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Abstract
Background: To allow the survival of the population in the absence of nitrogen, some
cyanobacteria strains have developed the capability of differentiating into nitrogen fixing cells,
forming a characteristic pattern. In this paper, the process by which cyanobacteria differentiates
from vegetative cells into heterocysts in the absence of nitrogen and the elements of the gene
network involved that allow the formation of such a pattern are investigated.

Methods: A simple gene network model, which represents the complexity of the differentiation
process, and the role of all variables involved in this cellular process is proposed. Specific
characteristics and details of the system's behavior such as transcript profiles for ntcA, hetR and
patS between consecutive heterocysts were studied.

Results: The proposed model is able to capture one of the most distinctive features of this
system: a characteristic distance of 10 cells between two heterocysts, with a small standard
deviation according to experimental variability. The system's response to knock-out and over-
expression of patS and hetR was simulated in order to validate the proposed model against
experimental observations. In all cases, simulations show good agreement with reported
experimental results.

Conclusion: A simple evolution mathematical model based on the gene network involved in
heterocyst differentiation was proposed. The behavior of the biological system naturally emerges
from the network and the model is able to capture the spacing pattern observed in heterocyst
differentiation, as well as the effect of external perturbations such as nitrogen deprivation, gene
knock-out and over-expression without specific parameter fitting.
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Background
Cyanobacteria are blue-green algae, prokaryotic organ-
isms capable of both obtaining energy by oxygenic photo-
synthesis and nitrogen fixation. They play a fundamental
role in earth's carbon cycle as primary producers, and in
the nitrogen cycle as nitrogen fixers [1]. These two proc-
esses are somewhat contradictory in nature, since the
activity of the nitrogen fixing enzyme, nitrogenase, is dra-
matically reduced by the presence of oxygen, which is the
end product of photosynthesis. Cyanobacteria evolved a
mechanism for fixing dinitrogen (N2), an oxygen sensitive
process, under aerobic conditions. Vegetative cells, which
are the cells where oxygen is produced from photosynthe-
sis, can differentiate into specialized non-dividing nitro-
gen-fixing cells called heterocysts. Anabaena and other
filamentous cyanobacteria in the order of Nostocales grow
in filamentous structures formed by photosynthetic vege-
tative cells. For some of these strains, under nitrogen-lim-
iting conditions, vegetative cells differentiate into
heterocysts at intervals along the filaments therefore gen-
erating a semi-regular spacing pattern [2]. This mecha-
nism has made Anabaena a model organism for studies
involving cellular differentiation and pattern formation in
prokaryotes.

The primary known function of heterocysts is the fixation
of dinitrogen, for which they require a reductant supplied
by the vegetative cells since differentiated cells gain the
ability to reduce nitrogen gas but lose the ability to fix car-
bon dioxide. Heterocysts have a deactivated photosystem
II (a protective envelope that is semi permeable to oxy-
gen) and higher respiration rates in order to consume the
oxygen that was able to enter the cell. All these character-
istics generate an anaerobic environment suitable for the
operation of the nitrogenase enzyme and therefore, for
nitrogen fixation [3,4]. Nitrogen fixed in heterocysts is
transported along the filament, likely in the form of
glutamine, and utilized by the whole population of cells
[5]. In this scheme, heterocysts share nitrogen with vege-
tative cells receiving in turn carbon resources establishing
a cooperative system [2].

Differentiation of vegetative cells into heterocysts is trig-
gered by the absence of a fixed nitrogen source in the
growth medium [6]. A large number of genes involved in
the development and spacing of heterocysts have been
identified, however the complete mechanism by which
they interact is still unclear [7]. Interaction mechanisms,
based on current knowledge and inferred interactions
have been proposed [8-10].

The reduction in nitrogen levels rapidly enhances the acti-
vation of ntcA, a DNA-binding factor involved in the tran-
scription of genes involved in nitrate and ammonium
transport and assimilation, dinitrogen fixation and hete-

rocyst development, including hetR, which is required for
heterocyst differentiation [11,12]. Nitrogen levels are
sensed by the cell's intracellular levels of 2-oxoglutarate.
This intermediate from the Krebs Cycle accumulates in the
cytoplasm upon nitrogen starvation, enhancing the DNA
binding activity of NtcA [13]. There is evidence that NtcA
binds to the promoter region of its own gene, suggesting
that it regulates its own expression [14].

hetR plays a key role in the regulation of heterocyst differ-
entiation. This gene appears to be indirectly activated by
NtcA through intermediate signaling molecules, since
none of its promoters contain the sequence to which NtcA
binds [15]. The gene product HetR is a DNA binding pro-
tein that acts as a homodimer [16]. In the presence of
nitrogen, hetR is transcribed at low levels in all cells. Fol-
lowing deprivation, hetR expression is induced in a proc-
ess that requires ntcA expression and the presence of a
functional hetR gene, indicating that hetR is also autoreg-
ulatory [17].

