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Abstract

The redlegged earth mite, Halotydeus destructor (Tucker, 1925: Trombidiformes,
Eupodoidea, Penthaleidae), is an invasive mite species. In Australia, this mite has
become a pest of winter pastures and grain crops. We report the complete mitog-
enome for H. destructor, the first to represent the family Penthaleidae, superfamily
Eupodoidea. The mitogenome of H. destructor is 14,691 bp in size, and has a GC
content of 27.87%, 13 protein-coding genes, two rRNA genes, and 22 tRNA genes.
We explored evolutionary relationships of H. destructor with other members of the
Trombidiformes using phylogenetic analyses of nucleotide sequences and the order
of protein-coding and rRNA genes. We found strong, consistent support for the su-
perfamily Tydeoidea being the sister taxon to the superfamily Eupodoidea based on
nucleotide sequences and gene arrangements. Moreover, the gene arrangements of
Eupodoidea and Tydeoidea are not only identical to each other but also identical to
that of the hypothesized arthropod ancestor, showing a high level of conservatism in
the mitogenomic structure of these mite superfamilies. Our study illustrates the util-
ity of gene arrangements for providing complementary information to nucleotide se-
guences with respect to inferring the evolutionary relationships of species within the
order Trombidiformes. The mitogenome of H. destructor provides a valuable resource
for further population genetic studies of this important agricultural pest. Given the
co-occurrence of closely related, morphologically similar Penthaleidae mites with H.
destructor in the field, a complete mitogenome provides new opportunities to de-
velop metabarcoding tools to study mite diversity in agro-ecosystems. Moreover, the
H. destructor mitogenome fills an important taxonomic gap that will facilitate further

study of trombidiform mite evolution.
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1 | INTRODUCTION

The redlegged earth mite, Halotydeus destructor (Tucker, 1925), be-
longs to the order Trombidiformes (superfamily Eupodoidea; family
Penthaleidae). Halotydeus destructor is an important pest in Australian
agriculture, attacking winter pasture, grain crops, and oilseed crops
in temperate southern cropping regions (Ridsdill-Smith, 1997). This
mite species was introduced into Australia from South Africa in
the early 1920s (Newman, 1925). Since its establishment, this mite
has been mostly controlled using pesticide, with a long history of
organophosphate and pyrethroid chemical usage (Ridsdill-Smith
et al., 2008). However, pyrethroid resistance has evolved and be-
come widespread (Arthur et al., 2021; Edwards et al., 2018; Yang
et al., 2020), and more recently, geographically isolated cases of or-
ganophosphate resistance have been identified (Arthur et al., 2021;
Umina et al., 2017).

Trombidiform mites represent a diverse group that includes
other agricultural pests such as spider mites and gall mites, as well
as mites that are medically important, such as chiggers. The order
Trombidiformes includes more than 25,000 species and over 2,000
genera that have been assigned to 151 families and two suborders
(Zhang et al., 2011). Within both suborders, there are at least seven
independent parallel evolutionary events leading to herbivory aris-
ing from a parasitic ancestral state (Lindquist, 1998). The super-
family Eupodoidea within the Trombidiformes has ~340 species,
which are mostly mites associated with terrestrial soil environments
(Qin, 1996). The family Penthaleidae (Oudemans, 1931) includes
five genera, which represent global pests in the genus Penthaleus
(Umina et al., 2004) and five recognized species of Halotydeus (Qin
& Halliday, 1996).

Despite their importance as pests, genomic resources for the
Penthaleidae are poorly developed. Such resources would signifi-
cantly assist studies of population demography, pesticide resistance,
and phylogenetic relationships both within the family and within the
context of the superfamily Eupodoidea, where relationships remain
unclear (Szudarek-Trepto et al., 2020). In particular, complete mito-
chondrial sequences could provide greater capacity to resolve tax-
onomy among members of the Trombidiformes, given the unusually
high incidence of mitogenomic rearrangements that have occurred
in this order that complicate phylogenetic analyses of sequence
data from single genes (Edwards et al., 2011; Palopoli et al., 2014;
Shao et al., 2005). Structural haplotypes in mitochondrial gene ar-
rangements have provided insights into evolutionary relationships
across diverse taxa (Froufe et al., 2020; Gong et al., 2019; Inoue
et al., 2003; Kutyumov et al., 2021), but to date, such analyses have
been relatively small in scope with respect to the Trombidiformes,
typically focusing on a few species (Edwards et al.,, 2011; Li &
Xue, 2019; Palopoli et al., 2014; Shao et al., 2005; Xue et al., 2017;
Xue et al., 2016).

