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ORIGINAL RESEARCH

Genetic Determinants of Body Mass Index 
and Fasting Glucose Are Mediators of 
Grade 1 Diastolic Dysfunction
Nataraja Sarma Vaitinadin , MBBS, PhD, MPH; Mingjian Shi , MD, PhD; Christian M. Shaffer, BS;  
Eric Farber-Eger , BS; Brandon D. Lowery, BS; Vineet Agrawal, MD, PhD; Deepak K. Gupta , MD, MSCI; 
Dan M. Roden , MD; Quinn S. Wells , MD, PharmD, MSCI, MSc; Jonathan D. Mosley , MD, PhD

BACKGROUND: Early (grade 1) cardiac left ventricular diastolic dysfunction (G1DD) increases the risk for heart failure with pre-
served ejection fraction and may improve with aggressive risk factor modification. Type 2 diabetes, obesity, hypertension, and 
coronary heart disease are associated with increased incidence of diastolic dysfunction. The genetic drivers of G1DD are not 
defined.

METHODS AND RESULTS: We curated genotyped European ancestry G1DD cases (n=668) and controls with normal diastolic 
function (n=1772) from Vanderbilt’s biobank. G1DD status was explored through (1) an additive model genome-wide as-
sociation study, (2) shared polygenic risk through logistic regression, and (3) instrumental variable analysis using 2-sample 
Mendelian randomization (the inverse-variance weighted method, Mendelian randomization-Egger, and median) to determine 
potential modifiable risk factors. There were no common single nucleotide polymorphisms significantly associated with G1DD 
status. A polygenic risk score for BMI was significantly associated with increased G1DD risk (odds ratio [OR], 1.20 for 1-SD 
increase in BMI [95% CI, 1.08–1.32]; P=0.0003). The association was confirmed by the inverse-variance weighted method 
(OR, 1.89 [95% CI, 1.37–2.61]). Among the candidate mediators for BMI, only fasting glucose was significantly associated with 
G1DD status by the inverse-variance weighted method (OR, 4.14 for 1-SD increase in fasting glucose [95% CI, 1.55–11.02]; 
P=0.005). Multivariable Mendelian randomization showed a modest attenuation of the BMI association (OR, 1.84 [95% CI, 
1.35–2.52]) when adjusting for fasting glucose.

CONCLUSIONS: These data suggest that a genetic predisposition to elevated BMI increases the risk for G1DD. Part of this effect 
may be mediated through altered glucose homeostasis.
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Left ventricular diastolic dysfunction (DD) is a com-
bination of 2 defects: (1) impaired myocardial re-
laxation ability and (2) reduced filling of the left 

ventricle in the absence of increased filling pressures.1 
Early-stage DD (grade 1 DD [G1DD]) is characterized 
by impaired relaxation, and even among young adults, 
early disease is associated with incident heart failure 
with preserved ejection fraction.2–4 Important modifi-
able risk factors for G1DD include obesity, diabetes, 

hypertension, and coronary heart disease.2–11 Heart 
failure with preserved ejection fraction lacks life-
extending treatments, and delineating genetic drivers 
of diastolic dysfunction risk could help identify modi-
fiable predisposing risk mechanisms to improve out-
comes for patients.1–4,12–15

The genetics of diastolic function are not well char-
acterized. The ECHOGEN consortium examined di-
astolic function parameters in a large population and 
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did not observe significant single nucleotide polymor-
phism (SNP) heritability estimates or SNPs associated 
with these parameters.16 However, structural traits 
related to diastolic function, such as left ventricular 
mass and other functional left ventricular measures, 
have been demonstrated to have a significant heritable 
component based on common SNPs.17,18 This could 
suggest that diastolic dysfunction is a genetically het-
erogeneous phenotype representing the accumulated 
contributions from many risk mechanisms.

We hypothesized that examining early diastolic 
dysfunction in a clinical population would identify ge-
netic risk mechanisms associated with this potentially 
reversible stage of cardiac remodeling. To address 
this hypothesis, we developed a large, genotyped 

population of individuals aged <60  years who had 
undergone transthoracic echocardiography studies 
as part of routine clinical care. We identified a genetic 
predisposition to elevated body mass index (BMI) and 
glycemic dysregulation associated with diastolic dys-
function. Addressing these risk mechanisms, espe-
cially obesity, may prevent or reverse the pathological 
cardiac changes associated with diastolic dysfunction.

METHODS
An overview of the analytic approach to identify the un-
derlying genetic risk mechanisms between genetically 
regulated comorbid traits and G1DD is presented in 
Figure 1. The genome-wide association study (GWAS) 
summary statistics generated in these analyses are 
available from the corresponding author upon request.

Study Population
BioVU is Vanderbilt University Medical Center’s DNA 
biobank linked to a deidentified mirror of the electronic 
medical records of the Vanderbilt health system.19 
Individuals seeking health care at Vanderbilt University 
Medical Center are consented to participate and may 
opt out at any time. Sample collection began in 2007 
and is ongoing. The biobank comprises ≈260 000 in-
dividuals of European, African, and Asian ancestries. 
Access to the data in the biobank is overseen by the 
Vanderbilt Institutional Review Board. All participants 
provided written consent.

Individual-level genotype data were obtained from 
BioVU.19 Approval for the present study was ob-
tained from the Vanderbilt University Medical Center 
Institutional Review Board.

G1DD cases and controls were identified from 
transthoracic echocardiogram reports generated 
during routine clinical care, as previously described.2 
Briefly, diastolic function stage was extracted from the 
first available transthoracic echocardiogram report and 
was assigned by a clinical echocardiographer at the 
time of collection of the transthoracic echocardiogram. 
Cases were individuals classified as impaired left ven-
tricle relaxation (stage 1), whereas controls were indi-
viduals classified as having no dysfunction. Individuals 
with higher DD stages were excluded, as were indi-
viduals with a left ventricular ejection fraction <50%. 
Subjects who had echocardiograms collected during 
acute cardiac illnesses (eg, endocarditis), with expo-
sure to chemotherapy, or with congenital diseases 
were also excluded. The analyses were restricted to 
individuals who had been previously genotyped on 
the Multi-Ethnic Genotyping Array platform (described 
below) as part of a broad-based institutional genotyp-
ing initiative. The analyses were further restricted to 

CLINICAL PERSPECTIVE

What Is New?
•	 Grade 1 left ventricular diastolic dysfunction 

(G1DD) is a modifiable risk factor associated with 
incident heart failure with preserved ejection frac-
tion risk, but its genetic drivers are not known.

•	 This study investigated the genetic drivers of 
G1DD measured by echocardiography in a 
European ancestry population aged <60 years.

•	 Polygenic risk associated with body mass index 
variation is also associated with G1DD preva-
lence and is mediated, in part, by altered glucose 
homeostasis.

What Are the Clinical Implications?
•	 Body mass index is an important modifiable risk 

factor for G1DD.
•	 Prevention efforts should be directed to mitigate 

weight gain in early life to prevent adverse car-
diac modeling that predisposes to G1DD and 
subsequent heart failure with preserved ejec-
tion fraction.

•	 If G1DD is observed on echocardiogram, risk 
reduction strategies should include maintaining 
a healthy weight and controlling hyperglycemia.

Nonstandard Abbreviations and Acronyms

DD	 diastolic dysfunction
FG	 fasting glucose
G1DD	 grade 1 diastolic dysfunction
MR	 Mendelian randomization
MVMR	 multivariable Mendelian randomization
PRS	 polygenic risk score
T2D	 type 2 diabetes
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subjects aged <60  years and of European ancestry, 
as determined using HAPMAP reference populations 
in conjunction with genetic principal components.