For the generation of the characteristic pattern observed
upon heterocyst differentiation, besides the activation of
genes required for heterocyst development, the genes
responsible for regulating the position and spacing of het-
erocysts must be activated. Among the genes involved in
the control of heterocyst spacing are hetN, patA, patS and
a few others. The patA gene is transcribed at low levels in
the presence of nitrogen, and transcription increases fol-
lowing nitrogen step-down in a similar pattern of expres-
sion to that of hetR. PatA is a protein whose structure
suggests kinase activity, which is speculated to act indi-
rectly on controlling heterocyst spacing since it does not
contain a known DNA-binding motif. This protein is
required for the enhancement of hetR transcription in
developing heterocysts [9,15]. HetN regulates the activity
of hetR likely through a secondary metabolite, therefore
playing a regulatory role in the control of heterocyst for-
mation [18].

PatS acts as a spacing regulator for heterocyst differentia-
tion. This protein has been shown to block heterocyst dif-
ferentiation when present in multiple copies or when
over-expressed. PatS is produced early in heterocyst devel-
opment and is believed to be processed (maybe by HetR)
to release a pentapeptide capable of diffusing through the
filament's periplasmic space to form an inhibition gradi-
ent around the developing heterocysts. This is supported
by the finding that a synthetic peptide corresponding to
the last five amino acids of PatS inhibits heterocyst devel-
opment [19]. Studies have shown the feasibility of diffu-
sion of this pentapeptide through nonspecific
intercellular channels from cytoplasm to cytoplasm in
Anabaena [20,21]. In addition, when patS is knocked-out
filaments show an increased frequency of heterocysts and
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an abnormal spacing pattern [19]. It is speculated that
PatS producing cells must be refractory to the influence of
PatS, in order not to affect hetR gene expression, since it
seems paradoxical how HetR can promote its own synthe-
sis in the presence of the inhibitory pentapeptide derived
from PatS. In fact it has been proposed that PatS is inactive
in the cytoplasm of heterocysts and that an active peptide
is released into the periplasm and transported to vegeta-
tive cells where it would act on HetR, or act on the tran-
scription factors directly involved in the expression of hetR
[15].

Several mathematical models have been developed in
order to systematically explore and understand the sys-
tem's behavior. Baker and Herman proposed a mathemat-
ical model for differentiation where heterocysts produce a
substance that diffuses along the filament and inhibits the
differentiation of vegetative cells into heterocysts. When
its level in a cell drops below a threshold value, the cell
differentiates into a heterocyst. The observed pattern of
heterocysts is reproduced but the model shows high sen-
sitivity to the parameters chosen, many of which are vague
in terms of association to biological phenomena [22].
This model involves the production of an inhibitor by het-
erocysts and its diffusion along the filament where hetero-
cysts develop if the inhibitors' concentration drops below
a certain threshold. A subsequent work explains hetero-
cyst differentiation by means of a competitive mechanism
[23,24]. This mechanism involves an autocatalytic activa-
tor of differentiation produced by proheterocysts and an
inhibitor produced in proportion to their degree of differ-
entiation, which stops and even regresses proheterocyst
differentiation and whose effect is reduced by adjacent
vegetative cells. With this mechanism an irregular pattern
will form on a filament where a maximum and minimum
distance between heterocysts is observed [25]. Some of
the elements in this proposed mechanism are in agree-
ment with the underlying gene network currently identi-
fied to control differentiation of vegetative cells into
heterocysts and addressed in this work. In this network
the differentiation activator can be associated with the
protein HetR, which enhances its own production, and
the inhibitor with PatS, which inhibits the production of
HetR [8].

Turing developed models that showed the possibility of
obtaining patterns from an initially homogeneous distri-
bution, from a reaction-diffusion system where two sub-
stances with different diffusion rates interact [26]. Gierer
and Meinhardt showed that in morphogenesis a sponta-
neous pattern formation is possible if a locally short-range
self-enhancing reaction associated with an activator which
promotes its own production, is coupled with an antago-
nist that acts on a longer range [27,28]. Using this hypoth-
esis Meinhardt showed that the Anabaena system satisfies

the prediction of this model, considering a locally
restricted activator HetR that self-activates nonlinearly (as
a dimer) and a diffusible inhibitor PatS [29]. The pattern
formed by this network has also been modeled and cap-
tured using L-system models where the network is
described as a growing system with reaction-diffusion
equations for antagonic activator and inhibitor molecules
[30]. A population model was proposed by Pinzon and Ju
to describe the effects of cellular activities and cultivation
conditions on heterocyst differentiation at a culture-level
[31]. More recently, Allard et al. proposed a dynamic
model that considers random cell growth and division, as
well as production, transport, and consumption of fixed
nitrogen within the filament. In this model, nitrogen is
the main trigger of cell differentiation and cell growth acts
as a stochastic factor that can induce cell differentiation.
Simulation results are in good agreement with experimen-
tal pattern distributions [32].