Here, we present the complete mitogenome of H. destructor, the
first to be sequenced from a mite in the superfamily Eupodoidea.
We procured complete mitogenomes from all other species of

the Trombidiformes available publicly to link the evolutionary
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relationships of H. destructor with mites in this order. In addition to
standard phylogenetic analyses using nucleotide sequences from
mitochondrial genes, we also analyzed gene arrangements. We show
that structural haplotypes of protein-coding and rRNA genes can
provide complementary information to nucleotide sequences for
elucidating the evolutionary relationships within this diverse order
of mites.

2 | METHODS

Samples of adult H. destructor were collected from recreational pas-
ture in Wantirna South, Melbourne, VIC, Australia (537°52'11.6"
E145°11'46.1"), in June 2020. Collection was made via suction using
a blower vacuum with a fine gauze mesh placed over the end of the
vacuum tube. Mites were placed into a plastic container with paper
towel and vegetation for transportation. Once in the laboratory,
H. destructor individuals were identified and separated from other
invertebrates. Although distinguishing sibling species in the genus
Halotydeus by morphology is challenging, H. destructor is the only
member from this genus present in Australia based on previous pop-
ulation genetic assessments of this species across its native and in-
vasive range with different marker systems (Hill et al., 2016; Weeks
et al., 1995; Yang et al., 2020).

DNA was extracted from pooled individuals (n = 70) using a
DNeasy® Blood & Tissue Kit (Qiagen, Hilden, Germany). A contin-
uous long-read library was prepared and sequenced using PacBio
Sequel Il technology by Berry Genomics (Berry Genomics Co. Ltd,
Beijing, China). The PacBio reads were parsed with the long-read
assembler canu v2.0 (Koren et al.,, 2017) using the “correction”
method. The corrected reads were then subset using seqrk v1.3-r106
(Li, 2019), setting a minimum read length of 5,000 bp. We assem-
bled the corrected reads using rive v2.8 (Kolmogorov et al., 2019)
and extracted circular contigs. Using swa Mem (Li & Durbin, 2009), we
mapped the cox1 sequence from the parasitic mite, Demodex brevis
(GenBank accession KM114225: position 1-1536), to these circular
contigs with relaxed parameters: -A1 -B1 -0O2. Using samtooLs v1.9
(Li et al., 2009), we identified one contig that mapped to the D. bre-
vis cox1 sequence. This contig was 29,383 bp long and contained
multiple copies of the mitogenome merged into a single sequence.
By annotating this contig, we defined a single copy mitogenome se-
quence for H. destructor.

The protein-coding, rRNA, tRNA genes, and hypothetical repli-
cation origins within the H. destructor mitogenome were annotated
using a combination of mitos2v2.0.8 (Bernt et al., 2013), ARwen (Laslett
& Canbick, 2008), and ceneious pPrIME v2021.1.1 (Geneious, 2021).
Initially, miTos2 was used to infer protein-coding, rRNA, and tRNA
genes from the long-read contig. The 29,383 bp long contig was
trimmed and repositioned to start at the first annotated cox1 gene
and end at the next proceeding cox1 annotation. Thus, the initial
long-read contig was reduced to a single copy of the mitogenome
(14,691 bp long). The tRNA-Val gene was additionally annotated

using ARWEN. We used the live annotation feature of GENEIOUS PRIME to
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validate the positions of the rRNA genes using sequences from all
sampled trombidiform mites (Table 1).

To assess the location of the putative control region in the H.
destructor mitogenome, we examined the position of the miTos2-
inferred replication origins. The control region is expected to occur
in a mitogenomic region devoid of coding potential and of low GC
content (Zhang & Hewitt, 1997). To estimate GC content, we imple-
mented a sliding window approach (100 bp with 50 bp overlap) in R
v4.0.2 using a custom script. We then visually inspected the regions
of the H. destructor mitogenome where replication origins, predicted
with miTos2, coincided with coding gaps and low GC content.