Genetic Data
SNP genotyping of BioVU subjects was measured 
using the Illumina Infinium Multi-Ethnic Genotyping 
Array platform.19 Quality control analyses used PLINK 
version 1.90β3 software.20 Before imputation, ge-
netic data were filtered and standardized through the 
HRC-1000G-check tool version 4.2.5 (http://www.well.
ox.ac.uk/~wrayn​er/tools/) and prephased using Eagle 
version 2.4.1.21 Principal components were calculated 
using the SNPRelate package.22 Data were imputed 
using the Michigan Imputation Server in conjunction 
with the 10/2014 release of the 1000 Genomes cos-
mopolitan reference haplotypes.23 Imputed data were 
filtered for a sample missingness rate <2%, a SNP 
missingness rate <4%, and SNP deviation from Hardy-
Weinberg P<10−06. After quality control, 7 585 258 
SNPs were available for analysis. Genome-wide study 
and polygenic risk scores were calculated using PLINK 
version 2.24

Clinical Phenotypes
Age was defined as the age at the time of cardiac 
echocardiogram. Clinical diagnoses for the G1DD 
risk factors of obesity (278.10), type 2 diabetes (T2D) 
(250.20), ischemic heart disease (401.00), and hyper-
tension (411.00) were defined using PheCodes, which 
are derived from International Classification of Diseases, 
Ninth and Tenth Revision (ICD-9 and ICD-10) codes.25

Statistical Analysis
GWAS Summary Statistics

Summary statistics for BMI,26 systolic blood pressure,27 
diastolic blood pressure,27 T2D,28 coronary artery 
disease,29 fasting glucose (FG),30 hemoglobin A1C 
(HbA1C),31 high-density lipoprotein cholesterol,32 low-
density lipoprotein cholesterol,32 and triglycerides 32 
obtained from the publicly available large-scale GWAS 
performed among individuals of European ancestry.

Baseline Characteristics

Mean age and the prevalence of comorbidities 
were calculated and stratified by G1DD case status. 

Figure 1.  Overview of the study design.
Grade 1 diastolic dysfunction cases and controls were selected from BioVU, Vanderbilt University Medical 
Center’s electronic health record (HER)–linked DNA biobank. A genome-wide association study (GWAS) 
was performed on 2440 individuals. A polygenic risk score screen identified traits that shared genetic risk 
with grade 1 diastolic dysfunction. Associated traits were further investigated under a 2-sample Mendelian 
randomization framework. Secondary analyses investigated for potential pleiotropic mediators.

http://www.well.ox.ac.uk/%7Ewrayner/tools/
http://www.well.ox.ac.uk/%7Ewrayner/tools/
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Differences in mean age and number of each sex, by 
G1DD status, was computed as a test of proportions 
between cases and controls using a Pearson χ2 test 
statistic. Significant differences in prevalence rates of 
comorbidities, by G1DD status, were assessed using 
logistic regression, adjusting for age and sex.

Genome-Wide Association Study

The GWAS was used to identify SNPs associated with 
G1DD case-control status (Data S1). The analyses used a 
logistic regression, assuming an additive genetic model, 
and was adjusted for age, sex and 5 principal compo-
nents of ancestry using PLINK version 2.24 SNPs with an 
association of P<5×10−08 were deemed to be significant. 
We performed a power calculation based on our sample 
size and distribution of cases and controls (https://zzz.
bwh.harva​rd.edu/gpc/cc2.html). We had >80% power to 
detect an association at genome-wide significance for a 
SNP with an odds ratio (OR) >1.6, assuming a disease 
prevalence of 5% and a minor allele frequency >20%. 
Annotations for SNPs with an association of P<5×10−06 
of GWAS results are presented in Data S2.

Polygenic Risk Score

To identify traits that share genetic risk with G1DD, 
polygenic risk scores (PRSs) for each trait were com-
puted and then tested for an association with DD case-
control status, using PLINK version 2.24 An independent 
set of SNPs significantly associated with the respec-
tive trait (P<5×10−08) was selected using a pruning-
and-thresholding algorithm that selected an Linkage 
Disequilibrium-reduced (r2<0.05) set of common SNPs 
with a minor allele frequency >5%. A genetically pre-
dicted trait score was then calculated for each individual 
in the G1DD cohort by summing the product of each SNP 
effect size and the SNP dosage (a value ranging from 0 
to 2). The association with the polygenic risk score and 
DD status was tested using a logistic regression model 
that adjusted for sex, age, and 5 principal components 
as covariates. A Bonferroni-adjusted P<0.01 (=0.05/5 
phenotypes) was considered significant.

Mendelian Randomization

Mendelian randomization (MR) was used to further 
probe traits significantly associated with G1DD by PRS 
analysis. MR is an instrumental variable approach used 
to define causal relationships between exposures and 
outcomes.33 It uses SNPs associated with a chosen 
exposure as instrumental variables that define the di-
rection and magnitude of associations between the ex-
posure/risk factor and the chosen outcome, G1DD. To 
create genetic instruments for each risk factor, we used 
a pruning-and-thresholding algorithm that selected an 

Linkage Disequilibrium-reduced set of SNPs with a 
minor allele frequency >5%. All MRs conducted were 
2-sample average inverse-variance weighted method 
(IVWM) analyses, using the Mendelian Randomization 
R package.33 An association was considered signifi-
cant for a P<0.05. Association measures represent the 
change in risk factor level versus the log odds of G1DD 
status. To ensure that significant associations were 
not caused by pleiotropy, sensitivity analyses were 
conducted using the pleiotropy-robust MR-Egger and 
weighted median methods to confirm the magnitude 
and direction of associations. IVWM results were con-
sidered reliable if they had a similar direction and mag-
nitude of association as the other 2 methods.

In secondary analyses, we sought to identify candi-
date mediators of an observed genetic association be-
tween G1DD and BMI. MR association analyses were 
performed for FG, HbA1C, high-density lipoprotein 
cholesterol, low-density lipoprotein cholesterol, and tri-
glycerides using the same methods as described above.

Multivariable Mendelian Randomization

Multivariable MR (MVMR)34 was used to determine 
whether an observed association between G1DD and 
BMI was independent of other modifiable risk factors. 
MVMR estimates the effects of multiple exposures on 
an outcome. MVMR34 analysis was performed that 
included BMI and each candidate mediator that sig-
nificantly associated with G1DD by MR in the analyses 
described above. We identified those risk factors that 
decreased the primary mediator’s coefficient by >1.96 
standard errors (P<0.05), as compared with the original 
coefficient after adjustment, and in the process, esti-
mated the magnitude of the direct effect of the exposure 
and the indirect effect ascribed to the mediator.35

Phenotypic Association of Genetic Risk Score

We examined if the PRS for BMI also associated with 
prevalent T2D, ischemic heart disease, and hyperten-
sion within this cohort. We ran a logistic regression for 
the outcome status in a model of the BMI PRS ad-
justed for age, sex, top 5 principal components, and 
G1DD status. We established a multiple comparisons 
threshold of <0.05/3 for significance.

Sensitivity Analyses to Examine 
Treatment Effects

Therapeutic interventions could lead to misclassifi-
cation of case-control status. Specifically, treatment 
of diabetes and hypertension by therapeutic agents 
could have prevented or reversed G1DD, resulting in 
misclassification of controls. To explore this possibility, 
we conducted sensitivity analyses by removing either 

https://zzz.bwh.harvard.edu/gpc/cc2.html
https://zzz.bwh.harvard.edu/gpc/cc2.html
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controls treated for hypertension or for diabetes before 
the date of the echocardiogram. All primary analyses 
were repeated using these new control groups.

RESULTS
The final study population comprised 2440 individuals, 
with 668 G1DD cases and 1772 controls (Table). There 
were 1457 (≈60%) women, and the mean age was 47.2 
(SD, 10) years. Cases had significantly higher preva-
lence of diagnoses for ischemic heart disease (OR, 
1.40 [95% CI, 1.15–1.71]; P=0.001), obesity (OR, 1.57 
[95% CI, 1.28–1.92]; P=1.5×10−05), hypertension (OR, 
2.14 [95% CI, 1.72–2.66]; P=2.61×10−11), and diabetes 
(OR, 1.88 [95% CI, 1.51–2.34]; P=2.4×10−09).