In this paper, a simple evolution mathematical model is
presented, to study the pattern formation obtained upon
heterocyst differentiation, based on the main regulatory
elements and interactions of the gene circuit involved in
differentiation: ntcA, hetR and patS. In contrast, previous
models of the system are based on the protein network
involved in heterocyst differentiation. The mathematical
model proposed behaves as a discrete one-dimensional
activator – inhibitor system, analogous to a continuous
autocatalysis-inhibition model [26,27], but directly
derived from the genetic network of the cyanobacteria.
This model allows, not only to capture the stable states
obtained by the system upon differentiation, but also the
response of the system following modifications such as
knock-out or over-expression of some of the elements and
their effect on the patterns formed as well as the stable
states achieved by the system. The underlying idea is the
same as in previous models: there is an emerging periodic
structure of localized heterocysts in the presence of a local
autocatalysis (HetR) coupled with and a long-range inhi-
bition (PatS). Nevertheless, the discrete model presented
here has several important advantages when compared
with the classical continuous autocatalysis-inhibition
models. On one hand, the proposed model naturally
arises from the interactions of the gene network involved
in differentiation with a set of parameters that have direct
biological interpretation. This is a bottom-up construc-
tion alternative to the typical top-down methodology of
the continuous case where the parameters have to be
adapted to each case from general set-up models.

Once the discrete model is established, it allows comput-
ing the patterns of the system upon differentiation and the
frequency of the corresponding attractor basins. These are
the equilibrium states of the system reached from a repre-
sentative sample of random initial conditions. These types
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of calculations are a difficult task for the system of partial
differential equations in continuous models. Moreover,
since the model parameters have a biological meaning,
the effect of modifications on the genetic network, such as
knock-out or over-expression on the patterns achieved,
can be tested. For this reason, the proposed model is suit-
able for experimental design and for exploring the pattern
formation capabilities of systems that could have these
pattern forming mechanisms. Finally, some variants of
the model that include cell growth and death, or reduced
binary on-off activity states can be implemented, but were
not considered here for the sake of simplicity.

Models and methods
Modeling framework
A finite array of n genetically identical cells has been con-
sidered. A fixed number of n cells in the array, organized
in a cyclical manner where each cell is connected to its
right and left neighbors is used.

On each cell, the intracellular interactions are modeled by
a gene circuit with three main interacting factors: ntcA,
hetR and patS. The state of each cell in the array is charac-
terized by the levels of each of these three components.
This simple network is schematically represented in Figure
1, where each cell is represented by three nodes.

With this, an intracellular interaction matrix is obtained,
given by

where the values of row i (i = ntcA, hetR, patS) represent
the activation or inhibition strength that the proteins of
the intracellular gene circuit exert on i. For instance, no
protein acts on ntcA intracellularly (row 1) and ntcA acts
on hetR with an activating strength of one. CInt summa-
rizes all the network interactions that occur intracellularly
for a single cell.

A reduction in nitrogen availability triggers the initiation
of heterocyst differentiation mechanisms. Initially all cells
behave in the same way, and the internal activity of each
individual cell causes an inhibitory effect on two elements
of the intracellular network of cells in its immediate
neighborhood. Low external nitrogen levels trigger an
increase in ntcA expression. NtcA leads to the transcrip-
tion of hetR, which is self-activating. The increase in HetR
levels enhances patS transcription to a lower extent than
the other activation processes occurring intracellularly

(represented with a strength of 0.5 in CInt), resulting in
higher levels of the process pentapeptide PatS-5 (repre-
sented by PatS in Figure 1). It has been shown that this
pentapeptide has an indirect inhibitory feedback effect on
the expression of hetR in adjacent cells, by preventing the
DNA binding of HetR and subsequent hetR up-regulation,
therefore blocking heterocyst formation [16,19]. This is
represented by a -1 in CInt. There is also an indirect long-
term effect produced by the increased amount of nitrogen
that becomes available once vegetative cells differentiate
into heterocysts and start fixing nitrogen. This (indirect)
effect is induced by HetR and sensed by the cell as low
oxoglutarate levels, which in turn decrease the binding
activity of NtcA [7]. Both PatS and the products of nitro-
gen fixation are the main signals determining the hetero-
cyst pattern formed [6].