To contextualize the evolutionary relationship of the mitoge-
nome of H. destructor with other trombidiform mites, we inferred
phylogenetic trees from nucleotide sequences of mitochondrial
protein-coding and rRNA genes, as well as their gene arrangements
within the mitogenome. We downloaded mitogenomes from 27 spe-
cies of Trombidiformes, and two species of Sarcoptiformes that were
used as out-groups, from GenBank (Table 1). This GenBank sample
constituted a single representative trombidiform mite species from
all those with fully sequenced mitochondria. In GENEIOUS PRIME, we re-
positioned all GenBank-sourced mitogenomes with respect to cox1.
Gene annotations were exported from Geneious PRIME for downstream
analysis. The R function GeNe_mAP_pLOT from the GeNomaLicious v0.4
package (Thia & Riginos, 2019) was used to illustrate mitogenomic
structure (Appendix: Figures S1-S7).

Itis important to note that the reported mitogenome of the chig-
ger mite, Leptotrombidium pallidum (GenBank accession: AB180098),
has a pseudo-rrnS gene and a duplicated rrnL gene (Shao et al., 2005),
at respective positions 11772-11984 and 11985-12991, when this
mitogenome is repositioned relative to cox1 (Appendix: Figure S5d).
For phylogenetic analyses, we considered only the nucleotide se-
quences and gene arrangements of the primary rrnS (positions
5401-6001) and rrnL (positions 4393-5400), which are homologous
to these genes reported for other Leptotrombidium species that are
repositioned on cox1 (Appendix: Figure S5b,c).

In R, we used gene annotations to extract nucleotide sequences
from each of the GenBank-sourced mitogenomes. Nucleotide se-
quences were reverse complemented when they occurred on the
negative strand using BiosTrings v2.56.0 (Pages et al., 2017). Each
gene was aligned independently using the ClustalW algorithm im-
plemented in the msa v1.20.1 package (Bodenhofer et al., 2015). The
best evolutionary model for each gene alignment was established
using the MopeLTEsT function from the pHANGORN v2.6.2 package
(Schliep, 2011). We considered the “JC,” “F81,” “K80,” “HKY,” and
“GTR” models with the possibility of invariable sites (+1) and gamma-
distributed rates (+G). For all protein-coding and rRNA genes, the
best model was GTR + G + | based on AIC scores, and for genes where
it was not the best model, it could not be differentiated from the best
model based on AAIC <10 criteria (Burnham & Anderson, 2004).
Therefore, we proceeded with the GTR + G + | model for all genes
when constructing nucleotide sequence phylogenies.

Mitogenomic structure, characterized by gene arrangements,

was also used to infer phylogenetic relationships. We used 15 genes

(protein-coding and rRNA genes), and we considered their relative
order and strand positions as character states. We encoded gene
order position as a matrix of dummy variables. For example, let Xgene
be a matrix for a focal gene, where the rows are species. Xgene has
30 columns, corresponding to all possible unique combinations of
nt" ordered positions (1-15) on the pt" strand (positive or negative).
When the focal gene occurred at position n on strand p, it was scored

as “1” in the respective column of X and all other columns were

gene’

scored as “0.” Hence, X encodes binary data for the presence

ene
or absence of a focal gerfe at a specific ordered position and strand
on the mitogenome for all species. We concatenated (column-wise)
these binary matrices for each gene to form the matrix, Y, which
summarized mitogenomic haplotype structure across all species at
their protein-coding and rRNA genes. As defined, the characteriza-
tion of mitogenomic structural haplotypes in matrix Y captures both
insertion mutations (that change the relative positions of genes) and
inversion mutations (that change the strand on which genes occur
and their orientation). Note that because all species were reposi-
tioned with respect to cox1, and because every species’ cox1 gene
was on the positive strand, all species were effectively monomor-
phic for this gene.