There were no common SNPs associated with G1DD 
case status at genome-wide significance by the GWAS 
(Figure  S1A). Though there were no genome-wide 
significant SNPs, annotations from SNPs with an as-
sociation P<5×10−06 indicated that these SNPs were as-
sociated with cardiometabolic phenotypes (Figure S1B, 
Tables S1A and S1B), and with the left ventricle in HiC 
chromatin interaction. We tested for associations be-
tween G1DD status and PRS for systolic blood pres-
sure, diastolic blood pressure, BMI, T2D, and coronary 
artery disease to determine whether genetic variation 
underlying any of these risk factors also associated with 
G1DD prevalence. Only BMI was significantly associated 
(OR, 1.20 for 1-SD increase in BMI [95% CI, 1.08–1.32]; 
P=0.0004) (Figure 2, Table S1C). Given that BMI demon-
strated shared genetics with G1DD, we asked if the rela-
tionship held under an instrumental variable framework. 
Genetically predicted BMI was significantly associated 
with G1DD by IVWM (OR, 1.84 for 1-SD increase in BMI 
[95% CI, 1.35–2.52]; P=0.0002). Similar results were 
seen across other MR methods (Table S2, Figure S2).

To determine whether the BMI association may be 
mediated through lipids (low-density lipoprotein choles-
terol, high-density lipoprotein cholesterol, triglycerides) 
or glycemic factors (FG, HbA1C), we first ascertained 
whether genetic instruments for these factors were as-
sociated with G1DD by MR analyses. There was only 

a significant association with FG (OR, 4.14 for 1-SD in-
crease in FG [95% CI, 1.55–11.02]; P=0.005) (Figure 3, 
Table S3), but not HbA1C (OR, 2.23 for 1-SD increase 
in FG [95% CI, 0.59–8.44]; P=0.24). A BMI predictor 
was associated with FG by IVWM, but an FG predictor 
did not associate with BMI, suggesting that FG may 
be a downstream effector of BMI (Table S4, Table S5).

MVMR was used to ascertain independent asso-
ciations between BMI and FG using the IVWM. After 
adjustment, BMI was still significantly associated with 
G1DD, but not FG. For BMI, there was a modest atten-
uation of the OR from 1.89 (95% CI, 1.37–2.61) to 1.84 
(95% CI, 1.35–2.52) (Table  S6, Table  S7, Figure  S3). 
This suggests that 5.5% for the BMI effect is attribut-
able to FG (Table S8). In sum, these data suggest that 
genetic factors that predispose to elevated BMI may 
impact the development of G1DD directly and may me-
diate a modest fraction of their effects by modulating 
glucose homeostasis (Figure 4).

Finally, we tested the association between PRS for 
BMI and G1DD-associated comorbidities. Among the 
G1DD-associated comorbidities, only T2D was signifi-
cantly associated with a BMI PRS (OR, 1.23 for 1-SD 
change in BMI PRS [95% CI, 1.12–1.36]; P=1.4×10−05) 
(Table S9, Figure S4).

The sensitivity analyses were conducted after re-
moving controls receiving either hypertension medica-
tions or diabetes medications before the date of the 
echocardiogram. The exclusion of these individuals 
did not alter the overall findings for either the controls 
receiving antihypertensive medications (Figures  S5 
and S6, Tables S10 through S17) or glucose-lowering 
medications (Figures S7 and S8, Tables S18 and S25). 
Similar results were seen across the other MR meth-
ods (Tables S5, S12, S13, S20 and S21, Figures S6 and 
S8). In addition, no new associations were observed in 
the post-GWAS or MR analyses with these exclusions.

The precision and variance estimate from MR is 
strongly influenced by the number of SNPs used as 
genetic instruments. The larger variance estimates 
associated with the instrumental variables for glyce-
mic traits (HbA1C, FG) reflect the smaller number of 

Table.  Demographic Profile of the Study Population

Characteristic*
All participants, 
n=2440 Cases, n=668 Controls, n=1772 P value

Age, y, mean (SD) 47.2 (10.0) 52.9 (5.9) 45.1 (10.3) <2.2×10−16†

Women 1457 (59.7%) 365 (54.6%) 1092 (61.6%) 0.002†

Obesity 716 (29.3%) 248 (37.1%) 468 (26.4%) 1.5×1013‡

Ischemic heart disease 728 (29.8%) 286 (42.8%) 442 (24.9%) 0.001‡

Hypertension 1472 (60.3%) 527 (78.9%) 945 (53.3%) 2.6×10−11‡

Diabetes 654 (26.8%) 263 (39.4%) 391 (22.1%) 2.4×10−9‡

*Values in the table represent counts and column percentages, except for age.
†P value for the difference in proportions between cases and controls is based on the value of Pearson χ2 test statistic.
‡Association P value for the risk factor from a logistic regression model adjusting for age and sex.
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SNPs significantly associated with these variables, as 
compared with the other instruments. Exclusion of the 
treated controls did not substantially change these es-
timates. For the cohort where controls receiving hyper-
tension medication were removed from the analyses 
(Table S13), there was only a significant association with 
FG (OR, 9.70 for 1-SD increase in FG [95% CI, 2.71– 
34.71]; P=0.0005), but not HbA1C (OR, 4.01 for 1-SD 
increase in FG [95% CI, 0.72–22.39]; P=0.11). For the 
cohort where controls receiving diabetes medication 

were removed from the analyses (Table S21), there was 
only a significant association with FG (OR, 5.76 for 1-SD 
increase in FG [95% CI, 2.03–16.33]; P=9.93×10−04), 
but not HbA1C (OR, 2.48 for 1-SD increase in FG [95% 
CI, 0.61–10.14]; P=0.21). The distributions of PRS for 
BMI and FG by G1DD case-control status and con-
cordance statistics for models with and without these 
PRSs are presented in Figure S9 and Table S26.

DISCUSSION
This study examined genetic determinants of early di-
astolic dysfunction in a clinical population. A GWAS did 
not identify common SNPs significantly associated with 
G1DD status, consistent with prior studies examining 
diastolic function phenotypes.16,17 However, several of 
the top SNPs had appeared to have relevance to car-
diometabolic phenotypes and the left ventricle. Thus, 
we examined associations with genetic predictors of 
established risk factors, which is a more powered ap-
proach to detect weak associations. Although diagno-
ses of obesity, ischemic heart disease, hypertension, 
and T2D were more prevalent among cases, only a ge-
netic predictor for BMI positively associated with G1DD 
risk. MVMR models suggested that a small portion of 
this risk may be mediated by glycemic dysregulation, as 
measured by FG levels. In sum, these results suggest 
that a genetic predisposition to elevated BMI contrib-
utes to G1DD risk, acting directly and through a medi-
ated fraction impacting glycemic regulation.

Obesity-driven remodeling and expansion of adi-
pose tissue, in addition to systemic inflammation from 
obesity, is increasingly recognized as a key driver of 

Figure 2.  Genetic determinants of body mass index (BMI) 
share a genetic risk with grade 1 diastolic dysfunction 
(G1DD).
Forest plot summarizing associations between polygenic risk 
score (PRS) for diastolic blood pressure (DBP), systolic blood 
pressure (SBP), ischemic heart disease (IHD)/coronary artery 
disease (CAD) , type 2 diabetes (T2D), and BMI and G1DD. Odds 
ratio (OR) represents the change in risk for G1DD per standard 
deviation increase in the PRS.

Figure 3.  Genetic determinants of fasting glucose are 
associated with grade 1 diastolic dysfunction (G1DD) in 
2-sample Mendelian randomization analysis.
Forest plot of inverse variance instrumental variable estimates 
for glucose, hemoglobin A1C (HbA1C), high-density lipoprotein 
(HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and 
triglycerides levels and G1DD status. Odds ratio (OR) represents 
the change in risk for G1DD per standard deviation increase in 
the respective mediator.

