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Abstract

Background: The octapeptide Angiotensin II is a key hormone that acts via its receptor AT1R in the brainstem to
modulate the blood pressure control circuits and thus plays a central role in the cardiac and respiratory
homeostasis. This modulation occurs via activation of a complex network of signaling proteins and transcription
factors, leading to changes in levels of key genes and proteins. AT1R initiated activity in the nucleus tractus
solitarius (NTS), which regulates blood pressure, has been the subject of extensive molecular analysis. But the
adaptive network interactions in the NTS response to AT1R, plausibly related to the development of hypertension,
are not understood.

Results: We developed and analyzed a mathematical model of AT1R-activated signaling kinases and a downstream
gene regulatory network, with structural basis in our transcriptomic data analysis and literature. To our knowledge,
our report presents the first computational model of this key regulatory network. Our simulations and analysis
reveal a dynamic balance among distinct dimers of the AP-1 family of transcription factors. We investigated the
robustness of this behavior to simultaneous perturbations in the network parameters using a novel multivariate
approach that integrates global sensitivity analysis with decision-tree methods. Our analysis implicates a subset of
Fos and Jun dependent mechanisms, with dynamic sensitivities shifting from Fos-regulating kinase (FRK)-mediated
processes to those downstream of c-Jun N-terminal kinase (JNK). Decision-tree analysis indicated that while there
may be a large combinatorial functional space feasible for neuronal states and parameters, the network behavior is
constrained to a small set of AP-1 response profiles. Many of the paths through the combinatorial parameter space
lead to a dynamic balance of AP-1 dimer forms, yielding a robust AP-1 response counteracting the biological
variability.

Conclusions: Based on the simulation and analysis results, we demonstrate that a dynamic balance among distinct
dimers of the AP-1 family of transcription factors underlies the robust activation of neuronal gene expression in the
NTS response to AT1R activation. Such a differential sensitivity to limited set of mechanisms is likely to underlie the
stable homeostatic physiological response.

Background
The present study aims to understand molecular neuronal
processes relevant to hypertension, involving angio-
tensin II (Ang II) type 1 receptor (AT1R) signaling as
it regulates production of Tyrosine hydroxylase (TH).
The nucleus tractus solitarius (NTS), located in the
brainstem, is critically involved in the regulation of blood
pressure [1]. AT1R signaling within the NTS has been

associated with disturbances of autonomic homeostasis,
including essential hypertension [2-8]. The most effec-
tive current pharmaceutical agents treating hypertension
target AT1R. Norepinephrine production and release,
involving the A2 catecholamine neuronal population in
the NTS, is also involved in NTS regulation of blood
pressure and the development of hypertension [9-11].
TH is the rate-limiting enzyme for norepinephrine
transmitter production by the A2 neurons, and its regu-
lation is a plausible mechanism for the effects of
AT1R on NTS function in determining the level of
blood pressure [12-14].
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Ang II binding to AT1R in the brain contributes to
homeostatic processes through activation of a cascade of
signaling proteins that regulate a complex network of
transcription factors (TFs) and their target genes via mul-
tiple feedback loops [13,15-19]. More recently, evidence
for this complexity of response was obtained by analyzing
the transcriptomic response of NTS neurons to hyperten-
sion [20] using our PAINT bioinformatics approach
[21-23]. We used these NTS and hypertension-specific
network hypotheses along with the broad literature on
AT1R effects on the brainstem (detailed below) towards
developing a gene regulatory network structure underly-
ing AT1R-driven molecular processes in the NTS adapt-
ing to hypertension. This experimentally motivated
regulatory network structure provides a qualitative
description of connectivity and potential control points.
In order to provide understanding of the dynamics of

AT1R-activated molecular processes we now take a
modeling approach that integrates experimental data
with model predicted dynamics of critical network com-
ponents in order to gain insights into the network beha-
vior. We would like to understand which of the
dynamic profiles of the signaling kinases, downstream of
AT1R activation, are significant control factors over
time as they propagate through the regulatory network
and contribute to the downstream activation of the TF
AP-1. Of key interest is identifying how the potential
controlling factors interact with each other to shape the
downstream TF dynamics. Insights into these issues will
significantly aid our understanding of how the signaling
kinase response to AT1R activation leads to activation
of downstream TFs and their target genes.
The complexity of the network and network dynamics,

and of the required perturbations, yields a large combi-
natorial functional space. We follow an integrated
approach that includes dynamic modeling and a novel
combination of global sensitivity analysis and decision
tree construction methods towards identifying key net-
work interactions and their dynamical relationships. By
this approach, we are able to systematically investigate
the implications of many potential perturbations on
AP-1 activity dynamics. The decision tree methods are
not scalable to the large number of parameters in the
present model. Hence, we follow a sequential approach
to first identify key parameters through global sensitivity
analysis and then identify the conditional relationships
among these parameters using the decision tree meth-
ods. The decision trees characterize the potential for
biological variability, as different neurons may take a dif-
ferent path, yielding distinct classes of AP-1 activity
dynamical responses.
Our analysis reveals a complex higher-order interac-

tion between key network parameters. We interpret
these in the context of the network structure to derive

insights into how heterogeneity of neuronal state and
parameters can affect the predicted dynamic balance of
distinct AP-1 dimer activation. Our analysis significantly
reduces the dimensionality of the set of potential key
network components and interactions to develop a
focused set of hypotheses for experimental validation.
Of note, we find that the dynamics of the sensitivities in
the network is synchronized with the dynamic balance
of distinct AP-1 dimer forms.
The remainder of the manuscript is organized as fol-

lows: We first present the details of the model formula-
tion including experimental results motivating the
model structure, assumptions made in model develop-
ment, and fitting model parameters to the available
experimental data. We then present the model simula-
tion results including validation using kinase inhibitor
experiments. Next section presents results from the glo-
bal sensitivity and decision tree analyses. Each of these
sections is contextually organized into subsections that
focus on specific model aspects and simulation and ana-
lysis results. All the technical methods are detailed in
the Methods section. Model equations and parameter
values are detailed in the Additional file 1.

Results and Discussion
Model Formulation: AT1R activated gene regulatory
network
In order to gain quantitative insights into the regulatory
mechanisms underlying the dynamics of TH gene
expression, we developed a computational model of the
gene regulatory network activated by Ang II through its
receptor AT1R in the NTS. Our previous high-through-
put transcriptomic study showed evidence for regulation
of AT1R initiated signaling in the NTS in response to
an acute hypertensive stimulus [20]. Pathway analysis of
this data identified differential activity of PKCa, extra-
cellular signal-regulated kinase (ERK), and c-Jun
N-terminal kinase (JNK) pathways as involved in the
NTS response. Promoter analysis of these gene expres-
sion profiles using our PAINT bioinformatics software
[21,23] indicated AP-1 as a key regulator in this adaptive
process [20]. These findings are inline with the extensive
experimental literature on the role of AT1R and down-
stream signaling pathways in NTS regulation of blood
pressure (see reviews [8,18,19,24]).
Stimulation of AT1R leads to increased activity of sig-

naling kinases FRK, ERK, and JNK [25,26], which are
transcriptional and post-translational regulators of the
AP-1 family of TFs [27]. FRK and JNK alter the phos-
phorylation state of AP-1 subunits c-Fos and c-Jun,
respectively [27]. JNK plays an additional role in AP-1
activation by phosphorylating ATF-2, a subunit of the
c-Jun TF c-Jun:ATF-2 [27]. ERK affects AP-1 transcrip-
tionally by phosphorylating Elk-1, a TF regulating c-Fos
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[27]. AP-1 phosphorylation enables its DNA-binding to
its regulatory site in the TH gene promoter, thus indu-
cing TH transcription [24,27]. A schematic of this net-
work is depicted in Figure 1 and is the initial structural
basis for our model formulation and computational
analysis.
Our model, which we refer to as AT1RGRN (AT1R