Phylogenetic reconstruction was primarily performed using the
program MRrBaves v3.2.7 (Huelsenbeck & Ronquist, 2001; Ronquist
etal.,2012). Prior to analysis with MrBAves, we removed all monomor-
phic sites (not including gaps and missing sites in the nucleotide se-
quence alignments). We were left with 12,180 nucleotide character
states for nucleotide sequences and 81 character states for the gene
arrangements. We fit three models: (1) nucleotide sequences alone,
(2) gene arrangements alone, and (3) nucleotide sequences + gene
arrangements. For the nucleotide sequence model, all alignments
were jointly analyzed, but as discrete partitions. We allowed each
gene to have its own set of parameters using the MrBaves command
call, “unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all),” and
different evolutionary rates among genes were modeled using the
command call, “prset applyto=(all) ratepr=variable.” The GTR + G + |
evolutionary model was implemented using the command call, “Iset
nst=6 rates=invgamma.” For the gene arrangement model, we mod-
eled a gamma distribution of evolutionary rates using the command,
“Iset rates=gamma.” For the combined model, we used the same
parameters described for each respective dataset in their individual
models.

For all three Bayesian models, we executed 500,000 genera-
tions with the first 25% of generations as burnins, a sample fre-
quency of 500 generations, and diagnostic calculation every 5,000
generations, using 2 independent runs. By generation 500,000,
the lagged log-likelihood difference between simulations had pla-
teaued and fluctuated around O (Appendix: Figure S8). By the final
generation, the standard deviation of the split frequencies was
0.003, 0.009, and 0.0008 for the nucleotide sequence only, gene
arrangement only, and nucleotide sequence + gene arrangement
models.

A maximum-likelihood (ML) tree from nucleotide sequences

was also constructed for comparison to Bayesian trees. Nucleotide
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alignments were concatenated and analyzed with Meca X (Kumar
et al., 2018). We used a general time reversible model with gamma-
distributed rates (4 discrete gamma categories) and invariant sites.
We used complete deletion of gapped and missing sites, setting the
ML heuristic to nearest neighbor interchange, with the initial ML
tree based on a neighbor-joining tree. Node support was assessed
with 500 bootstrap replicates.

Phylogenetic trees were exported from MRrBAves and Meca X.
Aesthetic embellishments were made using FicTree (Rambaut, 2007)

and Inkscape (Inkscape Project, 2020).

3 | RESULTS AND DISCUSSION

The mitogenome of H. destructor, a major pest of Australian agri-
culture, has now been fully sequenced and provides a useful re-
source for comparative genomic and population genetic studies. In
Australian agro-ecosystems, H. destructor co-occurs with several
closely related cofamilial species that are morphologically similar,
and there is substantial interest on the impact of arthropod preda-
tors on these mites (Umina et al., 2004; Weeks & Hoffmann, 2000).

Hence, the H. destructor mitogenome will be useful for developing
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FIGURE 1 Genetic map of the mitochondrion of Halotydeus destructor. The thick, horizontal gray line in the center of the plot illustrates
the length of the mitogenome (base position on the x-axis). Large bars situated on the mitogenome length indicate the position of protein-
coding genes and rRNA genes. Colors of protein-coding and rRNA genes are as follows: red, cox genes; blue, atp genes; turquoise, nad genes;
pink, cytb; and gray, rRNA genes. For protein-coding and rRNA genes, those sitting above the gray line are on the positive strand, and those
below the line are on the negative strand. Small gray bars with annotated labels demarcate the positions of tRNA genes
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FIGURE 2 GC content of the Halotydeus destructor mitogenome and predicted locations of the replication origin. The x-axis is the base
position, whereas the y-axis is the GC content (estimated through an overlapping sliding window of 100 bp). The black line tracks the GC
content across the mitogenome. The vertical gray bars indicate the predicted locations of replication origins. The horizontal bars at the top
of the plot illustrate the positions of protein-coding and rRNA genes. Colors of protein-coding and rRNA genes are as follows: red, cox genes;
blue, atp genes; turquoise, nad genes; pink, cytb; and gray, rRNA genes
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metabarcoding tools for the rapid, high-throughput assessment of
mite species diversity and in identifying arthropod predators of H.
destructor (Cuthbertson et al., 2003; Martin et al., 2015), in Australia.