Figure 4.  Genetic determinants of body mass index (BMI) 
associated with grade 1 diastolic dysfunction (G1DD).
Higher prevalence of comorbid phenotypic associations with 
G1DD are observed in the electronic health record (EHR). 
The underlying genetic basis is driven, in part, by a genetic 
predisposition to elevated BMI directly and mediated through 
fasting glucose. SNPs indicate single nucleotide polymorphisms.
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dysfunction in the left ventricle.36 Excess body mass is 
associated with several adverse physiologic alterations 
and cardiac structure changes that adversely affect 
the heart. These include concentric left ventricular 
remodeling, right ventricular dilatation, increased epi-
cardial fat thickness, and elevated left ventricular filling 
pressures.37 The adverse effect of obesity on cardiac 
diastolic function are recapitulated in genetic animal 
models. For instance, leptin-deficient (ob/ob) or leptin 
receptor-deficient (db/db) mice, both isolated models 
of obesity, develop cardiac diastolic dysfunction.38

In these analyses, we observed that a polygenic pre-
disposition toward elevated BMI was associated with 
an increased risk for early clinical diastolic dysfunction. 
A polygenic association between an exposure and a 
phenotype could be caused by either shared genetic 
mechanisms that affect both phenotypes or a direct 
mediating effect of the exposure on the outcome. MR 
analyses confirmed the BMI-G1DD association and 
did not demonstrate heterogeneity in the association 
among the underlying SNP instruments. These results 
suggest that BMI is a mediator of disease, and all un-
derlying genetic mechanisms that increase BMI also 
drive disease risk. The implications of these findings 
are that avoiding or possibly reversing obesity through 
any mechanism could decrease the risk of early di-
astolic dysfunction. Furthermore, because G1DD is 
often reversible with attenuation of risk factors, weight 
loss could improve function.2

The prevalence of established risk factors in ad-
dition to obesity was higher among the G1DD cases 
than controls in this study population. However, we 
did not observe significant associations between ge-
netic predictors of coronary heart disease, hyperten-
sion, and T2D. Hypertension and insulin resistance are 
well-established downstream risk factors of obesity.39 
Thus, it is possible that the higher prevalence of these 
risk factors among G1DD cases is because of the other 
secondary factors of metabolic syndrome.

Although we did not see an association with a ge-
netic predictor of T2D, there was a positive association 
with a predictor of FG and G1DD. Of note, the genetic ar-
chitectures of these phenotypes differ.30,31 In multivari-
able analyses, the association with FG was no longer 
significant, and there was a modest attenuation of the 
association statistics associated with BMI, suggesting 
altered FG levels may be secondary to the effects of el-
evated BMI, and may mediate some of the risk associ-
ated with BMI. Elevated FG levels have been observed 
to be associated with diastolic dysfunction, though 
the associations have not been consistent.40–43 Higher 
fasting plasma glucose levels among individuals with-
out diabetes was also found to be an independent risk 
factor for heart failure hospitalization.44 Furthermore, 
SGLT2 (Sodium-glucose Cotransporter-2) inhibitor 
use has been shown to reverse diastolic dysfunction 

among individuals with diabetes.45 Perhaps these find-
ings align the development of G1DD as an antecedent 
to the current paradigm of the diabesity phenotype, 
the combined burden of obesity and diabetes on heart 
disease.46

The current study has limitations. The outcome 
studied was a binary outcome based on an echocar-
diographer’s clinical assessment, which can result in 
loss of power caused by binning and misclassifica-
tion. There was limited power to detect SNP associ-
ations with a magnitude of effect usually observed for 
common SNPs (ie, an OR of <1.3) associated with a 
complex phenotype, which can lead to false-negative 
findings by the GWAS. The study was done in a 
European ancestry population; this limits insights into 
other ancestries. The study cohort was curated from 
electronic health records in a health system, and con-
trols are not necessarily healthy. The modest number 
of SNPs available for use in constructing the genetic in-
struments for the glycemic predictors likely contributed 
to the low precision in effect size estimates associated 
with these instruments.

Future studies to dissect out the impact of genetic 
determinants on the development of G1DD could in-
clude looking at more continuous measures of dia-
stolic function, taking multitrait GWAS/polygenic risk 
approaches, and recruiting more subjects represent-
ing non-European ancestries. The genetic underpin-
nings of later stages of diastolic dysfunction should be 
studied to identify genetic drivers of risk of late-stage 
cardiac diastolic remodeling.

In conclusion, among multiple risk factors epidemi-
ologically associated with diastolic dysfunction, only a 
polygenic predictor of BMI was associated with G1DD, 
suggesting a predisposition to elevated BMI could be an 
important driver of risk and may also underlie the devel-
opment of other risk factors, such as impaired glucose 
homeostasis. Obesity is driven by gene-x-environment 
interactions, and thus a genetic predisposition is not de-
terministic of an individual’s fate.47 Treatment and pre-
vention strategies that reduce BMI are apt to mitigate 
an important genetic driver of early diastolic dysfunc-
tion. Based on these results, there might be a role for 
preventive echocardiograms to detect early G1DD and 
mitigate downstream complications, including heart 
failure, among subjects seen to be increasing BMI, of 
high BMI, or showing altered glycemic homeostasis.
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SUPPLEMENTAL MATERIAL 



Data S1 - GWAS 

Genome-wide association studies to identify SNPs associated with G1DD status among a European ancestry population were conducted.  Logistic 

regression, assuming an additive genetic model and adjusted for age and sex, was used to test for SNP associations. Summary statistics generated 

from the GWAS were used for downstream analyses.  

Data S2 - Annotation of top GWAS associations 

There were 8 independent loci with associations at P value threshold <5x10-06.  For each lead SNP, we identified the nearest gene and examined the 

GWAS catalog for reported associations, using FUMA (https://fuma.ctglab.nl/).48-52 We annotated the clinical significance of these genes (see Table 

S1a). We also looked up tissue associations, as provided through FUMA, by chromatin interaction using HiC for these SNPs, repository at the Gene 

expression omnibus, Series GSE87112 (Table S1a). Interestingly, the major tissue association was the Left Ventricle.  Next, we examined the 

MAGMA based gene annotation of these SNPs, as provided through FUMA. Input SNPs were mapped to 7 protein coding genes (Figure S1b, Table 

S1b). The Figure S1b is the Manhattan plot of the gene-based test, negative log of P value is from the respective SNPs. 



Table S1a  

Annotation of top GWAS associations (P<5x10-6) 

SNP id chr pos P value Nearest 
Gene 

Distance 
in kb 

Positional 
Significance 

Clinical significance of gene Tissue with 
chromatin 
interaction by    
Hi-C 

rs1850497:118956998:G:T 2 118956998 8.55x10-07 AC093901.1 13036 Intergenic Obstructive sleep apnea associated gene, PMID:26977737 Left Ventricle 
rs1850497:118956998:G:T 2 118956998 8.55x10-07 RP11-

19E11.1 
634278 Intergenic lncRNA associated with cell proliferation and cell death, 

PMID: 31934613; variant at position 118579583 
(rs115387174) associated with waist circumference 

Left Ventricle 

rs75587283:3907109:G:A 8 3907109 4.76x10-06  CSMD1 0 Intronic Associated with poor response to metformin in Type 2 
diabetics, PMID: 27415606; Associated with Metabolic 
Syndrome in FHS, PMID: 20018043 

Left Ventricle 

rs12546520:103832256:G:A 8 103832256 1.48x10-06    AZIN1 6328 Intergenic Downregulation associated with myocardial fibrosis post-MI, 
PMID: 33568517  
This SNP is also close to rs12541595, associated with left 
ventricular end diastolic dimension, PMID: 28394258 

Left Ventricle 

rs11142595:73406226:A:T 9 73406226 4.60x10-06    TRPM3 0 Intronic This ion channel levels are reduced in human failing left 
ventricular samples, PMID: 27614169; Associated with 
glucose homeostasis and metabolic syndrome, this ion channel 
is inhibited by pioglitazone and rosiglitazone, PMID: 
21406603; Expressed by human pancreatic beta cells, PMID: 
29356488 