Gene Regulatory Network) considers 32 species, 29 of
which are represented by ordinary differential equations,
and the dynamics of the remaining three species (signal-
ing kinases ERK, FRK and JNK) are modeled using
experimental data time series from the literature.
AT1RGRN contains 77 parameters including non-zero
initial conditions of several model species, and is com-
partmental, simulating chemical reactions occurring in
nuclear and cytosolic fractions. A detailed view of the

reaction scheme is presented in Figure 2. Notable fea-
tures of our model include activation of immediate early
TFs by signaling kinases, combinatorial interactions
among the TFs to yield active dimer forms, and a subset
of these TFs influencing their own dynamic activity via
regulation of corresponding genes. AT1RGRN contains
two key modules: Fos and Jun dependent, and Fos inde-
pendent but Jun dependent (Figure 1). The detailed
kinetic reactions underlying this modular structure are
shown in Figure 2, with the notable characteristic being
the Fos and Jun hetero-dimerization and Jun homo-
dimerization to yield two distinct forms of active AP-1.
A summary of key features of the model is given in the
following subsections. The complete mathematical for-
mulation of the model is given in the Additional file 1,
Figures S1 and S2.

Figure 1 Schematic representation of the AT1R-modulated gene regulatory network model. Ang II binding to AT1R leads to activation of
signaling kinases (ERK, FRK, and JNK), which regulate the AP-1 family of transcription factors through fast (protein phosphorylation) and slow
(protein synthesis) cellular processes. Activated signaling kinases phosphorylate downstream transcription factors (Elk-1, c-Fos, c-Jun, ATF-2)
leading to their subsequent DNA-binding activity. Active AP-1 family of transcription factors considered here are the heterodimers of dual
phosphorylated c-Fos and c-Jun or homodimers of dual phosphorylated c-Jun. These AP-1 forms induce transcription of Tyrosine hydroxylase
(TH), a critical regulator of neuronal function. Reactions leading to activation of ppc-Fos:ppc-Jun are highlighted in light grey, and reactions
leading to activation of ppc-Jun:ppc-Jun in dark grey.
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Linking AT1R activation to signaling kinases
Potential factors connecting AT1R activation to the
nucleus and therefore serving as downstream transmit-
ters of the AT1R binding signal are the signaling
kinases FRK, ERK, and JNK [19,26,28]. Rather than
explicitly describing the complex mechanisms linking
receptor activation to signaling kinases, we make an
approximation using available experimental data mea-
suring the dynamics of kinase activities reported in
response to identical experimental conditions using
cultured neurons. Our approach to limit the complex-
ity to the downstream gene regulatory network
dynamics makes the present study tractable. In addi-
tion, the time scales of interest in the present study
are 0-60 min post AT1R activation, allowing us to
neglect potential feedback effects of gene regulation on
AT1R signaling pathways. The experimental data on

FRK, JNK and ERK time series was obtained from
[25,26]. These profiles are based on neuronal response
to AT1R activation by 100 nM Ang II for at least 60
min. All the kinases show a unimodal response. Kinase
activity data normalized to their maximal levels is
shown in Additional file 1, Figure S1.
We assume that the reported kinase activities corre-

spond to that in the nuclear compartment. We initially
assume that the nuclear concentrations of FRK, ERK, and
JNK are of similar order of magnitude. Following this
assumption, we performed initial model simulations with
equal maximum concentration of input kinases. We relax
this assumption in our global sensitivity analysis by
considering these maximal concentrations as parameters
for independent perturbation. As detailed below, our
model analysis suggests these parameters play a significant
role in shaping the AT1RGRN output over time.

Figure 2 AT1R gene regulatory network model wiring diagram. Nodes represent model species and edges depict chemical reactions. The
reaction numbers correspond to those in Additional file 1, Table S1. Kinases have been represented by diamonds, active transcription factors by
rounded rectangles, TH mRNA by a hexagon, and the remaining species shown as circles. Total AP-1 is indicated by the box comprising ppc-Fos:
ppc-Jun and ppc-Jun:ppc-Jun. Degradation reactions and protein:DNA complexes have been omitted from this diagram. These correspond to
reactions 3, 6, 7, 12, 15, 16, 22, 25, 33, 40 and 48. A full description of model reactions can be found in Additional file 1, Tables S1 and S2.
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Capturing complex network processes using simplifying
assumptions
The gene regulatory network modulated by AT1R
involves a potentially large number of molecular players,
and we model the present understanding of their reac-
tion kinetics based on simplifying assumptions similar
to those used in typical signaling model development
[29,31]. These allow the model parameters estimation
based on the available experimental data, as follows:

i) Phosphorylation and dephosphorylation reactions
were approximated by Michaelis-Menten kinetics.
ii) Phosphatase concentrations were not modeled
explicitly, and instead their availability was assumed
to be constant during the time window of interest, i.
e., 60 minutes of Ang II stimulus.
iii) Dissociation and dephosphorylation of phos-
phorylated dimers were approximated by a single
reaction step with Michaelis-Menten kinetics.
iv) The complex molecular processes connecting
transcription factor DNA-binding to increased pro-
tein synthesis were represented by model reactions
using elementary mass-action and first-order
kinetics. Active TFs bind their target gene promoters
to form TF:promoter complexes, modeled according
to mass-action kinetics.
v) Precursor mRNA (pre-mRNA) was assumed to be
transcribed from TF:promoter complexes with first-
order kinetics.
vi) pre-mRNA processing followed by translocation
to the cytosol was modeled by a single first-order
kinetic process transforming nuclear pre-mRNA to
cytoplasmic mRNA.
vii) Proteins were assumed to be translated from
mRNA through a first-order kinetic process.

Total AP-1 dynamic activity as the network output of
interest
The dynamic functional role of various TFs involved in
Ang II mediated neuronal adaptation are not well
understood. In the present work, we focus on the AP-1
family of TFs and particular members of this family are
regulated in an interacting network, and the conse-
quences on downstream target gene expression of TH.
We consider two distinct AP-1 dimers: the heterodimer
ppc-Fos:ppc-Jun, and the homodimer ppc-Jun:ppc-Jun
(Note: the prefix ‘pp’ indicates the dual phosphorylation
state of the corresponding proteins c-Fos and c-Jun).
Recent experimental work characterized the AT1R-

induced activation of AP-1 using a technique that measured
a net DNA-binding activity of AP-1 proteins using electro-
phoretic mobility shift assays that measure binding to
labeled double stranded DNA oligo containing a canonical
AP-1 binding site sequence (Fleegal and Sumners, 2003).
As this experimental data is unable to differentiate between

ppc-Fos:ppc-Jun and ppc-Jun:ppc-Jun, in our model fitting
and subsequent analysis we define an aggregate “Total AP-
1” as a sum of the activities of these two AP-1 forms.
Model Fitting
It should be noted that identifying exact parameter
values in this model fit is not critical as we investigate
the model-predicted dynamical mechanisms and interac-
tions through a global sensitivity analysis that is based
on simultaneous perturbations in all of the model para-
meters. Initial model parameters were adjusted to fit the
model predicted Total AP-1 activity dynamics to the
experimentally measured response in the literature, as
described in the Methods section. In brief, we began
with base parameter values from similar reactions
described in previous modeling studies that are based
on neuronal and other cell types [29,30,32]. Parameters
were then varied simultaneously to fit AT1RGRN to the
experimentally measured data from brainstem neuronal
cultures: pElk-1 DNA binding [33], c-Fos mRNA [34],
AP-1 DNA binding [35], and TH mRNA [28]. A model
fit to these experimental data is shown in Additional file
1, Figure S1. The corresponding model parameters are
given in Additional file 1, Table S3.

