accurately estimate sample size, Zhou et al.76 proposed the following

variant of the Hussey and Hughes model

lij ¼ lþ bj þ dXij þ ai (33)

where lij is the proportion of responses in cluster i during period j, and the heterogeneity term Rikðj; sÞ0ai ¼ ai now
follows a truncated normal distribution with density

fðaijs2aÞ / If�l0 < ai < 1� l1gexp � a2i
2s2a

 !

where the truncation points l0 ¼ minflþ bj; lþ bj þ d; j ¼ 1; . . . ; Jg and l1 ¼
maxflþ bj; lþ bj þ d; j ¼ 1; . . . ; Jg are defined to ensure that the probability lij is strictly bounded between

zero and one. Based on this model, Zhou et al.76 proposed a maximum likelihood approach to compute the

sample size. It was shown that their approach provided more accurate characterization of the required sample size

than the binomial approximation in Hussey and Hughes.9

Since lij is a proportion, other common choices of the link function include the log link and the logit link, with

the respective interpretations of the intervention effect as a risk ratio and as an odds ratio. Although sample size

methods based on these nonlinear link functions have not yet been extensively discussed (except for the

simulation-based approach of Baio et al.65), there have been some investigations of the operating characteristics

of these models as tools for data analysis. For example, in the cross-sectional setting, Thompson et al.77 compared

the performance between three logistic linear mixed models in a simulation study with varying parameter con-

stellations. The three models they examined could be considered as the logistic version of the Hussey and Hughes

model (5), nested exchangeable correlation model (13) and the random intervention model (22). They found that

the following logistic counterpart of the nested exchangeable correlation model

logitðlijÞ ¼ lþ bj þ dXij þ ai þ cij; ai �Nð0; s2aÞ; cij �Nð0; s2cÞ

had more robust performance in terms of bias and type I error rates across a number of data generating processes.

Finally, the extension of the exponential decay model to binary outcomes and its operating characteristics have

not yet been investigated.

4 Estimation and inference for the intervention effect

Estimation and inference for the parameters in mixed-effects models have been extensively discussed in a number

of textbooks.48,78–80 The basic principles, such as maximum likelihood, apply to all model formulations we have

632 Statistical Methods in Medical Research 30(2)



reviewed in Section 3. Although not our focus, the Bayesian approach is an alternative option, and could poten-
tially be attractive especially in the presence of complex random-effects structures.48 Using the general model (4)
and assuming that the heterogeneity parameter ai follows a parametric distribution fðai;HÞ, one could define the
likelihood of the observed outcomes by generic notation as

Lðh;HÞ ¼
YI
i¼1

Z YJ
j¼1

YNij

k¼1

fðYijkjh; aiÞ
2
4

3
5fðai;HÞdai (34)

and numerically search for the values of fixed-effects parameter h and variance components H that maximize the
likelihood. With continuous outcomes and the normality assumption for fðYijkjh; aiÞ, it is often possible to obtain
closed-form expressions for iterative updates between h andH.80 More often than not, equation (34) is modified to
obtain the restricted maximum likelihood (REML), because the estimates of the variance component parameters
H will be unbiased. With binary outcomes and binomial assumptions for fðYijkjh;HÞ, approximation to (34) can
be carried out via the Laplace method,78 penalized quasi-likelihood81 or adaptive Gauss-Hermite Quadrature,82

among others. The variance of the MLE can be obtained from computing the approximate information matrix for
ðh;HÞ. Testing the null hypothesis of no intervention effect (i.e. certain components of h equal zero) can proceed
by the Wald, likelihood ratio or score statistic based on the large-sample normality theory. These procedures are
available in standard software packages, such as SAS and R.

Cluster randomized trials usually involve a limited number of clusters, and therefore the desired frequentist
properties may not be guaranteed for the hypothesis testing procedures derived from large-sample theory. Recent
systematic reviews confirmed that most stepped wedge CRTs recruited fewer than 30 clusters,17,18 and so there
could be an emerging interest in developing small-sample adaptation of existing testing procedures for better
performance. In the recent CONSORT extension to stepped wedge CRTs, Hemming et al.23 encouraged the
incorporation of small-sample corrections in the analysis of stepped wedge designs, whenever appropriate (item
12a). Although there has not yet been much investigation of small-sample corrections for mixed-effects model-
based tests applied to stepped wedge trials, there were previous reports of small-sample corrections in parallel
CRTs that may inspire ideas. For example, Li and Redden83 considered the Wald t-statistic (or the equivalent F-
statistic) from the logistic linear mixed model in the analysis of parallel CRTs with 10 to 30 clusters. They
compared five degree-of-freedom approximations in terms of type I error rates and power, across scenarios
with varying ICCs and cluster sizes. They concluded that the between-within degree of freedom84 carried the
nominal type I error rates and had higher power than its competitors. The between-within approach divides the
residual degree of freedom into the between-cluster and within-cluster portions. If a fixed-effect covariate changes
within any cluster, the within-cluster degree of freedom is assigned to that effect; otherwise, the between-cluster
degree of freedom is assigned to the effect. Such findings may or may not be directly generalizable to stepped
wedge trials, because unlike the parallel CRT, the intervention status actually changes over time within a cluster.
In fact, we can compute the between-within degree of freedom for testing the intervention effect in the Hussey and
Hughes model to be ðI� 1ÞJ, which tends to be larger than its counterpart in parallel CRTs. It remains to be
explored which degree of freedom approximation would be adequate in small stepped wedge designs.