Left Ventricle 

rs75964618:84506342:T:C 11 84506342 4.25x10-06    DLG2:CTD-
2537O9.1 

0 ncRNA 
_intronic 

Associated with hyperglycemia, PMID: 32356104; 
Hypermethylation of DLG2 associated with heart disease and 
atherosclerosis, PMID: 28577936 

Left Ventricle 

rs10773594:129559557:C:T 12 129559557 3.47x10-06    TMEM132D  Exonic Associated with panic and anxiety disorders, PMID: 27318301 
This SNP is also close to rs10774625, associated with left 
ventricular end diastolic dimension, PMID: 28394258 

rs12933847:77964270:A:C 16 77964270 2.80x10-06     VAT1L 0 Intronic Associated with glucose homeostasis and type 2 diabetes, 
PMID: 32500584 

Left Ventricle 



Table S1b 

Protein coding annotations of top SNPs 

ensg symbol chr type Clinical Significance of gene 

ENSG00000183117 CSMD1 8 protein_coding 

Associated with poor response to metformin in Type 2 diabetics, PMID: 
27415606; Associated with Metabolic Syndrome in Framingham Heart Study, 
PMID: 20018043 

ENSG00000155096 AZIN1 8 protein_coding 
 Downregulation associated with myocardial fibrosis post-MI, PMID: 
33568517 

ENSG00000253320 KB-1507C5.2 8 protein_coding 

The SNP rs2513877 at position 103883630 (our related top variant is at 
position 103832256), located in this gene, is a diastolic blood pressure 
associated variant at genome-wide significance, PMID: 30224653 

ENSG00000083067 TRPM3 9 protein_coding 

 This ion channel levels are reduced in human failing left ventricular samples, 
PMID: 27614169; Associated with glucose homeostasis and metabolic 
syndrome, this ion channel is inhibited by pioglitazone and rosiglitazone, 
PMID: 21406603; Expressed by human pancreatic beta cells, PMID: 29356488 

ENSG00000150672 DLG2 11 protein_coding 
 Associated with hyperglycemia, PMID: 32356104; Hypermethylation of 
DLG2 associated with heart disease and atherosclerosis, PMID: 28577936 

ENSG00000151952 TMEM132D 12 protein_coding  Associated with panic and anxiety disorders, PMID: 27318301 
ENSG00000171724 VAT1L 16 protein_coding  Associated with glucose homeostasis and type 2 diabetes, PMID: 32500584 



Table S1c   

Estimate of shared genetics between G1DD and candidate risk factors 

G1DD Status (Outcome) = PRS +Age+Sex+PC1to5, 
logistic regression model  

Polygenic 
risk score

Beta
(95% CI) SE P value

OR 
(95% CI) 

Diastolic 
Blood 
Pressure

0.02
(-0.08, 0.12) 0.05 0.66

1.02
(0.93, 1.13)

Systolic 
Blood 
Pressure

0.02
(-0.08, 0.12) 0.05 0.66

1.02
(0.93, 1.13)

Coronary 
Artery 
Disease

-0.05
(-0.15, 0.05) 0.05 0.31

0.95
(0.86, 1.05)

Type 2 
Diabetes 0.08

(-0.02, 0.18) 0.05 0.10
1.08
(0.98, 1.20)

Body Mass 
Index 0.18

(0.08, 0.28) 0.05 0.0004
1.20
(1.08, 1.32)

G1DD – Grade 1 Diastolic dysfunction, PRS – Polygenic Risk Score, PC- Principal Components 

CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio 



Table S2 

Instrumental variable analyses of BMI vs G1DD (Two sample mendelian randomization) 

Exposure Outcome Method SNPs Estimate 
(95% CI)

SE P value OR        
(95% CI)

BMI G1DD IVW 1132 0.61 
(0.30, 0.92)

0.16 0.0002 1.84 
(1.35, 2.52)

0.54 (H) 
Egger 1132 0.95 

(-0.03, 1.93)
0.50 0.06 2.59     

(0.97, 6.89) 
0.47 (I) 

Median 1132 0.59 
(0.05, 1.13)

0.28 0.03 1.80      
(1.04, 3.12) 

BMI – Body Mass Index, G1DD – Grade 1 Diastolic dysfunction, IVW – Inverse Variance 

Weighted, CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio, H – Heterogeneity 

P value, I – Intercept P value 



Table S3 

Instrumental variable analyses of candidate mediators for BMI (Two sample mendelian 

randomization) 

Exposure Method SNPs Estimate 
(95% CI) SE 

OR 
(95% CI) P value 

FG 

IVW 15 1.42 
(0.44, 2.40) 0.50 4.14 

(1.55, 1.02) 0.005 0.65 (H) 

Egger 15 0.27 
(-1.94, 2.49) 1.13 1.31 

(0.14, 12.00) 0.81 0.26 (I) 

Median 15 1.01 
(-0.39, 2.40) 0.71 2.75 

(0.68, 11.04) 0.16 

HbA1C 

IVW 44 0.80 
(-0.52, 2.13) 0.68 2.23 

(0.59, 8.44) 0.24 0.87 (H) 

Egger 44 2.50 
(-0.04, 5.04) 1.29 12.18 

(0.97, 152.69) 0.05 0.12 (I) 

Median 44 1.06 
(-1.07, 3.18) 1.08 2.89 

(0.35, 23.97) 0.33 

HDL 

IVW 150 -0.03
(-0.33, 0.26) 0.15 0.97 

(0.72, 1.30) 0.82 0.63 (H) 

Egger 150 0.02 
(-0.52, 0.56) 0.28 1.02 

(0.59, 1.77) 0.95 0.83 (I) 

Median 150 0.09 
(-0.39, 0.57) 0.25 1.09 

(0.67, 1.79) 0.71 

LDL 

IVW 120 -0.22
(-0.51, 0.08) 0.15 0.80 

(0.60, 1.08) 0.15 0.35 (H) 

Egger 120 -0.52
(-1.08, 0.03) 0.28 0.59 

(0.34, 1.03) 0.07 0.20 (I) 

Median 120 -0.21
(-0.67, 0.24) 0.23 0.81 

(0.52, 1.27) 0.36 

TGL 

IVW 100 -0.02
(-0.37, 0.33) 0.18 0.98 

(0.69, 1.39) 0.90 0.47 (H) 

Egger 100 -0.44
(-1.02, 0.15) 0.30 0.64 

(0.36, 1.16) 0.15 0.09 (I) 

Median 100 -0.06
(-0.63, 0.51) 0.29 0.94 

(0.53, 1.66) 0.84 

BMI – Body Mass Index, FG – Fasting Glucose, HbA1C – Acetylated hemoglobin, HDL – high 

Density Lipoprotein, LDL – Low Density Lipoprotein, TGL – Triglycerides, IVW – Inverse 

Variance Weighted, CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio, H – 

Heterogeneity P value, I – Intercept P value 



Table S4 

Instrumental variable analyses of BMI vs significant candidate mediator from Table S3 (Two 

sample mendelian randomization) 

Exposure Outcome Method SNPs Estimate 
(95% CI) SE P value OR         

(95% CI) 

BMI Fasting 
glucose 

IVW 1132 0.08  
(0.06, 0.10) 0.01 3.28x10-14  1.08  

(1.06, 1.10) 
3.21 x10-11 
(H) 

Egger 1132 0.09  
(0.03, 0.15) 0.03 0.002 1.09  

(1.03, 1.16) 0.55 (I) 

Median 1132 0.07  
(0.04, 0.10) 0.02 3.25x10-06 1.07  

(1.03, 1.12) 

IVW – Inverse Variance Weighted, H – Heterogeneity P value, I – Intercept P value 



Table S5 

Instrumental variable analyses of significant candidate mediator from Table S3 vs BMI (Two 

sample mendelian randomization) 

Exposure Outcome Method SNPs Estimate 
(95% CI) SE P value OR         

(95% CI) 