All these external interactions are represented in an extra
cellular interaction matrix given by

This matrix shows the fact that ntcA expression is reduced
by the indirect extracellular action of HetR and hetR
expression is reduced by the action of extracellular PatS.
CExt summarizes all the interactions that occur in the net-
work for a single cell due to its extracellular environment.
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Diagram of the network consideredFigure 1
Diagram of the network considered. Cells are organized 
in a cyclical manner. Direct interactions are represented by 
solid lines and indirect interactions by dashed lines. Arrow 
heads indicate activation and vertical lines indicate inhibition. 
Numbers indicate the strength of the interactions considered 
among the elements of the network.
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Transport of the inhibitory pentapeptide PatS-5 to adja-
cent cells through the periplasmic space is controlled by
movement across the cell-cell interface and diffusion, and
therefore it is dependent on the distance between cells.
Similarly, the inhibition of ntcA by the indirect action of
HetR is controlled by nitrogen diffusion. To account for
these effects, a transport factor is introduced, D (D < 1)
that affects the extracellular interaction matrix. All these
network interactions (intracellular, extracellular, trans-
port and diffusional effects) define the global interaction
network A for the system. For instance, with n = 8

The matrix A has the intracellular interaction matrix (CInt)
on its diagonal and the extracellular interaction matrix
(CExt) with a transport factor D on the secondary diago-
nals. The dependence of the effect of the extracellular
interaction matrix with transport, represented by this
transport factor, is reduced as the distance between cells
increases. Therefore, its exponent increases in order as the
distance from the neighboring cell increases and decreases
as the distance (in number of cells) is reduced, as follows:

resulting a circulant (Toeplitz) type matrix A. The global
interaction matrix A summarizes all the interactions that
occur both intracellularly and extracellularly for an array
of n cells with a gene network as the one shown in Figure
1.

The state of the system is associated with the protein levels
of each of the elements in the network (ntcA, hetR and
patS). These protein levels are normalized and associated
to a real number between 0 and 1. The state of the system
is therefore described by the levels of these factors on each
cell of the array, represented by the vector x∈ �3n.

Starting from a random initial condition for the state vec-
tor that is biologically feasible for the system, that is, a
random value between 0 and 1 for the normalized expres-
sion levels of each gene in the network, iteratively the sys-
tem's equilibrium points were searched for following a

perceptron type of rule associated to the nonlinear func-
tion f: � → [0,1], defined as follows:

This function is used to determine if the expression of a
particular element in the network is enhanced or reduced
by the action of the other elements on the network. State
transitions are considered to occur asynchronously, with
one component of the state vector x being updated at a
time in random order for the whole array of cells. This rep-
resents the fact that cells that differentiate are selected
dynamically in response to nitrogen deprivation [4]. More
precisely, the state vector x is updated as follows:

where Ai is the ith row of the global interaction matrix A.
In equation (6) the function f, which is used to determine
enhancement or reduction of the activity of a particular
element on the network xi in t + 1, is dependent on the
internal and external interactions for each cell in the pre-
vious state vector Ai•xi(t), the external input associated
with nitrogen levels ui (the ith element of the vector u),
and the activation threshold θ. All cells in the system are
considered identical since they all receive the same extra-
cellular inputs and respond to the same thresholds. θ =
0.5 corresponds to the threshold level defined for the acti-
vation of each factor in the network. The vector u∈ �3n

represents the effect on the intracellular network of the
external input of nitrogen levels sensed by each cell, where

with u0 = 1 in the absence of nitrogen and u0 = 0 in its pres-
ence. Each triplet (1 0 0) of the vector uis associated to the
effect of an external input on an element of the network
(ntcA, hetR, patS) for a cell in the array. A value of 1 indi-
cates that nitrogen levels directly affect the first element
on the network for each cell, ntcA.

The convergence state for heterocyst distribution achieved
by the system from a random initial condition for the
state vector is illustrated in Figure 2. As time (iteration)
progresses the pattern formed is clearly defined.

Results and discussion
Effect of the transport of PatS

The analysis is started with the relationship between the
transport factor and the system's behavior. Figure 3-A
shows the effect of the transport factor D on the average

distance between heterocysts . D was sampled in the

A
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interval [0, 1] in steps of 0.005 units and its effect studied

for systems whose size ranges from 20 to 100 cells. 

was calculated as the average distance between heterocysts
obtained after the system converged for 1000 random ini-
tial conditions (it is assumed that using a larger number
of initial conditions will not modify the results and dis-
cussion significantly). It was observed that noisier results
are generated in the simulation of systems with a cell
number lower than 50, due to the small size of the system
and border effects. The relative importance of these anom-
alies decreases as the number of cells in the system
increases. Based on this observation, the following analy-
sis considers systems with more than 50 cells. Figure 3-A
illustrates that the effect of D on the behavior of systems
with different sizes is very similar, i.e., it is independent of
the number of cells. This indicates stability and shows

good behavior for the model since  is not expected to

vary with the number of cells when the transport factor is

kept constant. The effect of D on  is very weak and

almost linear until D = 0.700, indicating that low trans-
port coefficient for PatS could cause heterocyst prolifera-