Model Simulations: Ang II Activates AP-1 Through a
Dynamic Balance of TF Dimers
The AT1GRN predicted AP-1 activity dynamics in
response to a 100 nM Ang II stimulus is shown in Figure
3. The total AP-1 activity response is consistent with
experimental observations [35]. These model simulations
reveal that the activated AP-1 activity response arises from
a dynamic balance of constituent AP-1 dimer forms. Our
model predicts that AP-1 is activated initially in the form
of ppc-Fos:ppc-Jun, which achieves a maximum activity at
approximately 15 minutes. Subsequently, the response
begins to shift away from Fos-Jun heterodimer (ppc-Fos:
ppc-Jun) to an increased contribution from the Jun homo-
dimer (ppc-Jun:ppc-Jun). This dynamic shift continues
even after 40 minutes, when the AP-1 response is domi-
nated by ppc-Jun:ppc-Jun. Interestingly, our model simula-
tions predict that the AP-1 response to arises from an
equal contribution of ppc-Fos:ppc-Jun and ppc-Jun:ppc-
Jun at approximately 40 minutes of AngII stimulus.
The observed inverse correlation between ppc-Fos:

ppc-Jun and ppc-Jun:ppc-Jun based mechanisms arises
from two aspects of the regulatory network: (1) the affi-
nity for AP-1 formation favors ppc-Fos:ppc-Jun hetero-
dimers over ppc-Jun:ppc-Jun homodimer forms, as
supported by experimental findings (e.g., [15,16,32]); and
(2) FRK activation decreases earlier than that of JNK,
leading to reduced availability of active ppc-Fos for
binding to ppc-Jun. Active JNK leads to continued acti-
vation of higher concentrations of c-Jun built up in this
period that overcomes the affinity barrier to form active
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AP-1 homodimers. In the following sections, we visua-
lize and interpret these processes in the context of sen-
sitivity of the AP-1 activity and the predicted dynamic
balance to simultaneous perturbations in model para-
meters. We use a global sensitivity analysis followed by
decision tree methods to test the hypothesis that persis-
tent AP-1 activity through the predicted dynamic
balance of constituent dimer forms is robust to most
parameter changes in the network.

Model Validation through Pathway Inhibitor Effects on
AT1R-induced AP-1 Activation
We explored the role of the kinases FRK and JNK on AP-1
activity by simulating the effect of Ang II treatment
coupled with pathway inhibitors to prevent kinase activa-
tion above basal levels. The motivating concern is whether
the model-predicted dynamic balance is of relevance
beyond the nominal system behavior and whether it can
capture information other than what was used to fit the
nominal model. Hence, we use the experimental data on
AP-1 activity downstream of AT1R activation in the pre-
sence of pathway inhibitors as a validation data set [35].
The kinase inhibitor treatment was simulated by setting
the corresponding kinase activity profile to the basal levels.
Our simulations reveal that the effect of inhibiting input
kinases on AP-1 output is strongly dependent on the
choice of perturbed pathway and the time point post Ang
II stimulus. These results detailed below provide insights
in interpreting experimental observations that otherwise
yielded multiple competing hypotheses on whether c-Fos
plays a role in AP-1 activated downstream of AT1R.
Inhibiting FRK eliminates early Total AP-1 activation, but
preserves later activation
In our model simulations, inhibiting FRK signaling pre-
vents the phosphorylation of c-Fos, thus causing a shift

in the AP-1 dimer composition to be exclusively ppc-Jun:
ppc-Jun. The question we chose to answer is whether
activation of Jun homodimer alone can produce AP-1
activity that is consistent with experimental observations.
As shown in Figure 4A, model simulations reveal that the
activation of AT1R with FRK inhibition eliminates the
AP-1 response during the first 20 minutes, while restor-
ing the AP-1 response to the uninhibited levels at late
time points. This prediction is confirmed by experimental
data showing an insignificant difference between the AP-
1 activity in neurons treated with Ang II and FRK inhibi-
tors and the AP-1 activity in neurons treated with Ang II
alone after 60 minutes [35]. The dynamic balance of AP-
1dimers predicted by AT1RGRN simulation support this
result that suggests the 60 minute AP-1 response is
insensitive to perturbations in FRK due to the shift
toward ppc-Jun:ppc-Jun by this time. We explore this
issue further in the global sensitivity analysis and decision
tree approach detailed below.
Inhibiting JNK eliminates Total AP-1 activation throughout
AT1R stimulation
We followed a similar approach as above to investigate
the contribution of JNK signaling on the activation of
AP-1. As suggested by the network connectivity of the
AT1GRN, inhibition of JNK signaling prevents the phos-
phorylation of c-Jun and ATF-2, leading to a complete
elimination of ppc-Fos:ppc-Jun and ppc-Jun:ppc-Jun
throughout Ang II treatment (Figure 4B). This model
prediction is confirmed by experimental data showing a
significant decrease in AP-1 activity (to near nominal
levels, with no statistically significant difference) in neu-
rons treated with Ang II and JNK inhibitors [35].
These validation results indicate that the dynamic bal-

ance predicted by the model is not an artifact of model
fitting to the nominal case, but also underlies system

Figure 3 AP-1 activation in response to Ang II treatment. Simulated normalized Total AP-1 activity (solid line) corresponds to the sum of
ppc-Fos:ppc-Jun (heavy dashed line) and ppc-Jun:ppc-Jun (light dashed line), and can be compared to experimentally measured AP-1 DNA
binding activity (circles with error bars) in the literature [35]. Experimental data is shown according to the reported numerical values of Optical
Density measurements (right axis). Model-predicted AP-1 levels have been normalized according to the normalization procedures described in
the Methods section.
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response to novel perturbations and consistent with
experimental observations in such cases. In particular,
our model simulations reveal that the experimentally
observed AP-1 sensitivities to pathway inhibitors should
be interpreted with caution as these effects are dynamic
and yield contrasting results based on the time point of
interest.

Network Analysis: Sensitivity of AP-1 Activity is Dynamic
and Related to the Underlying Balance of c-Fos and c-Jun
Dependent Mechanisms
When investigating the impact of specific reaction
mechanisms on AP-1 activity, a common approach is to
employ local sensitivity analysis to consider the effects

of perturbing one reaction in isolation while setting all
other reaction mechanisms to their nominal values
[31,36,37]. However, these approaches are not well sui-
ted to address how multiple perturbations affect net-
work output, as well as how robust network dynamics
arise from heterogeneity in which several parameters are
altered simultaneously across cells, tissues, and animals.
In this study, we describe a multivariate approach using
global sensitivity and decision-tree analysis to investigate
how simultaneous perturbations in multiple reaction
mechanisms affect AP-1 activity dynamics.
Variance-based Global Sensitivity Analysis
Understanding how network perturbations, taken as
deviations in reaction rate parameters and initial