Fasting 
glucose BMI 

IVW 15 0.00             
(-0.09, 0.09) 0.05  0.99 1.00  

(0.91, 1.10) 6.41x10-40 (H) 

Egger 15 0.07             
(-0.14, 0.29) 0.11 0.50 1.08  

(0.87, 1.33) 0.46 (I) 

Median 15 -0.01       
(-0.05, 0.03) 0.02 0.61 

0.99  
(0.95, 1.03) 

IVW – Inverse Variance Weighted, H – Heterogeneity P value, I – Intercept P value 



Multivariable Mendelian Randomization analysis of BMI and fasting glucose (FG) 

vs G1DD (Two sample mendelian randomization) (Tables S6-8) 

Table S6 

Exposure SNPs Estimate 
(95% CI) SE P value H pval OR 

(95% CI) 

BMI 1116 0.64     
(0.31, 0.96) 0.16 0.0001 0.69 1.89 

(1.37, 2.61) 

FG 1116 0.61            
(-0.10,1.32) 0.36 0.09 0.60 1.84             

(0.90, 3.75) 

BMI – Body Mass Index, FG – Fasting Glucose, CI – Confidence Interval, SE – Standard Error, 

OR – Odds Ratio, H pval – Heterogeneity P value 



Table S7 

Multivariable inverse-variance weighted method (variants uncorrelated, random-effect model) 

Number of Variants 1116  

Exposure 
Estimate    
(95% CI) SE P value 

OR
(95% CI) 

Exposure 1 - BMI 
0.61         
(0.28, 0.94) 0.17 0.000 

1.84
(1.35,  2.52) 

Exposure 2 - FG 
0.39
(-0.33, 1.11) 0.37 0.29 

1.48
(0.72, 3.05) 

Residual standard error 0.99  
Residual standard error is set to 1 in calculation of confidence interval when its estimate is less 
than 1
Heterogeneity test statistic = 1089 on 1114 degrees of freedom, (p-value = 0.69) 

BMI – Body Mass Index, FG – Fasting Glucose, CI – Confidence Interval, SE – Standard Error, 

OR – Odds Ratio 



Table S8 

Exposure - BMI Estimate    
(95% CI) SE P value OR

(95% CI)

IVWM 0.64    
(0.31, 0.96) 0.16 0.0001 1.89 

(1.37, 2.61)

MVMR 0.61         
(0.28, 0.94) 0.17 0.000 1.84

(1.32, 2.57)
Proportion Mediated, 
attributable to fasting 
glucose 4.7% 2.6%

BMI – Body Mass Index, IVWM – Inverse variance weighted method (Univariate), MVMR – 

Multivariate Mendelian Randomization, CI – Confidence Interval, SE – Standard Error, OR – 

Odds Ratio 



Phenotypic association of BMI PRS on risk factors for G1DD 

Table S9 

Outcome=BMI PRS+DD_Status+Age+Sex+PC1to5 on G1DD cohort, 
logistic regression model 

Outcome 

Estimate 

(95% CI) SE P value 

OR 

(95% CI) #Cases 

IHD 
0.06           
(-0.04, 0.16) 0.05 

0.23 
1.06 

(0.96, 1.17) 728 

HTN 

0.04 

(-0.04, 0.12) 0.04 
0.32 

1.05 

(0.96, 1.13) 1472 

T2D 

0.21 

(0.11, 0.31) 0.05 
1.44x10-05  

1.23 

(1.12, 1.36) 654 

BMI – Body Mass Index, PRS – Polygenic Risk Score, G1DD – Grade 1 Diastolic Dysfunction, 

DD_Status – Grade 1 Diastolic Dysfunction status, IHD – Ischemic Heart Disease, HTN – 

Hypertension, T2D – Type 2 Diabetes, CI – Confidence Interval, SE – Standard Error, OR – 

Odds Ratio, PC – Principal Components 



Analyses after removal of controls receiving hypertension medications before the date of 

echocardiogram 

Table S10 

Demographic profile of study population Controls receiving hypertension medications before 
the date of echocardiogram have been removed 

Characteristic* All 
participants

Cases Controls P value 

n=1419 n=668 n=751 
Age in years – mean 
(sd) 47.3(10.3) 52.9 (5.9) 42.2(10.7) <2x10-16†

Females 884 (62.3%) 365 (54.6%) 519 (68.6%) 0.0005
† 

Obesity 363 (24.7%) 248 (37.1%) 115 (15.3%) 1.2x10-13‡ 
Ischemic Heart 
Disease 376 (26.5%) 286 (42.8%) 90 (12%) 1.7x10-13‡ 
Hypertension 715 (50.4%) 527 (78.9%) 188 (25%) <2x10-16‡ 
Diabetes 334 (23.5%) 263 (39.4%) 71 (9.5%) <2x10-16‡

Footnotes: 

* Values in the table represent counts and column percentages, except for age

† P value for the difference in proportions between cases and controls based on value of 

Pearson's chi-squared test statistic

‡ Association P value for the risk factor from a logistic regression model adjusting for 

age and sex



Table S11 

Estimate of shared genetics between G1DD and candidate risk factors Controls receiving 

hypertension medications before the date of echocardiogram have been removed 

G1DD Status (Outcome) = PRS +Age+Sex+PC1to5, logistic 
regression model 

Polygenic 
risk score Beta (95% CI) SE P value OR (95% CI)

Diastolic 
Blood 
Pressure

0.09 (-0.04, 0.21) 0.06 0.19 1.09 (096, 1.24)

Systolic 
Blood 
Pressure

0.13 (0.00, 0.26) 0.06 0.04 1.14 (1.00, 1.30)

Coronary 
Artery 
Disease

-0.02 (-0.14, 0.11) 0.06 0.79 0.98 (0.87, 1.11)

Type 2 
Diabetes 0.11 (-0.02, 0.23) 0.06 0.10 1.11 (0.98, 1.26)

Body 
Mass 
Index

0.20 (0.08, 0.33) 0.06 0.002 1.23 (1.08, 1.39) 

G1DD – Grade 1 Diastolic dysfunction, PRS – Polygenic Risk Score, PC- Principal Components 

CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio 



Table S12 

Instrumental variable analysis - BMI vs G1DD Controls receiving hypertension medications 

before the date of echocardiogram have been removed 

Exposure Outcome Method SNPs Estimate 
(95% CI) 

SE P value OR         
(95% CI) 

BMI G1DD IVW 
1132 

0.69       
(0.27, 1.11) 0.21 0.001 

2.00      
(1.32, 3.03) 0.96 (H) 

Egger 
1132 

1.77       
(0.49, 3.04) 0.65 0.006 

5.85         
(1.64, 20.88) 0.08 (I) 

Median 
1132 

1.13       
(0.44, 1.81) 0.35 0.001 

3.09      
(1.55, 6.14) 

BMI – Body Mass Index, G1DD – Grade 1 Diastolic dysfunction, IVW – Inverse Variance 

Weighted, CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio, H – Heterogeneity 

P value, I – Intercept P value 



Table S13 

Instrumental variable analyses of candidate mediators for BMI (Two sample mendelian 

randomization) Controls receiving hypertension medications before the date of 

echocardiogram have been removed 

Exposure Method SNPs Estimate 
(95% CI) SE 

OR 
(95% CI) P value 

FG 

IVW 15 
2.27  
(1.00, 3.55) 0.65 

9.70 
(2.71, 34.71) 0.0005 0.50 (H) 

Egger 15 
1.28 
(-1.59, 4.15) 1.46 

3.58 
(0.20, 63.29) 0.38 0.45 (I) 

Median 15 
1.60 
(-0.21, 3.40) 0.92 

4.95 
(0.81, 30.06) 0.082 

HbA1C 

IVW 44 
1.39 
(-0.33, 3.11) 0.88 

4.01 
(0.72, 22.39) 0.11 0.94 (H) 

Egger 44 
3.02 
(-0.23, 6.27) 1.66 

20.52 
(0.80, 528.07) 0.07 0.25 (I) 