tion and, consequently, reduce . Starting from D =

0.700, the effect increased dramatically until D = 0.920

when heterocyst distance reaches a maximum. Higher val-
ues of D generate a scenario where the transport of PatS is
greatly facilitated through the system. The saturation of
the system with PatS inhibits the generation of heterocysts

leading to a maximum in . It was found that these

curves follow a power law before saturation. The coeffi-
cient of determination for LH following a power law with

the equation  law, where a, b and c are the

adjustable parameters, were of R2 > 0.94 in all cases.
According to Figure 3-A the behavior of the system, in

terms of , could be controlled by means of the modi-

fication of D, the transport factor for PatS. Since the effects
of changes in the transport of the PatS pentapeptide are
difficult to test in an experimental setting, the usefulness
of a mathematical model is clear. The transport factor D

necessary to reach a specific  is shown in Figure 3-A. In

particular, an average distance between heterocysts of ten

cells (  = 10) is obtained when D ≈ 0.7–0.8. More accu-

rate values require a closer examination as shown in Fig-
ure 3-B.

The absolute value of deviation of  from 10,

, for several values of D is shown

in Figure 3-B. A lower value indicates a  closer to 10.

In this case 5000 biologically feasible random initial con-
ditions were used and D was sampled in the interval
[0.730; 0.810] every 0.001 units. It was found that the
transport factor (D10) that minimizes the deviation DEV10

in Figure 3-B is 0.767 for systems with 50 to 100 cells.

Using this D10 gives systems with 's only 0.12% far

from 10 (average error). The average of those transport

factors is  = 0.767 ± 0.001. Based on this fact, 0.767

will be used as the transport factor for the following sim-
ulations.

Average distance between heterocysts for the wild type

Table 1 shows the average distance between heterocysts,

, and its standard deviation when a transport factor

 = 0.767 is used for the wild type under nitrogen dep-

rivation. It has been observed experimentally that
although the average distance between heterocysts is circa
10, it also displays some variations, which oscillate
between 7 and 15. Standard deviations show that the
mathematical model reproduces this characteristic distri-

LH

LH

LH

LH

LH

L aD cH
b= +

LH

LH

LH

LH

DEV abs LH10 10= −( )
LH

LH

D10

LH

D10

Convergence plot of the network for an array of 100 cells starting from random uniformly distributed binary initial con-ditions, 0/black or 1/white for ntcA, hetR and patSFigure 2
Convergence plot of the network for an array of 100 
cells starting from random uniformly distributed 
binary initial conditions, 0/black or 1/white for ntcA, 
hetR and patS. Each new row represents the expression 
levels after one random iteration starting from the state of 
the previous row. The system converges to one attractor 
where only some cells differentiate to heterocysts, repre-
sented by high values in HetR (the stable vertical lines 
formed in the figure). The average distance between hetero-
cysts is approximately 10 with a transport factor D = 0.767.
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bution and suggests a narrow distribution of LH around

.

Histograms of LH for D =  are given in Figure 4-A. This

figure shows that the distance between heterocysts, LH, for

systems with different numbers of cells follows a very sim-
ilar distribution. In general, the shape of this distribution
is narrow, not symmetrical and does not follow a normal
distribution (Kolmogorov-Smirnov test). The non-sym-
metrical shape of the histograms in Figure 4-A indicates
that the frequency of observing an LH <10 is higher than

the frequency of LH >10. In fact, for the case of the 100

cells system these frequencies are 47.8% and 39.2%,
respectively. Even so, Figure 4-A shows that the distribu-
tion of LH is highly concentrated in the neighborhood of

10, a fact that has been observed experimentally. Our sim-
ulated results for the distribution of LH in wild type are

consistent with the heterocyst spacing distribution
observed experimentally by Yoon and Golden at 48 h with
a number of vegetative cells between heterocysts ranging
from 5 to 18 cells, peaking around 10 cells [6]. The model
however does not capture the distribution observed at
later culture times, where other factors such as cell death
and decay may have an effect in the pattern distribution
observed experimentally.

Expression profiles between a pair of consecutive 
heterocysts

NtcA expression profiles for cells located between two
consecutive heterocysts are shown in Figure 5. Given LH,

ntcA expression levels for a cell located at the ith position
in the array corresponds to the average expression for all
cells located at the ith position between two consecutive
heterocysts. Calculations were performed considering

5000 random initial conditions, D = , 100 cells, and

LH = 8, 9,10,11,12 and 13. Note that, as shown in Figure

5, simulation results indicate that heterocysts are located
at both ends of the array and have the highest ntcA expres-

LH

D10

D10

Table 1: Average and standard deviation for the distance 
between heterocysts in the absence of nitrogen for the wild type 

, when patS expression has been knocked-out  and 

when hetR has been over-expressed . Simulations 

consider a transport factor D =  = 0.767 and 5000 

biologically feasible randomly chosen initial conditions.