The mitogenome of H. destructor is 14,691 bp long and has a GC
content of 27.87%. It has 13 protein-coding genes, 2 rRNA genes,
and 22 tRNAs (includes two putative tRNA genes for Leu and Ser)
(Figure 1). A total of 8 replication origins were predicted by miTos2
(Figure 2). Based on the joint expectation that mitochondrial con-
trol regions occur in noncoding and low GC regions, the most likely
candidate for the H. destructor control region would be between
rrnS and nad2 (position 12,623-13,624, a width of 1,001 bp). This
region contains two predicted replication origins (Figure 2). Our mi-
togenome of H. destructor has been submitted to GenBank under the

N ATG(.: B Panonychus citri
Nucleotides —i |
Panonychus ulmi
0.2 ITetranychus cinnabarinus
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Accession, MZ357702. Genetic features of the H. destructor mitoge-
nome are tabulated in Table S1.

Using nucleotide sequences and gene arrangement information
from protein-coding and rRNA genes, we examined the evolutionary
relationships between H. destructor and other Trombidiformes with
complete mitogenomes (for genetic maps, see Appendix: Figures S1-
S7). Gene arrangements can provide alternative characters to track
evolutionary relationships among different taxa (Froufe et al., 2020;
Gong et al., 2019; Inoue et al., 2003; Kutyumov et al., 2021). Prior
analyses of mitogenomic structural haplotypes in trombidiform
mites have focused on a comparatively smaller number of species
to that analyzed in our study (Edwards et al., 2011; Li & Xue, 2019;
Palopoli et al.,, 2014; Shao et al.,, 2005; Xue et al.,, 2017; Xue

Tetranychus kanzawai

| I Tetranychus pueraricola

Tet
Tetranychus urticae
Tetranychus truncatus
Tetranychus phaselus
Tetranychus ludeni
— Tetranychus malaysiensis
| Epitrimerus sabinae
|
| - Phyllocoptes taishanensis B
ri
I Rhinotergum shaoguanense
Leipothrix sp.
Leptotrombidium akamushi
—i |
I - | eptotrombidium deliense
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et al., 2016). Despite generalities between phylogenies constructed
from nucleotide sequences (Figure 3), gene arrangements (Figure 4),
or both (Figure 5), there were some major differences between
them with respect to the placement of certain superfamilies of the
Trombidiformes. Additionally, whereas the nucleotide sequence
and combined phylogeny both exhibited topologies of nested bifur-
cating trees among the representative trombidiform superfamilies
(Figures 3, 5), the gene arrangement phylogeny split the superfamilies
into three clades that came together at a trifurcating node (Figure 4).
Hence, gene arrangements, as defined in this study, were alone not
able to completely resolve relationships among Trombidiformes. A
maximum-likelihood tree of nucleotide sequences (Figure S9) pro-

duced similar results to its Bayesian counterpart (Figure 3), so we

I | r

Arrangements
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Hygrobates taniguchii

Unionicola foili

focus our discussion on results from the Bayesian analyses, linking
our results to prior research and hypotheses on the evolutionary re-
lationships among superfamilies in the Trombidiformes.

Halotydeus destructor belongs to the superfamily Eupodoidea.
Our phylogenies derived from nucleotide sequences (Figure 3),
gene arrangements (Figure 4), or both (Figure 5), always placed H.
destructor as the sister taxon to Riccardoella species, which are from
the superfamily Tydeoidea. This relationship was always strongly
supported (299%). Halotydeus destructor and the Riccardoella spe-
cies exhibited complete synteny in their gene arrangements; that
is, they possessed the exact same haplotype in the structural or-
ganization of their protein-coding and rRNA genes (Figure 6). Our
observations run counter to prior hypotheses that Tydeoidea is
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Tyd FIGURE 4 Bayesian trait phylogeny
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sarcoptiform mites, Histiostoma feroniarum
and Sarcoptes scabiei, were used as out-
group taxa. Node labels denote posterior
probability support. The scale bar (top of
plot) is the number of substitutions per
unit length