Median 44 
1.29 
(-1.48, 4.07) 1.42 

3.64 
(0.23, 58.56) 0.36 

HDL 

IVW 150 
-0.12
(-0.50, 0.26) 0.20 

0.89 
(0.60, 1.30) 0.54 0.40 (H) 

Egger 150 
0.15 
(-0.56, 0.86) 0.36 

1.16 
(0.57, 2.37) 0.68 0.38 (I) 

Median 150 
-0.41
(-1.02, 0.20) 0.31 

0.66 
(0.36, 1.22) 0.18 

LDL 

IVW 121 
-0.13
(-0.52, 0.25) 0.20 

0.88 
(0.60, 1.29) 0.50 0.24 (H) 

Egger 121 
-0.26
(-0.99, 0.46) 0.37 

0.77 
(0.37, 1.58) 0.48 0.67 (I) 

Median 121 
-0.11
(-0.71, 0.49) 0.30 

0.90 
(0.49, 1.63) 0.72 

TGL 

IVW 100 
0.01 
(-0.47, 0.50) 0.25 

1.01 
(0.62, 1.64) 0.96 0.17 (H) 

Egger 100 
-0.97
(-1.75, -0.19) 0.40 

0.38 
(0.17, 0.83) 0.02 0.002 (I) 

Median 100 
0.29 
(-0.45, 1.03) 0.38 

1.34 
(0.64, 2.81) 0.44 

BMI – Body Mass Index, FG – Fasting Glucose, HbA1C – Acetylated hemoglobin, HDL – high 

Density Lipoprotein, LDL – Low Density Lipoprotein, TGL – Triglycerides, IVW – Inverse 

Variance Weighted, CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio, H – 

Heterogeneity P value, I – Intercept P value 



Multivariable Mendelian Randomization analysis of BMI and fasting glucose (FG) vs 

G1DD (Two sample mendelian randomization) Controls receiving hypertension medications 

before the date of echocardiogram have been removed (Tables S14-16) 



Table S14 

Exposure SNPs Estimate 
(95% CI) SE P value H pval OR 

(95% CI) 

BMI 
1116 

0.72 
(0.30, 1.14) 0.21 0.0008 0.85 

2.05 
(1.35, 3.12) 

FG 1116 
0.99 
(0.06, 1.91) 0.47 0.04 0.81 

2.69 
(1.06, 6.78) 

BMI – Body Mass Index, FG – Fasting Glucose, CI – Confidence Interval, SE – Standard Error, 

OR – Odds Ratio, H pval – Heterogeneity P value 



Table S15 

Multivariable inverse-variance weighted method (variants uncorrelated, random-effect 

model) Number of Variants 1116  

Exposure 
Estimate    
(95% CI) SE P value 

OR
(95% CI) 

Exposure 1 - BMI 
0.66 
(0.24,1.09) 0.22 0.002 

1.94 
(1.27, 2.97) 

Exposure 2 - FG 
0.75
(-0.19, 1.69) 0.48 0.12 

2.11 
(0.83, 5.40) 

Residual standard error 0.977  
Residual standard error is set to 1 in calculation of confidence interval when its estimate is less 
than 1
Heterogeneity test statistic = 1063.9803 on 1114 degrees of freedom, (P value = 0.8558) 

BMI – Body Mass Index, FG – Fasting Glucose, CI – Confidence Interval, SE – Standard Error, 

OR – Odds Ratio, H pval – Heterogeneity P value 



Table S16 

Exposure - BMI Estimate    
(95% CI) SE P value OR

(95% CI) 

IVWM 0.72 
(0.30, 1.14) 0.21 0.0008 

2.05 
(1.35, 3.12) 

MVMR 0.66 
(0.24,1.09) 0.22 0.002 

1.94 
(1.27, 2.97) 

Proportion Mediated, 
attributable to fasting 
glucose 8.3% 5.4% 

BMI – Body Mass Index, IVWM – Inverse variance weighted method (Univariate), MVMR – 

Multivariate Mendelian Randomization, CI – Confidence Interval, SE – Standard Error, OR – 

Odds Ratio, H pval – Heterogeneity P value 



Table S17 

Phenotypic association of BMI PRS on risk factors for G1DD Controls receiving 

hypertension medications before the date of echocardiogram have been removed 

Outcome=BMI PRS+DD_Status+Age+Sex+PC1to5 on G1DD cohort, 
logistic regression model 

Outcome 

Estimate 

(95% CI) SE P value 

OR 

(95% CI) #Cases 

IHD 

 0.05 

(-0.09, 0.19) 
 0.07  0.48 

 1.05 

(0.92, 1.21) 
 376 

HTN 

 0.11 

(-0.01, 0.23) 
 0.06  0.08 

 1.12 

(0.99, 1.26) 
 715 

T2D 

 0.25 

(0.11, 0.39) 

 0.07 
 0.0003 

 1.28 

(1.12, 1.48) 
334 

BMI – Body Mass Index, PRS – Polygenic Risk Score, G1DD – Grade 1 Diastolic Dysfunction, 

DD_Status – Grade 1 Diastolic Dysfunction status, IHD – Ischemic Heart Disease, HTN – 

Hypertension, T2D – Type 2 Diabetes, CI – Confidence Interval, SE – Standard Error, OR – 

Odds Ratio, H pval – Heterogeneity P value, PC – Principal Components 



Table S18 

Demographic profile of study population Controls receiving diabetes medications before the 
date of echocardiogram have been removed 

Characteristic * All participants Cases Controls P value 
n=2061 n=668 n=1393 

Age in years – 
mean (sd)

47.3 (9.9)  52.9 (5.9) 44.6 (10.3) <2x10-16†  

Females 1257 (61.0%) 365 (54.6%) 892 (64.0%) 0.06
† 

Obesity 551 (26.7%) 248 (37.1%) 303 (21.8%) 6.17x10-10‡ 
Ischemic Heart 
Disease

571 (27.7%) 286 (42.8%) 285 (20.5%) 6.51x10-08‡ 

Hypertension 1186 (57.5%) 527 (78.9%) 659 (47.3%) <2x10-16‡ 
Diabetes 506 (24.5%) 263 (39.4%) 143 (10.2%) <2x10-16‡

Footnotes: 

* Values in the table represent counts and column percentages, except for age.

† P value for the difference in proportions between cases and controls based on value of 

Pearson's chi-squared test statistic

‡ Association P value for the risk factor from a logistic regression model adjusting for 

age and sex



Table S19 

Estimate of shared genetics between G1DD and candidate risk factors Controls receiving 

diabetes medications before the date of echocardiogram have been removed 

G1DD Status (Outcome) = PRS +Age+Sex+PC1to5, 
logistic regression model 

Polygenic 
risk score

Beta
(95% CI) SE P value

OR 
(95% CI)

Diastolic 
Blood 
Pressure

0.02
(-0.08, 0.12) 0.05 0.68

1.02
(0.92, 1.13)

Systolic 
Blood 
Pressure

0.02
(-0.08, 0.13) 0.05 0.65

1.02
(0.92, 1.13)

Coronary 
Artery 
Disease

-0.04
(-0.14, 0.06) 0.05 0.48

0.96
(0.87, 1.07)

Type 2 
Diabetes 0.13

(0.03, 0.24) 0.05 0.012
1.14
(1.03, 1.27)

Body Mass 
Index 0.21

(0.10, 0.31) 0.05 9.47x10-05
1.23
(1.11, 1.37)

G1DD – Grade 1 Diastolic dysfunction, PRS – Polygenic Risk Score, PC- Principal Components 

CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio 



Table S20 

Instrumental variable analysis - BMI vs G1DD Controls receiving diabetes medications 

before the date of echocardiogram have been removed 

Exposure Outcome Method SNPs Estimate 
(95% CI)

SE P value OR         
(95% CI)

BMI G1DD IVW 1132 0.68    
(0.34,1.02)

0.17 8.83x10-05 1.97        
(1.40, 2.77)

0.52 
(H)

Egger 1132 1.15    
(0.12,2.19)