Number of cells

100 10.010 ± 2.357 4.603 ± 3.368 6.161 ± 3.730
90 9.991 ± 2.356 4.611 ± 3.382 6.135 ± 3.725
80 9.977 ± 2.353 4.627 ± 3.382 6.119 ± 3.733
70 10.007 ± 2.355 4.627 ± 3.397 6.164 ± 3.727
60 9.999 ± 2.364 4.627 ± 3.398 6.115 ± 3.721
50 9.979 ± 2.364 4.612 ± 3.386 6.084 ± 3.691

LH LH
patS−

LH
hetR+

D10

LH LH
patS− LH

hetR+

Effect of the transport factor of PatS (D) on the average dis-tance between heterocystsFigure 3
Effect of the transport factor of PatS (D) on the aver-
age distance between heterocysts. A: Simulations were 
performed using 1000 random uniformly distributed binary 
initial conditions, restricted to biologically feasible conditions. 

 is independent of the number of cells for D < 0.8. With 

higher values of D, the inhibitory activity of PatS to adjacent 

cells increases. For D close to 1 the average  corre-

sponds to the total number of cells as only one cell differenti-
ates, which corresponds to an average distance equal to the 
number of cells. B: Simulations were performed using 5000 
random uniformly distributed binary initial conditions, 
restricted to biologically feasible conditions. The minimum 

value of this function is for D = 0.767 which gives a  of 

10.

LH

LH

LH
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sion levels. ntcA expression profiles in Figure 5 are bell-
shaped curves centered equidistantly from both hetero-
cysts. Therefore, maximum ntcA expressions are observed
for the cell located at position LH/2, due to the symmetry

of inhibitory effects from HetR and PatS (see Figure 1). An
average variability of less than 11.1% was observed for the
expression of ntcA at any given position.

The maximum ntcA expression levels change with LH and
cell array size. In fact, as the distance between heterocysts
increases, ntcA expression increases, as corroborated by
experimental observations. Similarly, the inhibitory
action of neighboring cells on ntcA expression is reduced
as the distance between heterocysts increases. If the dis-
tance between heterocysts is high enough, oxoglutarate
levels will be high to enhance ntcA expression on the cell
located at position LH /2. Eventually, this expression will
be high enough to enhance hetR expression and trigger
cell differentiation into a heterocyst.

Differentiation behavior as a result of external 
perturbations
The differentiating behavior of vegetative cells into hete-
rocysts is triggered by external disturbances on nitrogen
levels, and the cellular response to these disturbances
based on its internal characteristics. In the presence of
nitrogen, ntcA expression is reduced and differentiation
does not occur. On the other hand, nitrogen absence will
trigger ntcA expression and the chain of interactions lead-
ing to the differentiation of some cells (see Figure 1) [8].

The model presented in this paper is able to capture both
of these behaviors, as has been shown in the previous sec-
tions. As an illustration, a case study is shown.

Spacing distribution for the wild type in the presence and 
absence of nitrogen source

A system of 100 cells was simulated, considering a trans-

port factor  = 0.767, with 20 randomly chosen initial

conditions. For this scenario, random uniformly distrib-
uted binary initial conditions were considered, restricted
to biologically feasible scenarios. Since cell death is not
considered in the model, ntcA and hetR must be consid-
ered as being turned off initially. Else the system would
exhibit heterocysts initially and these heterocysts would
remain throughout the simulation. Figure 6-A and 6B
show the convergent state achieved by this system. In the
presence of nitrogen (Figure 6-A), no cellular differentia-
tion into heterocysts is observed. On the other hand, Fig-
ure 6-B shows that some cells differentiate into
heterocysts in the absence of nitrogen, with an average

D10Histograms for the distance between heterocysts in the absence of nitrogenFigure 4
Histograms for the distance between heterocysts in 

the absence of nitrogen. A:  wild type.  does not 

follow a normal distribution. B:  when patS expression 

is knocked-out. C:  when hetR is over-expressed. All 

simulations were performed using 5000 random uniformly 
distributed binary initial conditions, restricted to biologically 

feasible conditions and considering D =  = 0.767, for 

systems with 50–100 cells. For easier comparison frequen-
cies were normalized to the number of cells.

LH LH

LH
patS−

LH
hetR+

D10
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distance of approximately 10 cells. In this case no restric-
tions are considered on initial conditions.

Spacing distribution for patS knock-out and over-
expression systems

It has been reported that genetic manipulation of the gene
network involved in cell differentiation into heterocysts
does change the differentiation pattern observed. Two
extreme examples are the knock-out and over-expression
of patS [19]. Simulation of the differentiation of an array

of 100–50 cells with D =  with knocked-out expres-

sion of patS was performed. 5000 randomly chosen initial
conditions were considered. Figure 6-C shows that for
patS knock-outs the inhibitory effect of PatS is reduced,
therefore decreasing the average distance between hetero-
cysts and even allowing the formation of heterocyst clus-
ters in some cases. Results in Figure 6-C are supported by
LH histograms shown in Figure 4-B. These results indicate

that knocking-out the expression of patS shifts LH distribu-

tion, significantly shortening the average distance

between heterocysts, , compared to the wild type

 (see Figure 4-A), as observed experimentally [19].