Figure 4 Effect of kinase inhibitors on Total AP-1 DNA binding activity dynamics. Ang II + kinase inhibitor treatment was simulated by
setting the corresponding kinase activity profile to the basal levels present in the absence of Ang II treatment. Experimental data from pathway
inhibitor studies were taken from [35] and plotted as the originally reported Optical Density measures (right axis). Experimental data is based on
pretreatment of the neuronal cultures (A) with 10 uM chelerythrine chloride, an FRK inhibitor, (B) or with JNK inhibitor II, for 30 minutes prior to
Ang II stimulus. (A) Inhibition of FRK. (B) Inhibition of JNK. Symbols: The control unstimulated AP-1 activity at time zero (asterisk), 60 min AP-1
activity in response to 100 nM Ang II stimulus (circle with error bars), 60 min AP-1 activity in response to 100 nM Ang II stimulus in neurons
pretreated with a kinase inhibitor (triangle), simulated normalized AP-1 activity in response to Ang II (solid line) and Ang II + kinase inhibition
(heavy dashed).
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conditions from their nominal values, affect AP-1 activ-
ity is difficult because of the presence of nonlinear,
interacting reaction mechanisms acting at multiple time
scales. Here we apply a variance-based global sensitivity
analysis approach originally developed by [38] and
numerically implemented by [39] to understand the
effect of individual network reactions and their interac-
tions on AP-1 activity dynamics.
The global sensitivity analysis approach is detailed in the

Methods section. Briefly, we compute two indices based
on simulated time series data corresponding to a large
number of parameter perturbations: The first order sensi-

tivity index Si
1 captures the fractional variance of AP-1

activity that is directly attributable to changes in the para-
meter i, independent of changes in other parameters. The

total effect sensitivity index ST
i represents the fractional

variance of AP-1 activity attributable to changes in the
parameter i, and all of its interactions with changes in
other parameters. The difference between the two indices
provides an estimate of higher order effects of parameter
perturbations in which particular combinations of para-
meters significantly affect AP-1 activity.
Differential dynamic sensitivity of Total AP-1 activity
Global sensitivity analysis reveals AP-1 activity to be
highly sensitive to a small set of AT1RGRN parameters.
The dynamics of ST of AP-1 for the most sensitive model
parameters are presented in Figure 5A, while ST for all
parameters are given in Additional file 1, Figure S3. Note
that the results prior to the 14 min time point are not
reliable for interpretation of sensitivities as the variance
estimates are too low (Additional file 1, Figure S2). As
shown in Figure 5, global sensitivity analysis suggests that
the dynamically switching activation of AP-1 TF dimers
is achieved by shifting sensitivity and balance of network
interactions. AP-1 is predicted to be activated as ppc-Fos:
ppc-Jun at early times, when global sensitivity analysis
finds AP-1 to be most sensitive to the development and
maintenace of ppc-Fos:ppc-Jun, before shifting to be acti-
vated as ppc-Jun:ppc-Jun at later times, when the most
sensitive reactions are related to the development and
maintenance of ppc-Jun:ppc-Jun.
Additionally, the dynamics of several ST profiles

shown in Figure 5A resemble closely the predicted
dynamics of activated AP-1 TF dimers. The dynamics of
ST of AP-1 to ppc-Fos:ppc-Jun dephosphorylation and
FRK dynamics, which are reaction mechanisms related
to the activation and maintenance of ppc-Fos:ppc-Jun,
correlate well with the ppc-Fos:ppc-Jun activation pre-
dicted with high sensitivity at early times that becomes
lower as the AT1RGRN simulation proceeds. Similarly,
the dynamics of ST of AP-1 to ppc-Jun:ppc-Jun depho-
sphorylation pc-Jun phosphorylation, and JNK dynamics,

which are reaction mechanisms related to the activation
and maintenance of ppc-Jun:ppc-Jun, resemble closely
the dynamics of ppc-Jun:ppc-Jun activation.
In contrast to the reaction mechanisms described

above, the dynamics of ST of AP-1 to c-Jun translation
and c-Jun pre-mRNA synthesis do not resemble the
dynamics of either ppc-Fos:ppc-Jun or ppc-Jun:ppc-Jun.
Instead, AP-1 is insensitive to these reaction mechan-
isms at early times, while becoming increasingly sensi-
tive at later times until reaching a maximum sensitivity
around 40 minutes followed by a decrease in sensitivity
during the late AP-1 response. Interestingly, the time
when AP-1 is most sensitive to these mechanisms is
almost exactly the time in which AP-1 is predicted to be
composed of equal parts ppc-Fos:ppc-Jun and ppc-Jun:
ppc-Jun TF dimers. This transient sensitivity suggests c-
Jun synthesis is rate limiting in initial ppc-Jun:ppc-Jun
formation, before becoming less important towards the
end of AT1RGRN simulation at which time c-Jun has
been sufficiently produced to enable ppc-Jun:ppc-Jun
formation.
Notably, the parameters corresponding to ERK activity

and immediate downstream processes were not among the
key set identified by the multivariate analysis (Figure 5A
and Additional file 1, Figure S3). The parameters of FRK
and JNK mediated processes more directly affect the active
protein levels of Fos and Jun, whereas ERK affects c-Fos
transcription indirectly affecting the corresponding protein
levels. This may explain why the contribution of ERK-
based processes to the variance in AP-1 DNA binding
activity is relatively lower than that of FRK and JNK
mediated processes.
First-order influences dominate the early AP-1 response,
while interactions affect intermediate and late AP-1 activity
dynamics
In the following, we focus our attention on the AP-1
response at three critical times after AT1R activation:
early (20 minute), intermediate (40 minute), and late (60
minute). These time points were selected because they
represent three distinct states of AP-1 activation: AP-1
activated as ppc-Fos:ppc-Jun (early); AP-1 activated as
equal parts ppc-Fos:ppc-Jun and ppc-Jun:ppc-Jun (inter-
mediate); and AP-1 activated as ppc-Jun:ppc-Jun (late).
In addition, we classify reaction mechanisms as being
either related to c-Fos or c-Jun based on their location
on the AT1RGRN network diagram shown in Figure 1.
The S1 and ST of the most sensitive AT1RGRN mechan-
isms on AP-1, as identified in Figure 5A, at these time
points is presented in Figures 5B, C, and 5D.
By considering the contributions of interactions on the

early AP-1 response, our analysis reveals AP-1 activation
at 20 minutes to be influenced by c-Fos reaction
mechanisms directly (a > 0.5). This finding suggests
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that interventions in specific c-Fos reaction mechanisms
would affect significantly the early AP-1 response domi-
nated by the ppc-Fos:ppc-Jun AP-1 dimer without
requiring a simultaneous intervention in multiple reac-
tion mechanisms. In contrast, the AP-1 activation at
intermediate or late times is influenced by c-Jun based
reaction mechanisms with less direct effects (a < 0.5).
This result suggests that affecting the intermediate and
late AP-1 response, at which times ppc-Jun:ppc-Jun is
activated significantly, would require interventions in
multiple simultaneous c-Jun reaction mechanisms.
Relating AP-1 activity dynamic balance to key network
mechanisms
Key network nodes are often identified on the basis of
the magnitude of changes in experimentally measured
node levels. However, identifying key network nodes on
this basis may neglect to consider the class of network

nodes that are influential even at low amounts. For
example, experiments measuring the level of c-Fos
mRNA commonly interpret this to be an indicator of
neuronal activity that is dependent on Fos-mediated
mechanisms. However, our results question this com-
mon assumption, and suggest an alternative perspective
on the basis of sensitivity analysis in context with net-
work connectivity. In the following, we present our
global sensitivity analysis results in the context of chan-
ging network node levels. We develop an annotated net-
work diagram that integrates the visualization of network
interactions with node levels along and sensitivity data as
a Dynamic Network Sensitivity and Interaction Map
(DyNSIM). Following our visual analysis approach
employing DyNSIM, we find that c-Fos mRNA dynamics
alone fails to reflect the shifting sensitive reaction
mechanisms underlying AT1R induced AP-1 activation.