The permutation test is another attractive tool for the inference in CRTs due to its robustness in controlling test
size.85 Under the strong null hypothesis of no intervention effect, Gail et al.86 demonstrated that the type I error
rate of the permutation test will not exceed the nominal level, even in CRTs with a limited number of clusters.
Murray et al.87 and Li et al.88,89 also showed that the permutation test could achieve a similar level of power as the
model-based F-test, but had better control of test sizes. Several authors have considered permutation-based
inference for the analysis of stepped wedge trials; the general idea is to obtain the reference distribution of a
given test statistic by permuting the intervention sequences across clusters. For example, Wang and DeGruttola90

and Ji et al.31 considered the estimated treatment effect and the corresponding z-score (Wald statistic) as the test
statistic for testing H0: d¼ 0 based on the Hussey and Hughes model (5) and the nested exchangeable correlation
model (13); they obtained the exact distribution of the statistic from randomly shuffling the intervention sequences
within the randomization space characterized by the design configuration. They found that the specification of the
random-effects structure (or more generally the heterogeneity term Rikðj; sÞ0ai) only affected the power of the test,
but not the validity, and therefore demonstrated its superiority over the model-based test. Ren et al.91 considered
permuting the estimated treatment effect and the corresponding z-score obtained from a random intervention
model (22), but reported an inflated type I error rate even when the random intervention model is correctly
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specified. This phenomenon arises likely because the intervention sequence affects both the mean and covariance
structures, and the exchangeability assumption fails to hold under the null hypothesis. Others have considered
more nonparametric test statistics. For example, Thompson et al.92 proposed a test statistic based on combining
the optimally weighted within-period comparisons (i.e. the vertical comparisons defined in Davey et al.21 and
Matthews and Forbes93), and developed a permutation test with fewer modeling assumptions. Their test can be
applied to both continuous and binary outcomes, and has demonstrated adequate control of type I error rate in
simulations. Kennedy-Shaffer et al.94 proposed an ensemble test statistic that combined the within-period and
between-period contrasts via the Synthetic Control method (their SC method) and difference-in-differences (their
crossover method). The corresponding permutation test based on the ensemble statistic demonstrated higher
power than the permutation test in Thompson et al.92 and the permutation test based on mixed-effects
models31,90 when those models were misspecified. Hughes et al.95 provided a design-based test statistic and
characterized the closed-form variances of the statistic under permutation; they showed that the resulting test
carried the nominal size even under misspecification of both the mean and covariance structures. Furthermore,
since the closed-form permutation variance is derived analytically, the permutation test in Hughes et al.95 dis-
penses with intensive enumerations and is considered computationally more efficient than previous proposals. To
date, there has not been a comprehensive simulation study that evaluates the comparative performance of all of
the above permutation tests under different data generating processes, and more investigations are needed to
offer practical recommendations on optimal ways to conduct randomization-based inference for stepped
wedge designs.

5 Discussion

We have provided an overview of mixed-effects models that have been applied to the design and analysis of stepped
wedge CRTs. We offered a unified perspective from a general model formulation and illustrated that existing models
in the literature were its special cases with different assumptions about the secular trend, intervention effect and
sources of heterogeneity. Our overview suggests that the current literature on stepped wedge designs has placed more
emphasis on modeling the between-cluster and between-time heterogeneity, compared to modeling the secular trend
or the intervention effect. We conjecture that this is because a number of discussions have focused on sample size
calculation, which becomes convenient based on a scalar intervention effect but still remains sensitive to the
assumptions for the random-effects structure. However, given the possibility of a time-varying intervention effect,
it will be important for future work to address implications of the alternative methods reviewed in Section 3.3 on
sample size planning and data analysis. In addition, there is currently limited guidance on how to select the most
appropriate random-effects structure in the context of stepped wedge designs. Murray et al.58 explored the use of
information criteria to select appropriate mixed-effects models for the analysis of parallel longitudinal CRTs, but
recommended against them due to their unreliable performance. More research on identifying the appropriate
random-effects structure in both the design and analysis stages would be of substantial interest.