This is consistent with the results presented in a previous
model, where mutation of PatS is reported to lead to a
larger number of heterocysts [29]. Table 1 shows that

 for patS knock-outs in systems with 100–50 cells is

lower than 10 cells, and very similar for all systems. In

fact, the frequency of observed  <10 is around

90.1%, almost twice as much as the wild type with normal
patS expression. In addition, standard deviations for patS
knock-out are higher than those for the wild type, indicat-
ing that knocking-out patS produces an increase in the var-

iability of . Our simulated results for the distribution

of LH in patS knock-outs are consistent with the heterocyst

spacing distribution reported for a patS deletion strain 48
h after nitrogen step down. In this case the number of veg-
etative cells between hetercysts ranges from 2 to 14 cells,
peaking around 5 cells. Heterocysts spacing distribution
becomes broader compared to wild type, peaking towards
small intervals. The model however, does not match the
exact distribution observed experimentally after pro-
longed culturing, which becomes broader as the culture
progresses [6] for the same reasons pointed out in the pre-
vious case.

Over-expression of patS was also simulated. To our knowl-
edge, this condition has not been explored theoretically
with a mathematical model for heterocyst differentiation.
In this scenario, simulation results obtained with the
present model exhibit a behavior equivalent to that
shown in Figure 6-A, i.e. higher expression of patS com-
pletely inhibits differentiation into heterocysts.

Spacing distribution for hetR knock-out and over-
expression systems

HetR has been identified as a key factor in heterocyst dif-
ferentiation. The effect of knocking-out and over-express-
ing hetR was also simulated, considering an array of 100–

50 cells with D =  with 5000 randomly chosen initial

conditions.

As expected, if hetR is knocked-out no heterocysts are
formed [29]. However, hetR over-expression leads to het-
erocyst differentiation and the formation of heterocyst
clusters as shown in Figure 6-D. The pattern obtained is
similar to the one observed for patS knock-out. Figure 6-C

D10

LH
patS−

LH

LH
patS−

LH
patS−

LH

D10

Average ntcA expression profiles for cells located between two consecutive heterocysts with a distance Figure 5
Average ntcA expression profiles for cells located 
between two consecutive heterocysts with a distance 

. Simulations were performed using 5000 random uni-

formly distributed binary initial conditions, restricted to bio-
logically feasible conditions. This characteristic shape for ntcA 
activation profiles could not be achieved if the activation val-
ues were considered as boolean instead of taking continuous 
values in the [0,1] interval.

LH

LH
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Convergence states achieved by a 100 cell system from 20 biologically feasible randomly chosen initial conditionsFigure 6
Convergence states achieved by a 100 cell system from 20 biologically feasible randomly chosen initial condi-
tions. The position of each cell in the system is on the abscissa and on the ordinates the index of a random initial condition. A 
black rectangle indicates that, at the converged state, the cell in that position has been differentiated into a heterocyst: A: Wild 
type in presence of nitrogen. No heterocysts are formed. B: Wild type in the absence of nitrogen. On average 1/10 cells differ-
entiates into a heterocyst. C: patS knock-out in the absence of nitrogen. Clusters of heterocysts are formed. D: hetR over-
expressed in the absence of nitrogen. Clusters of heterocysts are formed at a lower frequency than for patS knock-out. E: hetR 
over-expressed in the presence of nitrogen. Differentiation into heterocysts at a lower frequency than for hetR over-expres-
sion in the absence of nitrogen.
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and 6D respectively, show that the knock-out of patS has
a stronger effect than the over-expression of hetR on differ-
entiation into heterocysts, compared to the wild type in
Figure 6-B. Results in Figure 6-D are supported by LH his-

tograms shown in Figure 4-C. These results indicate that
over-expression of hetR also shifts LH distribution, lower-

ing the average distance between heterocysts , com-

pared to the wild type (see Figure 4-A). This phenomenon
has also been observed experimentally [18,33].

There are no previous reports on the theoretical explora-
tion of the over-expression of hetR using a mathematical
model for the gene network involved in heterocyst differ-
entiation. Over-expression of hetR may also lead to the
formation of heterocysts under normally repressing con-
ditions when the gene is controlled by an external factor.
In the present system, this corresponds to an over-
expressed hetR scenario where biologically feasible initial
conditions are only restricted to ntcA being off. Simula-
tion results for this case are shown in Figure 6-E: hetero-
cyst formation is observed even in the presence of
nitrogen (23.91% less heterocysts than in the absence of
nitrogen, Figure 6-D), which is consistent with the exper-
imental observations reported [34].