Figure 5 Sensitivity of AP-1 to perturbations in network parameters. (A)Upper Panel: Simulated response of Total AP-1 DNA binding
activity as well as its constituent dimers to Ang II stimulus. Note that these profiles are repeated from Figure 3 to facilitate direct interpretation
of the AP-1 activity time series in the context of sensitivity analysis. The composition of Total AP-1 activity has been highlighted by the
rectangles at three time points of interest. Lower Panel: Dynamic profiles of total-effects sensitivity indices of Total AP-1 for the top seven most
sensitive model parameters (1: ppc-Fos:ppc-Jun dephosphorylation, 2: FRK dynamics, 3: c-Jun pre-mRNA synthesis, 4: ppc-Jun:ppc-Jun
dephosphorylation, 5: c-Jun translation, 6: pc-Jun phosphorylation, 7: JNK dynamics). (B-D) Contribution of first-order effects (white inset) to the
AP-1 activity total effects sensitivities calculated at (B) 20, (C) 40, and (D) 60 minutes after Ang II treatment. Gray and black bars correspond to
Fos:Jun and Jun:Jun arms of the network, respectively. Parameter index matches the ordering in (A). Bar coloring corresponds to mechanisms
relating to activation of ppc-Fos:ppc-Jun (light grey) or ppc-Jun:ppc-Jun (black) as shown in Figure 2. (E-G) DyNSIM representation of global
sensitivity analysis results in network context at (E) 20, (F) 40, and (G) 60 minutes after Ang II treatment. Total AP-1 activity is indicated in the
purple rectangle, while line thickness indicates sensitivity of Total AP-1 activity to the reaction mechanisms index of (A). A detailed description of
network nodes is presented in Figure 2. Sensitivity analysis of Total AP-1 was performed during 15-60 minutes of Ang II treatment when the
variance of simulated Total AP-1 activity levels was greater than 1% of the maximum variance to avoid numerical oddities affecting the
sensitivity calculations.
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However, the levels of active form of c-Fos protein
(ppc-Fos) do correlate with the shift in sensitivities in the
system. The contextual relationships between species
levels and sensitivities as revealed in DyNSIMs are not
obvious from an analysis of the network structure or spe-
cies levels alone. These were unraveled using the decision
tree methods, detailed below.
To place our global sensitivity results in the context of

AT1RGRN predictions, we developed a series of
AT1RGRN DyNSIMs after 20, 40, and 60 minutes of
Ang II treatment, as shown in Figures 5E, F, and 5G.
Through such DyNSIM representation of our model
predictions we find that the several network nodes pre-
sent at persistently high levels do not contribute to the
model-predicted AP-1 sensitivity, as detailed below.
After 20 minutes of Ang II treatment, ppc-Fos:ppc-Jun

is predicted to be the dominant AP-1 dimer and, conse-
quently, AP-1 is most sensitive to Fos reaction mechan-
isms (Figures 5B and 5E). By this point in AT1RGRN
simulation, active ERK has phosphorylated Elk-1 to
induce its transcriptional activity, initiating the synthesis
of new c-Fos protein. Newly synthesized c-Fos protein is
rapidly converted to phosphorylated c-Fos by FRK,
which has maximal activity at this time, and thus avail-
able to form ppc-Fos:ppc-Jun AP-1 dimers. At the same
time, the level of c-Jun in different phosphorylation
states is high, potentially suggesting a prominent role of
Jun reaction mechanisms on AP-1 activation as well.
However, model simulations predict this fully phos-
phorylated c-Jun to be present as ppc-Jun:ppATF-2
leading to a delayed increase in c-Jun synthesis rather
than an immediate impact on AP-1 activation at this
time.
The predicted AT1RGRN response at 40 minutes is

characterized by an equal contribution of ppc-Fos:ppc-
Jun and ppc-Jun:ppc-Jun in activated AP-1 (Figures 5C
and 5F). At this time, the sensitivity of AP-1 has shifted
away from Fos based reaction mechanisms to that of
Jun based mechanisms related to c-Jun synthesis and
JNK signaling. These network parameters arise as criti-
cal at this time frame because of their role in determin-
ing the activity of the positive feedback loop controlling
the synthesis of c-Jun. At this time, the levels of c-Fos
protein and gene expression remain high, but decreasing
FRK activity limits the conversion of c-Fos to ppc-Fos,
and thus attenuates the formation of ppc-Fos:ppc-Jun.
Fully phosphorylated c-Jun has begun to accumulate at
this time as a result of newly synthesized c-Jun protein
being phosphorylated by sustained JNK activity.
After 60 minutes of Ang II treatment, ppc-Jun:ppc-Jun

is predicted to be the dominant AP-1 dimer and the
sensitivity of AP-1 has fully shifted to Jun mechanisms
(Figures 5D and 5G). However, the levels of c-Fos pro-
tein and mRNA remain high, though an absence of FRK

activity has ceased c-Fos phosphorylation and formation
of ppc-Fos:ppc-Jun. An abundance of fully phosphory-
lated c-Jun allows the formation of dominant ppc-Jun:
ppc-Jun AP-1 dimers.
These contextual relationships between species levels

and sensitivities as revealed in the series of DyNSIMs
provides insights into the predicted shift in sensitivity of
AP-1 activity from Fos:Jun heterodimer based mechan-
isms to that of Jun homodimer based reactions over
time. Additionally, the DyNSIM representation reveals a
lack of strong instantaneous correlation between the
level of network nodes that are routinely measured
experimentally (such as c-Fos mRNA, c-Fos protein,
c-Jun mRNA, and c-Jun protein) and their related reac-
tion mechanisms. For instance, although c-Fos mRNA
remains high throughout AT1RGRN simulation, the
composition of AP-1 has shifted away from ppc-Fos:
ppc-Jun to ppc-Jun:ppc-Jun after 40 minutes of network
activation. The rate-limiting factor by this timeframe for
additional c-Fos activation is not the c-Fos mRNA or
protein, but the upstream kinase FRK. Our sensitivity
analysis captures this dependence and hence yields low
instantaneous correlation between computed sensitivities
and observed mRNA and protein levels for c-Fos in this
time frame. In contrast, our analysis reveals AP-1 DNA
binding activity dynamics to be highly sensitive to the
maximum concentration of JNK at the end of
AT1RGRN simulation, despite the activity of JNK hav-
ing returned to basal activity after reaching a peak activ-
ity at 30 minutes. This low instantaneous correlation
between the AP-1 sensitivity and JNK levels is unex-
pected on the surface, as contrasted with the result for
FRK and c-Fos dependent mechanisms at 20 and 40
min time point. However, we note that by 60 min time
point, the AP-1 composition primarily shifted to that of
c-Jun homodimer, and the level of c-Jun at this time is
dependent on the peak activity of JNK and not instanta-
neous levels (due to multiple processes leading from
JNK to c-Jun protein, yielding a higher order dynamic
system). This contrasting temporal correlation between
sensitivities and network node levels measured experi-
mentally and AP-1 sensitivity further highlights the
complexity of this gene regulatory network.
Relating Network Perturbations to Distinct Classes of AP-1
Activity Dynamics
We explored the effect of variations in the seven most
significant network parameters, the dynamics of which
are shown in Figure 5A, on AP-1 response profiles as
categorized into three classes (ppc-Fos: ppc-Jun domi-
nated, Dynamic balance, and ppc-Jun: ppc-Jun domi-
nated). We followed a multivariate perturbation and
decision tree analysis approach similar to that pursued
by [37]. We (1) generated a large number of perturbed
parameter sets (~1 million), (2) simulated the AP-1
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DNA binding activity dynamics in each case, (3) classi-
fied the AP-1 response as belonging into one of the
three classes, and (4) related the perturbations in net-
work parameters to the classes of AP-1 response
through construction of a decision tree. A detailed
description of our multivariate approach is provided in
the Methods section.
The decision tree presented in Figure 6 reveals the