0.53 0.03 3.17        
(1.12, 8.93)

0.34  
(I)

Median 1132 0.82    
(0.25,1.39)

0.29 0.004 2.27        
(1.29, 4.00)

BMI – Body Mass Index, G1DD – Grade 1 Diastolic dysfunction, IVW – Inverse Variance 

Weighted, CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio, H – Heterogeneity 

P value, I – Intercept P value 



Table S21 

Instrumental variable analyses of candidate mediators for BMI (Two sample mendelian 

randomization) Controls receiving diabetes medications before the date of echocardiogram have 

been removed 

Exposure Method SNPs Estimate 
(95% CI)

SE OR 
(95% CI)

P value 

FG IVW 15 1.75  
(0.71, 2.79)

0.53 5.76 
(2.03, 16.33)

9.93x10-04 0.67 (H) 
Egger 15 0.10        

(-2.25, 2.45)
1.20 1.11 

(0.11, 11.62)
0.93 0.13 (I) 

Median 15 1.30       
(-0.18, 2.78)

0.76 3.68 
(0.84, 16.18)

0.084 
HbA1C IVW 44 0.91  

(0.72, -0.50)
0.72 2.48  

(0.61, 10.14)
2.05x10-01 0.92 (H) 

Egger 44 2.01  
(1.37, -0.68)

1.37 7.45 
(0.51, 109.61)

0.14 0.35 (I) 
Median 44 0.65  

(1.11, -1.52)
1.11 1.92 

(0.22, 16.77)
0.557 

HDL IVW 150 -0.10
(-0.41, 0.21)

0.16 0.90 
(0.66, 1.23)

5.18x10-01 0.66 (H) 
Egger 150 0.02  

(-0.56, 0.59)
0.29 1.02 

(0.57, 1.80)
0.96 0.64 (I) 

Median 150 -0.30
(-0.81, 0.22)

0.26 0.74 
(0.44, 1.24)

0.259 
LDL IVW 121 -0.13

(-0.44, 0.17)
0.15 0.87 

(0.65, 1.18)
3.84x10-01 0.48 (H) 

Egger 121 -0.24
(-0.81, 0.32)

0.29 0.79 
(0.45, 1.38)

0.40 0.66 (I) 
Median 121 -0.03

(-0.51, 0.46)
0.25 0.97 

(0.60, 1.58)
0.914 

TGL IVW 100 -0.02
(-0.40, 0.35)

0.19 0.98 
(0.67, 1.42)

8.99x10-01 0.51 (H) 
Egger 100 -0.56

(-1.18, 0.06)
0.32 0.57 

(0.31, 1.07)
0.08 0.04 (I) 

Median 100 0.02  
(-0.56, 0.60)

0.30 1.02 
(0.57, 1.83)

0.944 
BMI – Body Mass Index, FG – Fasting Glucose, HbA1C – Acetylated hemoglobin, HDL – high 

Density Lipoprotein, LDL – Low Density Lipoprotein, TGL – Triglycerides, IVW – Inverse 

Variance Weighted, CI – Confidence Interval, SE – Standard Error, OR – Odds Ratio, H – 

Heterogeneity P value, I – Intercept P value 



Multivariable Mendelian Randomization analysis of BMI and fasting glucose (FG) vs 

G1DD (Two sample mendelian randomization) Controls receiving diabetes medications 

before the date of echocardiogram have been removed (Tables S22-24) 

Table S22 

Exposure SNPs Estimate 
(95% CI)

SE P value H pval OR 
(95% 
CI)

BMI 1116 0.73 
(0.39, 1.07)

0.17 3.12x10-05 0.46 2.07 
(1.47, 2.92)

FG 1116 0.86 
(0.10, 1.62)

0.39 0.03 0.36 2.37 
(1.11, 5.06)

BMI – Body Mass Index, FG – Fasting Glucose, CI – Confidence Interval, SE – Standard Error, 

OR – Odds Ratio, H pval – Heterogeneity P value 



Table S23 

Multivariable inverse-variance weighted method (variants uncorrelated, random-effect 

model) Number of Variants 1116  

Exposure
Estimate    
(95% CI) SE P value

OR
(95% CI)

Exposure 1 - BMI
0.68 
(0.34, 1.03) 0.18 0.000

1.98 
(1.40, 2.80)

Exposure 2 - FG
0.61 
(-0.15, 1.38) 0.39 0.12

1.84 
(0.86, 3.97)

Residual standard error 1.001 
Residual standard error is set to 1 in calculation of confidence interval when its estimate is less 
than 1
Heterogeneity test statistic = 1116.7974 on 1114 degrees of freedom, (P value = 0.47) 

BMI – Body Mass Index, FG – Fasting Glucose, CI – Confidence Interval, SE – Standard Error, 

OR – Odds Ratio, H pval – Heterogeneity P value 



Table S24 

Exposure - BMI Estimate    
(95% CI) SE P value OR

(95% CI) 

IVWM 0.73 
(0.39, 1.07) 

0.17 3.12x10-05  2.07 
(1.47, 2.92) 

MVMR 0.68 
(0.34, 1.03) 0.18 

0.68 
(0.34, 1.03) 

1.98 
(1.40, 2.80) 

Proportion Mediated, 
attributable to fasting 
glucose 6.8% 4.3% 

BMI – Body Mass Index, FG – Fasting Glucose, CI – Confidence Interval, SE – Standard Error, 

OR – Odds Ratio, H pval – Heterogeneity P value 



Table S25 

Phenotypic association of BMI PRS on risk factors for G1DD Controls receiving 

diabetes medications before the date of echocardiogram have been removed 

Outcome=BMI PRS+DD_Status+Age+Sex+PC1to5 on G1DD cohort, 
logistic regression model 

Outcome 

Estimate 

(95% CI) SE P-value

OR 

(95% CI) #Cases 

IHD 
0.09
(-0.008, 0.19) 0.05 0.08 1.09           

(0.99, 1.21) 571 

HTN 
0.05
(-0.05, 0.15) 0.05 0.33 1.05           

(0.95, 1.16) 1186 

T2D 
0.24              
(0.12,0.36) 0.06 4.52x10-05 1.27           

(1.13, 1.43) 506 

BMI – Body Mass Index, PRS – Polygenic Risk Score, G1DD – Grade 1 Diastolic Dysfunction, 

DD_Status – Grade 1 Diastolic Dysfunction status, PC – Principal Components, IHD – Ischemic 

Heart Disease, HTN – Hypertension, T2D – Type 2 Diabetes, CI – Confidence Interval, SE – 

Standard Error, OR – Odds Ratio, H pval – Heterogeneity P value 



Table S26  

Predictive performance of BMI and FG genetic instruments 

BMI – Body Mass Index, FG – Fasting Glucose, PC – Principal Components, AUC – Area 
Under the Curve 

Model AUC 
Age+Sex+PC 0.7438 
Age+Sex+PC+BMI PRS 0.7489 
Age+Sex+PC+FG PRS 0.745 



Figure S1 

Manhattan Plot QQ Plot 

Figure S1a GWAS of Grade 1 Diastolic Dysfunction 

Figure S1b MAGMA based gene association of top SNPs. 



Figure S2 



Figure S3 



Figure S4 



Figure S5 

Manhattan Plot  QQ-Plot 

GWAS of Grade 1 Diastolic Dysfunction 

Cases and controls differ by G1DD status on echo + controls on HTN drugs before echo 
removed 



Figure S6 

Instrumental variable analysis - BMI vs G1DD - Controls receiving hypertension medications 
before the date of echocardiogram have been removed  



Figure S7

Manhattan Plot QQ Plot 

GWAS of Grade 1 Diastolic Dysfunction 

Cases and controls differ by G1DD status on echo + no controls on Diabetes drugs 
before echo removed 



Figure S8 

Instrumental variable analysis - BMI vs G1DD - Controls receiving diabetes medications 
before the date of echocardiogram have been removed 



Figure S9  

 

Distribution of scaled PRS for BMI and FG genetic instruments 
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