Final remarks
Additional factors such as cell growth and death were not
considered as they do not affect directly the main activa-
tor-inhibitor mechanism. Three types of parameters are
considered in this model; parameters related to transport
(D), dynamics (matrix A) and a threshold (θ). The system
shows to be robust for perturbations in the first two types
of parameters, and not surprisingly, very sensitive to
changes in θ, which results to be critical as it represents the
limit that defines wether a particular element in the net-
work is active or not. It is possible to capture the stable
states of the system if the parameters are chosed ade-
quately considering a biological interpretation of the net-
work.  The model allows flexibility in the selection of
values for the matrix A.

Although the parameters used have not been biologically
validated, they retain biological meaning (e.g. >0 for acti-
vation, <0 for inhibition and relative magnitudes imply
relative effects). In addition, given the characteristics of
the implementation, the system can be extended to two
and three dimensions.

It is important to note that this model, as other activation-
inhibition type models, does not consider any assump-
tions regarding PatS. It is often said that it is essential that
PatS remains inactive until processed in a neighboring
vegetative cells for heterocyst-forming cyanobacteria to be

able to succesfully activate hetR and therefore achieve
their characteristic differentiation pattern. Here, no addi-
tional assumptions are considered on PatS, and in fact
PatS may act on the cell on which it is produced and still
a heterocyst develops, as long as the inhibitory effect is
smaller than the counteracting activators effect acting on
the same cell.

Additionally, no restrictions are imposed on the range of
action of the differentiation activator HetR and the inhib-
itor PatS. Regardless of these assumptions, the model suc-
cessfully captures the differentiation pattern observed
experimentally for the initial stages of culture. This indi-
cates that it may be possible for the system to achieve the
characteristic pattern of heterocyst spacing, without a
refractability condition on heterocysts to the action of
PatS as discussed in most reviews. Even if PatS inhibited
hetR self-activation in the cell where it is produced, pattern
formation would be possible if the magnitude of the
inhibitory effect on hetR was smaller than hetR self-activa-
tion.

One interesting thing is that the pattern formation charac-
teristics naturally emerge from the system without data fit-
ting, since the only parameter that was tuned is the
transport factor D. This evolution model was not intended
to capture the transient dynamics of the system, but to
capture qualitatively the final spacing distribution
observed. The simple gene network proposed is able to
capture some of the main characteristics of the spacing
pattern observed for heterocyst differentiation, with good
agreement between simulation and experimental results
both for wild type and for perturbations in the gene net-
work.

Conclusion
In this paper the differentiating behavior of cyanobacteria
into heterocysts has been studied by means of a mathe-
matical model. A simple gene network which is capable of
capturing the complexity of the differentiation process in
this cellular system is proposed.

Specific characteristics of the behavior observed experi-
mentally in the presence/absence of nitrogen can be
reproduced by the proposed system. The model presented
explains how heterocyst-forming cyanobacteria counts to
10, the basic regulatory network elements required and
the effect of diffusion on the spacing pattern observed.
However, the reason why the system has evolved to this
characteristic heterocyst distance remains to be explained.
It appears that this has to do with the diffusional charac-
teristics of the inhibitor PatS and the trade-off between
resource requirements for heterocysts differentiation vs.
their nitrogen fixing capabilities.

LH
hetR+
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In particular, the model reports an average distance
between two heterocysts equal to 10 cells, which is one of
the most significant characteristics displayed by these sys-
tems. In addition, standard deviations of this magnitude
were in accordance with the variability observed experi-
mentally [2,8].

Specific details were also investigated, such as ntcA pro-
files between two consecutive heterocysts. In this case,
simulations results also show a good agreement with
experimental observations. Over-expression and knock-
out of patS and hetR were also studied. The model is capa-
ble of simulating the qualitative behavior of heterocyst-
forming cyanobacteria for these scenarios, capturing their
distinctive characteristics, for instance: formation of high
density clusters of heterocyst or complete inhibition of
differentiation in the case of knocked-out and over-
expression of patS, respectively. In the case of hetR the
opposite behavior is observed: knocking-out hetR com-
pletely prevents the formation of heterocysts. On the
other hand, over-expression of hetR leads to the formation
of heterocyst clusters, but with a lower density and size
than observed for patS knock-out. These results validate
the proposed network structure.

List of abbreviations used
Genes and gene products: ntcA: NtcA gene; hetR: HetR
gene; pat: PatS gene; pat: PatA gene; NtcA: NtcA protein;
HetR: HetR protein; PatS: PatS protein; PatA: PatA protein.
Vector, matrices and others: CExt: Extracellular interaction
matrix; CInt: Intracellular interaction matrix; A: Global
interaction matrix; f: Mapping function; x: Cellular state
vector; u: External input vector; θ: Threshold levels vector;
D: Normalized transport factor.
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