predicted dynamic balance of AP-1 activation to be
robust to perturbations in individual network para-
meters. Realizing an AP-1 outcome deviating from the
dynamic balance requires specific simultaneous pertur-
bations in multiple parameters. For instance, significant
increase in JNK activity in conjunction with an increase
in the rate of c-Jun translation would lead to a ppc-Jun:
ppc-Jun AP-1 response, even in the face of changes to
other network parameters, while perturbations in either

reaction alone is insufficient to cause a deviation from
the dynamic balance response. Similarly, a simultaneous
decrease in JNK activity and a decrease in c-Jun transla-
tion would lead to AP-1 DNA binding activity dynamics
resembling ppc-Fos:ppc-Jun activity dynamics.
Network parameters related to the maximal activation

of JNK, which was identified to be the most influential
on AP-1 activity via global sensitivity analysis, is consis-
tently the key indicator of AP-1 network outcome. Spe-
cifically, total AP-1 responses resembling the activation
of ppc-Jun:ppc-Jun are only possible through an increase
in JNK signaling, while total AP-1 responses resembling
the activation of ppc-Fos:ppc-Jun are only possible when
JNK signaling is decreased.
Figure 6 highlights the different paths representing

particular parameter subdomains that lead to distinct
classes of AP-1 dynamical response. For instance, higher

Figure 6 Decision-tree analysis. (A) Decision-tree relating perturbations in model parameters and their hierarchical dependencies to potential
Total AP-1 activity responses. (B-D) Specific perturbations leading to (B) ppc-Fos:ppc-Jun alone (C) dynamic balance, and (D) ppc-Jun:ppc-Jun
alone. Tree branches represent perturbed parameters, while their edges indicate the magnitude of perturbation. Terminal leaves represent the
simulated Total AP-1 activity profile corresponding to ppc-Fos:ppc-Jun alone (left), ppc-Jun:ppc-Jun alone (right), and ppc:Fos:ppc-Jun + ppc-Jun:
ppc-Jun (middle).
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levels of JNK and Jun translation lead to Jun homodimer
dominated response, whereas lower levels of JNK
coupled with lower Jun translation lead to a Fos-Jun
heterodimer dominated dynamics. These paths are sub-
tly altered by FRK levels in a predictable fashion with
lower FRK corresponding to Jun homodimer dynamics
and higher FRK level corresponding to that Fos-Jun het-
erodimer response. Interestingly, a majority of the paths
lead to the dynamic balance indicating the robustness of
this model-predicted AP-1 activity response.

Conclusions
In this paper we develop novel computational
approaches and a model to analyze and represent the
TH gene regulatory network orchestrated by AT1R acti-
vation in the brainstem. By developing this model, the
first to describe this network that plays a critical role in
blood pressure regulation, we are able to use model
simulation and analysis to provide quantitative insight
into network dynamics inaccessible by experimental
approaches. We reveal the dynamics of AP-1 activation
to be comprised of individual AP-1 TF dimers operating
at distinct times to modulate TH gene expression. We
predict that TH gene expression is induced through a
regulatory network employing parallel reaction mechan-
isms to activate a dynamic balance of AP-1 TF dimers.
These results describe an integrative process by which
the AT1R gene regulatory network activates AP-1
robustly in the presence of perturbations in network
reaction mechanisms present in heterogeneous brain tis-
sue. This hypothesis is supported by our application of a
novel multivariate analysis approach that found AP-1
activation to be sensitive to a small number of reaction
mechanisms. The activation of AP-1 as a dynamic bal-
ance of TF dimers remains the model outcome in a
majority of perturbed parameters.
Our results show that c-Fos gene expression, which is

widely used as an indicator of neuronal activity, needs to
be interpreted with caution based on the time scales of
interest, as it may not be a true indicator of c-Fos:c-Jun
in the dimer composition of activated AP-1 over long
time periods of neuronal stimulation. Within the context
of the mechanisms considered in the model, the time
profile of c-Fos mRNA levels do not correlate with the
shift in the sensitivities, as the mRNA continues to be at
higher levels even as the AP-1 composition and sensitiv-
ities shifted. However, our analysis also reveals that the
active form of c-Fos protein directly correlates with the
shift in the sensitivities in the system (Figure 5).

Experimental Context: AT1R-activated Gene Regulatory
Network
We here use computational modeling in order to
understand integrative mechanisms suggested by our

own experimental data and that appear complex and
unexplained in the literature. Our transcript profiling
time-series experiments indicated a role of AT1R and
AP-1 in the in vivo NTS response to acute hyperten-
sion (Khan et al., 2008). As a means of exploring the
dynamics of the AT1R-activated gene regulation, we
developed a computational model describing the
downstream activation of the AP-1 family of TFs and
their regulation of TH gene expression. Our model
takes its structure from the network topology sug-
gested by molecular biology experiments conducted
using cultured neurons [17,19,24,35]. Data from these
previous studies raise questions showing apparently
conflicting data as to the possible role of various
kinases in the AT1R response. In addition, these stu-
dies cannot determine the role of interactions and
dynamics in the individually measured variables in the
response process.

Dynamical Systems Modeling to Explore Interactions in
AT1R Gene Regulatory Network
We here present a dynamic computational model of the
AT1R gene regulatory network to achieve our specific
goals of studying the interactions in the network. The
model focuses on functional issues within the domain of
AT1R responses in neurons. It describes how the
kinases, transcription factors and genes involved in the
response are integrated into a collective process. Our
analysis of the model provides an understanding of the
system requirements for robust function by uncovering
the role of specific reactions operating in a physiologi-
cally plausible range of parameters.
Our specific network model uses reaction mechanisms

and assumptions that have been made in similar models
of gene regulation networks [29,32] and protein phos-
phorylation [30,31]. Based on model simulations, we
developed hypotheses on a dynamic shift of AP-1 TF
dimer composition, from a c-Fos and c-Jun heterodimer
to that of a c-Jun homodimer, as underlying the total
AP-1 response. This model prediction of dynamically
switching AP-1 dimers captures the experimentally
observed overall AP-1 activity, and suggests a resolution
to a previously confounding interpretation of experi-
ments using pathway inhibitors (Figure 4). This predic-
tion may be validated experimentally using FRK
signaling inhibitors or RNA interference to reduce the
activity of FRK while measuring the effect on AT1R
activation of AP-1. Furthermore, by predicting a net-
work employing redundant mechanisms for AP-1 activa-
tion, our modeling results suggests the AT1R-modulated
induction of TH gene may be robust to perturbations in
network components. By employing a novel multivariate
analysis approach, we support the hypothesis of robust
AP-1 activation.
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Multivariate Analysis to Reveal Key Nodes and
Mechanisms in the AT1R Gene Regulatory Network
Response
A key advantage of representing biological networks
with mathematical models lies in their amenability for
identifying network properties using engineering analysis
approaches. Sensitivity analysis, for instance, is routinely
used to identify the key network parameters that shape
model ‘output’ of interest [31,36,37]. In sensitivity analy-
sis, the effect of variations in one network parameter on
model output is evaluated in the absence of variations
in all other network parameters. However, this approach
neglects the effect of perturbations in multiple network
parameters simultaneously, as may be found in hetero-
geneous tissue. In this work, we address the effect of
variations in multiple reaction parameters simulta-
neously by using a multivariate analysis combining
global sensitivity analysis with decision tree analysis.
Global sensitivity analysis reveals that most of the