We found that there is more development for continuous outcomes than for binary, count or time-to-event
outcomes, likely due to the availability of closed-form expressions for variance and ICCs. Although these closed-
form expressions have helped us generate knowledge and insights on the role of various design parameters and
facilitated the application of these new designs, the generalizability of such knowledge to binary or count outcomes
requires further exploration. Zhou et al.76 pointed out that binary outcomes were fairly common in stepped wedge
trials, especially in health care studies with an implementation endpoint. However, accurate sample size methods for
binary outcomes have only been developed based on the risk difference scale and a single random cluster intercept,
as considered in Zhou et al.76 It would be important to extend such approaches for risk ratio and odds ratio
measures, and to accommodate more complex assumptions on the heterogeneity, such as a model with a random
cluster-by-time interaction or correlation decay.56,57 Regarding the analysis of stepped wedge trials, Thompson
et al.77 conducted simulation studies with binary outcomes and suggested that the logistic extension of the nested
exchangeable correlation model performed well in terms of bias and coverage across several data generating pro-
cesses. To date, there has been little work on count or rate outcomes. We are only aware of a simulation study by
Scott et al.,96 who used a Poisson log-linear mixed-effects model to simulate outcomes and examine the operating
characteristics of population-averaged models estimated by generalized estimating equations (GEE).97

Methods for designing and analyzing stepped wedge trials with time-to-event outcomes also need further
attention. In the THRio study,98 Moulton et al.99 discussed a log-rank type analysis to compare the incidence
between intervention and control clusters within each period, analogous to the vertical comparison methods21,93

in non-survival settings. They used a simulation-based approach to estimate the design effect relative to parallel
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cluster randomization which was then used to compute sample size and power. Zhan et al.100 developed a discrete-
time survival model for analyzing stepped wedge CRTs with terminal endpoints and interval censoring (as the
exact event time could be unknown within each discrete period). The key insight is to reformulate the likelihood
using a generalized linear mixed model for the binary event history indicators. In this regard, considerations in
Section 3 may still apply, but additional research is necessary. Importantly, closed-form sample size estimation
procedures and optimal design configurations based on such discrete-time survival models remain unavailable and
are open questions for future studies.101

As an alternative to mixed-effects models, population-averaged models have been proposed to design and
analyze parallel CRTs.6,102 While the conditional model we discussed requires the specification of a conditional
mean structure with an association structure induced by random-effects, the population-averaged model coun-
terpart requires the specification of a marginal mean and a separate correlation model for the association struc-
ture.103,104 The conditional intervention effect from the mixed-effects model and the marginal intervention effect
from the population-averaged model are identical with an identity link but could be different with a nonlinear link
function.104,105 Further, the interpretation of the marginal intervention effect remains the same regardless of the
correlation model, while the interpretation of the conditional intervention effect may change according to spec-
ifications of random effects.106 Though the population-averaged model has several attractive features, it has not
been as extensively studied in stepped wedge CRTs, with a few exceptions.34,71,96,107 Specifically, Li et al.34 and
Li71 used GEE to estimate the population-averaged intervention effect, coupled with the block exchangeable
correlation structure (the correlation structure implied by model (13) and (26)), and the proportional decay
structure (the correlation structure implied by model (27)). The GEE has been known to be prone to bias with
a small number of clusters, both in terms of estimation of correlation parameters and variances,108,109 therefore
finite-sample corrections have been carefully studied and recommended.34,71,96,107

There are other aspects of the applications of models to stepped wedge designs that we have not reviewed.
Above all, we have restricted the current article to models without cluster-level or individual-level covariates,
although they could in principle be included in the analytical stage, especially when stratification or covariate-
constrained randomization is carried out to minimize chance imbalance.43,88,89,110 We have also only reviewed
models applicable to stepped wedge trials with a single level of clustering, while Hemming et al.25 and Teerenstra
et al.111 proposed extensions of the Hussey and Hughes model that accounted for multiple levels of clustering (e.g.
patients nested in clinics and clinics nested in counties). Third, we have presented models assuming complete
outcome information is available for all individuals and assumed away individual non-response. In practice,
especially in closed-cohort designs, patient drop-out may occur given that the trial could last for a few years.
When the drop-out mechanism can be considered as missing at random,112 one may use inverse probability
weighting or multilevel multiple imputation to reduce the bias due to missing outcomes. Turner et al.113 recently
studied the relative merits of these two mainstream missing data approaches for parallel CRTs, and it would be of
interest to consider their extensions to stepped wedge CRTs.

Finally, in stepped wedge trials, reporting the values of various ICCs or variance components is also critically
important to help inform the design of future studies with similar endpoints. Our experiences suggest that,
although the correlations or variance components are essential input in virtually any sample size procedure
derived from mixed-effects models in Section 3, only a very limited number of stepped wedge trials report such
values. Accurate reporting of correlation estimates or variance components has been recommended in the
CONSORT extension to stepped wedge designs,23 and an example where the within-period and between-period
correlations are reported can be found in Martin et al.114 and Hemming et al.47 We need more studies to report
estimates of ICCs and variance components, in particular for the correlation decay and random intervention
models, to facilitate the design of trials based on these more recent extensions of the Hussey and Hughes model.
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