Che
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FIGURE 5 Bayesian combined
molecular and trait phylogeny (nucleotide
sequences + gene arrangements) of
mitochondrial protein-coding and rRNA
genes. Superfamilies of trombidiform
mites are highlighted with different
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sister to Eriophyoidea and that Eupodoidea is paraphyletic to the
Eriophyoidea-Tydeoidea sister pair, based on morphological data
(Lindquist, 1998; Mironov & Bochkov, 2009; Qin, 1996). Other more
recent molecular studies have noted the Eupodoidea-Tydeoidea sis-
ter pairing (Klimov et al., 2018). We also found that the Eupodoidea-
Tydeoidea mitogenomic haplotype is identical to the hypothesized
ancestral arthropod haplotype (Shao et al., 2005; Xue et al., 2016),
indicating a very high level of conservatism in the gene arrangements
of the Eupdoidea and Tydeoidea relative to other trombidiform su-
perfamilies (Figure 6). Indeed, this conservatism in mitogenomic
structure has persisted over more than 400 million years, the esti-

mated emergence of the Acariformes, the superorder containing the

Trombidiformes (Dabert et al., 2010; Jeyaprakash & Hoy, 2009; Xue
etal., 2017).

With respect to the superfamily Eriophyoidea, contempora-
neous molecular studies have observed two contrasting patterns:
(i) Eriophyoidea basal to all Trombidiformes (18S + 28S rRNA and
cox1) and (ii) Eriophyoidea as a closely related taxon to the infraor-
der Eupodina (ef1-a, srp54, hsp70), which includes Eupodoidea and
Tydeoidea (Klimov et al., 2018). We observed two contrasting rela-
tionships in our data. Placement of Eriophyoidea as the out-group
to the clade containing species representing the superfamilies
Cheyletoidea, Eupodoidea, Hygrobatoidea, Trombiculoidea, and
Tydeoidea was strongly supported by both the nucleotide phylogeny
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FIGURE 6 Mitochondrial gene
arrangements for protein-coding and
rRNA genes among Trombidiformes,
Sarcoptiformes, the hypothetical
Acariformes ancestor, and the
hypothetical arthropod ancestor.
Each box represents a gene. Colors of
protein-coding and rRNA genes are
as follows: red, cox genes; blue, atp
genes; turquoise, nad genes; pink, cytb;
ot and gray, rRNA genes. The “+” and the
“~" symbols denote the positive and

negative strands, respectively. The black
horizontal line separates trombidiform
mite haplotypes (below line) from
sarcoptiform mite haplotypes and the
hypothesized ancestral acariforme

and arthropod haplotypes (above line).
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+
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(98%; Figure 3) and the combined phylogeny (95%; Figure 5). Such
a placement is consistent with a hypothesis of a more basal ori-
gin of the superfamily Eriophyoidea, but still evolving within the
Trombidiformes. Yet we also observed near-identical gene arrange-
ments between Eriophyoidea with Eupodoidea and Tydeoidea
(Figure 6). The only difference between the Eriophyoidea struc-
tural haplotype and that observed in Eupodoidea and Tydeoidea
was the order of the rrnS and rrnL genes and the strands where
these genes occurred (Figure 6). Consequently, there was very
strong support (100%) for Eriophyoidea as the sister taxon to
Eupodoidea-Tydeoidea pair in our phylogeny of gene arrangements

(Figure 4), which is consistent with a hypothesis of a close affinity

The trombidiform mitochondrial gene
arrangements are ordered (top to bottom)
with respect to their structural similarity
to Halotydeus destructor (superfamily
Eupodoidea). The ancestral acariform and
arthropod haplotypes are taken from Xue
et al. (2016)

between the superfamily Eriophyoidea and the infraorder Eupodina
(Lindquist, 1998; Qin, 1996). Hence, gene arrangements alone
painted a very different picture of the origin of the Eriophyoidea rel-
ative to their underlying nucleotide sequences.