parameters do not significantly affect the AP-1 DNA
binding activity dynamics indicating the robustness of
our hypotheses on the dynamic balance of AP-1 dimer
forms. Our analysis yielded a focused subset of seven
key parameters (out of 77 total) with temporally varying
sensitivities. We are able to interpret these parameter
sensitivity profiles as differential dynamic contribution
of Fos- and Jun-dependent mechanisms to AP-1 activity.
We visualized these predictions in the context of net-
work interactions and species levels using a novel
approach (DyNSIMs in Figure 5). Based on these find-
ings, we propose that the AT1R gene regulatory network
ensures robust TH gene expression in the presence of
network perturbations and cellular heterogeneity by uti-
lizing a family of transcription factors whose individual
components are operational at distinct times. This
hypothesis is further supported by our analysis of the
effect of variability in the network nodes on particular
classes of AP-1 activation dynamics.
In order to approach this issue of robustness in the face

of cellular heterogeneity, we analyzed the relationships
between the seven key parameters using a multivariate
perturbation and decision tree approach (Figure 6). This
analysis indicated that while there may be a large combi-
natorial functional space feasible for neuronal states and
parameters, the network behavior is constrained to a
small set of AP-1 response profiles. Note that many of
the paths through this space lead to a dynamic balance of
AP-1 dimer forms, yielding a robust AP-1 response coun-
teracting the biological variability. One consequence of
this result is that the validation of dynamic AP-1 balance
does not require a highly controlled cell line or similar
model experimental systems, but would rather be applic-
able more generally and verifiable in the context of in
vivo biological heterogeneity.

The absence of interactions among key parameters
during early AP-1 activation suggests individual reaction
mechanisms as potential control points for altering the
immediate early phase of AP-1 activation dynamics. Our
analysis predicts that influencing FRK activity to regu-
late early AP-1 activation would be effective in a way
that is not critically dependent on the rest of the net-
work parameters. Potential individual control points for
longer-term AP-1 activation are less clear due to the
significant presence of interactions among sensitive
reaction mechanisms as identified by the global sensitiv-
ity analysis. Hence, manipulating the long-term AP-1
DNA binding activity dynamics would require simulta-
neous perturbations in multiple parameters, counteract-
ing the robustness revealed in our multivariate
perturbation approach.

Future Extensions to a System-wide AT1R Gene
Regulatory Network
The present gene regulatory network model lays the
foundation for future modeling efforts to describe addi-
tional molecular processes involved in the NTS adapta-
tion to the hypertensive state. Future work will focus on
extending the description of the AT1R gene regulatory
network to study the effects on system-wide transcrip-
tion factors and genes towards a systems level under-
standing of this important response process. For
example, extensions to the present model may include
CREB and ATF family of TFs that were predicted as
participating in the NTS response to AT1R activation
and elevated blood pressure [20,21], to provide a more
realistic description of the complex interplay between
multiple TFs regulating their target gene expression.
Another avenue for model expansion is ‘upstream’ to
the present model in developing detailed quantitative
description of AT1R mediated signaling pathways.
Incorporating feedback of transcriptional and post-tran-
scriptional regulation onto the signaling pathways and
membrane electrical behavior will yield an integrated
description that could be used to study long-term adap-
tive changes in the neurons. The multivariate analysis
approach developed in this work may be applied broadly
to other mathematical models of biological systems.

Methods
Simulating AT1RGRN
AT1RGRN describes the molecular events linking the
binding of Ang II to AT1R in the brain to the induction
of tyrosine hydroxylase gene expression through the
activation of the AP-1 family of transcription factors.
AT1RGRN is comprised of 29 ordinary differential
equations with cytoplasmic and nuclear compartments.
A reaction scheme of AT1RGRN, the mass balances of
model species is given in Additional file 1, Table S1,
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and the model reaction rates are given in the Additional
file 1. AT1RGRN was simulated in the MATLAB com-
puting environment (The Mathworks, Natick, MA)
using the ode15s numerical integration algorithm. Inte-
gration steps were taken at a fixed interval of every min-
ute between 0 and 60 minutes after simulated Ang II
treatment.
The presented model uses the experimentally measured

dynamics of ERK, FRK, and JNK as model input, relating
an experimental addition of 100 nM Ang II. Model
inputs are linearly interpolated from experimental data
measured between 0 and 60 minutes after Ang treatment
[26,28]. The dynamics of AT1RGRN inputs are given in
the Additional file 1, and the conversion between experi-
mentally measured kinase dynamics and AT1RGRN
model inputs is described in Normalization below.

Normalization
In order to compare the dynamics of model species pre-
dicted by AT1RGRN to the dynamics measured experi-
mentally, we normalized experimental data and model
predictions to dimensionless units. Dynamic experimen-
tal data was made dimensionless with an initial value of
zero and maximum value of one by (1) subtracting the
experimental measurement at time zero from all data
points, and (2) dividing the experimental measurements
by the maximum value from Step (1). The time-series
responses of model species were normalized in the same
fashion to be dimensionless with an initial value of zero
and maximum value of one. The nuclear concentrations
of input kinases were calculated by scaling the normal-
ized dynamics measured experimentally by scaling fac-
tors that corresponded to the nuclear concentration at
maximal stimulation.

Fitting Model Parameters
We began fitting the reaction parameters in AT1RGRN
by using initial estimates of parameter values from simi-
lar models available in the literature.

• Initial estimates of parameters describing protein
phosphorylation (reactions 1, 4, 8, 10, 13, 17, and
19) and dephosphorylation (reactions 2, 5, 9, 11,14,
18, 20, 23, 26, and 28) were obtained from [30].
• Initial estimates of kinetic parameters describing
gene transcription (reactions 30, 37, 44, and 46),
protein synthesis (reactions 34 and 41), protein
degradation (reactions 3, 6, 7, 12, 15, 16, 22, and
25), and mRNA degradation (reactions 33, 40, and
48) were taken from [29].
• Initial estimates of parameters characterizing AP-1
dimerization (reactions 21, 24, and 27), protein:DNA
binding (reactions 29, 36, 43, and 45), pre-mRNA
splicing and processing (reactions 32, 39, and 47),

and protein translocation (reactions 35 and 42) were
found in [32].
• The basal rate of transcription of c-Fos (reaction
31) and c-Jun (reaction 38) were initially estimated
as 1/1000 the maximum rate of transcription taken
from [29].
• Cytoplasmic and nuclear diameters of brainstem
neurons were estimated by confocal microscopy
images published in Figure 3A of [40], which
allowed computation of cellular and nuclear volumes
by assuming spherical geometry and taking cytoplas-
mic volume as the difference between cellular and
nuclear volumes. This gave nuclear and cytoplasmic
volumes estimates of 14.1 × 10-9 μL and 65.3 × 10-9

μL, respectively.
• The initial concentrations of all model species,
with the exception of unphosphorylated ATF-2 and
Elk-1, were estimated as zero and excluded from
parameter fitting. Unphosphorylated ATF-2 and Elk-
1 were estimated to be present in the nucleus at
concentrations of 56.312 nM.
• The maximum concentration of ERK, FRK, and
JNK were estimated as 100 nM, and excluded from
model fitting.
• Compartmental volumes, maximum concentrations
of AT1R-activated kinases, initial concentrations of
ATF-2 and Elk-1, and the initial concentration of
unoccupied gene promoters, taken as two unoccu-
pied binding sites per nuclear volume, were not
included in parameter fitting and were fixed to their
initial estimates.