In this study, our representative species of the superfamily
Cheyletoidea were those of the genus Demodex. The Cheyletoidea
belong to the infraorder Eleutherengona, which includes the super-
family Tetranychoidea, and the Eleutherengona mites are expected
to be paraphyletic to those in the infraorder Eupodina (Klimov
et al., 2018; Lindquist, 1998; Mironov & Bochkov, 2009; Qin, 1996).
Previous molecular studies have reported contrasting placements of
Cheyletoidea species, both within clades containing Hygrobatoidea
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and Eupodoidea (Dabert et al., 2016), and in clades paraphyletic to
the Hygrobatoidea and Eupodoidea (Klimov et al., 2018). We ob-
served two distinct placements of Demodex species. The nucleotide
phylogeny exhibited poor support (75%) for Demodex species po-
sitioned paraphyletic to the Eupodoidea-Tydeoidea pair (Figure 3).
Contrastingly, there was very strong support for Demodex species
as the sister taxon to the Hygrobatoidea mites in phylogenies in-
ferred from gene arrangements (96%; Figure 4) and the combined
phylogeny (98%; Figure 5). Clearly, mites of the Demodex genus
have unusual mitogenomes relative to members of their super-
family, Cheyletoidea, and exhibit greater similarity to Eupodoidea,
Tydeoidea, and Hygrobatoidea mitogenomes than they do to
Tetranychoidea. Unfortunately, mitogenomes of other Cheyletoidea
species are not available, so we were unable to draw comparisons
with other members of this superfamily.

Across mite superfamilies sampled with multiple representative
genera, only the Trombiculoidea exhibited heterogeneity among gen-
era in their gene arrangements. Each of the Trombiculoidea genera
(Leptotrombidium, Ascoschoengastia, and Walchia) possessed a dis-
tinct structural haplotype for their protein-coding and rRNA genes
(Figure 6). Moreover, within the genus Leptotrombidium, two unique
haplotypes exist: one with an additional pseudo-rrnS gene and dupli-
cated rrlL gene that is found in L. pallidum (Appendix: Figure S5d) and
the other with single copies of the rRNA genes that is found in other
Leptotrombidium species (Appendix: Figure S5b,c) (Shao et al., 2005,
2006). The inferred evolutionary relationships of Trombiculoidea to
other superfamilies in the Trombidiformes varied across all three
phylogenies. In the nucleotide phylogeny, we observed strong sup-
port (100%) for a Trombiculoidea-Hygrobatoidea pairing that was
paraphyletic to a clade containing Cheyletoidea, Eupodoidea, and
Tydeoidea (Figure 3). However, the combined data strongly sup-
ported (100%) Trombiculoidea placed paraphyletic to a clade con-
taining Cheyletoidea, Hygrobatoidea, Eupodoidea, and Tydeoidea.
Furthermore, when exclusively considering gene arrangements, the
Trombiculoidea were placed as the sister taxon to the Tetranychoidea
(Figure 4). This strongly supported (100%) Tetranychoidea-
Trombiculoidea pairing in the gene arrangement phylogeny po-
tentially manifested because both these superfamilies have quite
divergent structural haplotypes relative to other representatives of
the trombidiform superfamilies sampled in this study (Figure 6).

Finally, we note the polyphyly between Tetranychus cinnabari-
nus, the carmine spider mite, and Tetranychus urticae, the two-
spotted spider mite, in phylogenies containing nucleotide sequences
(Figures 3, 5). Tetranychus cinnabarinus is now considered synony-
mous with T. urticae, and prior erroneous taxonomic separation
was attributable to high levels of polymorphism in T. urticae (Auger
et al., 2013), although the two forms can show some transcriptional
and genomic differences (Huo et al., 2021). In principle, T. cinnabari-
nus and T. urticae should be a sister pair; however, the fact that we
did not observe such a sister pairing in our analyses suggests taxo-
nomic mislabeling may have occurred for the accession of T. cinna-
barinus, which we found to be most closely related to Tetranychus

kanzawai, the kanzawa spider mite.
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In conclusion, we present the complete mitochondrial sequence
of H. destructor, which will aid future population genetic investi-
gations in this major pest of Australian agriculture, and arthropod
diversity monitoring in Australian agro-ecosystems. We show that
gene arrangements in protein-coding and rRNA genes provide
complementary information—to that obtained from nucleotide se-
quences alone—for inferring the evolutionary relationships among
superfamilies in the Trombidiformes. This study provides the
most comprehensive assessment of mitogenomic structure in the
Trombidiformes to date. However, because we focused on available
complete mitogenomic sequences, we provide only shallow sampling
of the taxonomic breath within and among superfamilies, except for
the Tetranychoidea. Future works including many more superfami-
lies will impart further insights into how gene arrangements can help

resolve taxonomic uncertainty among trombidiform mites.
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