It should be noted that a model with such a large
number of parameters and complex feedback and cross-
talk mechanisms could potentially yield a number of
dynamic profiles of AP-1 activity. Hence, we follow a
step-wise approach to constrain the model behavior to
that of experimental observations from brainstem neu-
rons, as detailed below.
Generally, model parameters were fit by minimizing

the sum-squared error between the model predicted
responses of neurons stimulated by 100 nM Ang II and
the experimentally measured responses. Model predic-
tions and experimental data were made comparable
through normalization procedures, as described below.
The model-predicted nuclear concentration of pElk-1
was compared to the DNA-binding activity published in
[33]. Similarly, the model-predicted cytoplasmic concen-
tration of c-Fos mRNA was compared to the c-Fos
mRNA data published in [34]. The sum of nuclear con-
centration of ppc-Fos:ppc-Jun and ppc-Jun:ppc-Jun as
predicted by AT1RGRN was compared to the AP-1
DNA-binding activity published in [35]. Finally, the
cytoplasmic concentration of TH mRNA was compared
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to the experimentally measured TH gene expression
published in [28].
Our approach to fit model parameters began by gener-

ating a large dataset of perturbed model parameters.
Each of the 6 × 106 rows in this dataset contained a set
of all of the 72 model parameters that were randomly
perturbed from their initial estimates. Model simulations
were then performed for each set of perturbed model
parameters to predict the dynamics of pElk-1, c-Fos
mRNA, AP-1, and TH mRNA. This allowed the calcula-
tion of sum squared error between these model pre-
dicted dynamics and the experimentally measured
dynamics for each set of perturbed parameters. We then
identified candidate parameter sets by selecting those
that produced model output that matched the experi-
mental data at various levels of the AT1R activated gene
regulatory network. Specifically, we selected model para-
meters from 6 × 106 potential parameter sets by first
limiting to those that fit the dynamics of pELK-1, then
further reduce the size of our perturbed parameter set
by imposing the constraint of matching c-Fos mRNA
dynamics. Next, we imposed additional constraints fit-
ting the experimentally observed AP-1 DNA binding
activity dynamics, and then concluding with the con-
straint that model predictions match the TH mRNA
dynamics. The result of our model fitting procedure is
shown in Additional file 1, Figure S1.

Implementing Global Sensitivity Analysis
The global sensitivity analysis used in this work essen-
tially followed the procedure described in [39]. Briefly,
the total-effects sensitivity, first-order sensitivity, and
second-order sensitivity of total AP-1 were calculated
for all 77 parameters in AT1RGRN. AT1RGRN para-
meters include 72 reaction rate parameters, the non-
zero initial conditions of ATF-2 and Elk-1, and the
maximum concentrations of input kinases FRK, ERK,
and JNK.
The foundation of this approach is to estimate the

variance of AT1RGRN predicted AP-1 output, then to
decompose this variance into the contributions given by
each model parameter acting individually, in addition to
contributions made through interactions between para-
meters operating together to affect AP-1. Taking this
approach, we decompose the variance of AP-1 as
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These sensitivity indices, ST
i and Si

1 , refer to the effect
of a given model parameter i Î 1 ... k, on the output of
interest. However, for clarity, we omit the superscript in
the text when we refer to these indices in the context of
the corresponding model parameter. We followed a
numerical Monte Carlo simulation approach detailed in
[39] to estimate the sensitivities given above. We consid-
ered parametric perturbations within a two-fold range,
such that p

p pb
b2

2≤ ≤ * , where p and pb are the set of

perturbed and base parameters, respectively. These sensi-
tivity coefficients were calculated for each of the 60 min-
utes of simulated AP-1 activation. Parameter values were
perturbed within 2-fold of their nominal values by apply-
ing the ‘MatousekAffineOwen’ algorithm to scramble a
set of 77-dimensional pseudo-random numbers gener-
ated from the Sobol sequence in the [41]. A sample size
of 1 × 105 simulations was used to estimate the variance
of total AP-1 used in global sensitivity analysis calcula-
tions. Sensitivity coefficients calculated when the variance
of AP-1 was less then 10% the maximum variance of AP-
1 were excluded from further analysis to avoid numerical
oddities, as shown in the Additional file 1, Figure S2.
By following the described global sensitivity analysis

approach, we are able to estimate the effect of interac-
tions among AT1RGRN reaction mechanisms on the
predicted AP-1 response. We quantify the presence of
interactions on ith reaction mechanism’s influence by
taking the following ratio

 i
i

T
i

S

S
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where 0 ≤ ai ≤ 1. As before, for clarity, we drop the
supserscript i in subsequent text as we discuss the com-
puted ratios in the context of the corresponding para-
meters. A value of a near one indicates that the
influence of that particular reaction mechanism on AP-1
is not significantly conditional upon other parameter
values. Conversely, a value approaching zero indicates
that the particular reaction mechanism exerts its
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influence exclusively through interactions with other
AT1RGRN parameters.

Decision Tree Analysis Methodology
Our decision tree methodology began by generating 1 ×
106 sets of perturbed parameters in the seven most
influential model parameters as identified by the global
sensitivity analysis. Parameter values were perturbed
within 2-fold of their nominal values by applying the
‘MatousekAffineOwen’ algorithm to scramble a set of
7-dimensional pseudo-random numbers generated from
the Sobol sequence in the MATLAB computational
environment [41]. Total AP-1 activity dynamics for each
perturbed parameter set were then calculated by simu-
lating AT1RGRN, and the AP-1 response was classified
using the template matching procedure of Pavlidis et al
[42]. Total AP-1 activity dynamics predicted by each set
of perturbed parameters were compared to the following
three templates: the nominal dynamics of ppc-Fos:ppc-
Jun, the nominal dynamics of ppc-Jun:ppc-Jun, and the
nominal dynamics of total AP-1. A Pearson’s product
moment correlation coefficient greater than 0.95 was
used to classify the perturbed AP-1 response as resem-
bling the nominal ppc-Jun:ppc-Jun response, the nom-
inal ppc-Jun:ppc-Jun response, or the nominal dynamics
of total AP-1. Parameter sets that failed to meet this cri-
terion were excluded from further classification. Relation
of AP-1 outcome to perturbed parameter values was
performed using the ‘rpart’ library in the R statistical
computing environment [43]. In similar fashion to the
decision tree analysis employed by [37], we imposed a
constraint for decision tree construction that a node can
only be split again if it contained at least 15% of the
smallest AP-1 response category.

Additional material

Additional file 1: Supplementary figures and tables. The file contains
the following figures and tables: Figure S1 - Dynamics of Input Kinases
and Comparison of AT1RGRN Model Prediction with Experimental Data.
Figure S2 - Variance of AT1RGRN-predicted AP-1. Figure S3 - Total-effects
and First-Order Sensitivities of AT1RGRN-predicted AP-1. Table S1 - Model
Reactions. Table S2 - Mass Balances. Table S3 - AT1RGRN Parameters.
Table S4 - Parameter Index Corresponding to Figure S4.
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