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factors governing outbreak 
dynamics in a forest intensively 
managed for mountain pine beetle
Mélodie Kunegel-Lion  1 ✉ & Mark A. Lewis1,2

Mountain pine beetle (MpB) outbreaks have caused major economic losses and ecological consequences 
in north American pine forests. ecological and environmental factors impacting MpB life-history and 
stands susceptibility can help with the detection of MPB infested trees and thereby, improve control. 
Temperatures, water stress, host characteristics, and beetle pressure are among those ecological and 
environmental factors. They play different roles on MPB population dynamics at the various stages 
of an outbreak and these roles can be affected by intensive management. However, to make detailed 
connections between ecological and environmental variables and MPB outbreak phases, a deeper 
quantitative analysis on local scales is needed. Here, we used logistic regressions on a highly-detailed 
and georeferenced data set to determine the factors driving MPB infestations for the different phases 
of the current isolated MPB outbreak in Cypress Hills. While we showed that the roles of ecological 
and environmental factors in a forest intensively controlled for MpB are consistent with the literature 
for uncontrolled forests, we determined how these factors shifted through onset, peak, and collapse 
phases of the intensively controlled forest. MPB presence mostly depends on nearby beetle pressure, 
notably for the outbreak peak. However additional weather and host variables are necessary to achieve 
high predictive ability for MpB outbreak locations. our results can help managers make appropriate 
decisions on where and how to focus their effort, depending on which phase the outbreak is in.

The mountain pine beetle (MPB; Dendroctonus ponderosae, Hopkins 1902, Coleoptera: Curculionidae, 
Scolytinae) epidemic behaviour in North American pine forests is causing massive ecological consequences and 
losses to the timber industry1 as well as threatening cultural and tourism activities2. As a consequence, MPB out-
breaks are actively monitored and heavily controlled in Canadian pine forests3,4. Managers face several challenges 
related to detection and control. An efficient control is direct, early, aggressive, and continuous until the out-
break is suppressed5. To be able to implement such control, managers need to have efficient detection methods. 
Detection could be improved by including different ecological and environmental factors depending on the pop-
ulation phase. In turn, the relevant ecological and environmental factors at each population phase are susceptible 
to be affected by intensive control.

From the perspective of the biology of MPB, four major phases have been described: endemic, 
incipient-epidemic, epidemic, and post-epidemic6. MPB populations in one of the last three phases form an 
outbreak. The transition between endemic phase and outbreak depends on population size. Endemic popula-
tions have low number of individuals and they attack weak or stressed pines typically with the help of other bark 
and woodboring beetles. When a MPB population has enough individuals to overcome the defences of large 
and healthy trees on their own, the population transitions from an endemic phase to an outbreak. Managers, 
tracking the rise and fall in numbers of infested trees may not easily be able to identify the endemic or early 
incipient-epidemic phase. This leads to an alternative categorization based on infested tree numbers, which we 
describe here and use in this paper: onset (increasing number of infested trees; typically late incipient-epidemic 
and early epidemic), peak (high and constant number of infested trees; late epidemic) and collapse (decreasing 
number of infested trees; post-epidemic). See Fig. 1 for a representation of the two approaches to categorizing 
MPB outbreaks.

MPB typically have a one-year life cycle7. In the summer, beetles drill galleries under the bark of host trees 
to lay their eggs8. Over the fall, the eggs become larvae. In the spring, individuals resume their development to 
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emerge as adults in the summer. Adults do not usually survive the winter although there is some evidence in 
northwestern US for overwintering adults9. The pine hosts are typically killed by the MPB development process 
and their crowns fade to a red colour within one year after the attack. The MPB range is widespread in north 
America, covering north-west United States and western Canada.

At the beginning of an outbreak, i.e. the incipient-epidemic phase, spread is slow and infestations are limited 
to single trees. Then, as population size increases and single-tree infestations become patches containing multiple 
infested trees, the MPB population enters the epidemic phase. The post-epidemic phase is characterized by pop-
ulation decline in MPB. An outbreak usually lasts several years if sufficient host pines are present, with an average 
of approximately 10 years in British Columbia10.

Commonly, red-top trees, which are the distinct dead pines infested by MPB individuals from the previous 
year, are used to estimate the presence of new infestations in the area3,4. Additionally, the locations of infested 
trees can be georeferenced to characteristic ecological and environmental factors. However, these factors have 
different roles on MPB population dynamics at the various stages of an outbreak11,12. Moreover, intensive MPB 
control is likely to impact spatio-temporal patterns of infestations13, which might, in turn, affect the significance 
of ecological and environmental factors in the different outbreak phases. Understanding these roles provides an 
opportunity to improve detection methods through a systematic evaluation of cues from ecological and environ-
mental factors.

Much of our understanding of the ecological and environmental factors governing MPB outbreaks come from 
the conceptual and observational work synthesized by Safranyik, Carroll and coworkers8,10. Those factors consist 
of host tree properties, beetle pressure, and weather factors. Host tree properties affect susceptibility to infesta-
tion. Beetle pressure provides an indication of the size and proximity of nearby infestations that could spread to 
new host trees. Weather factors impact the details of life-history and environmental stress of both the beetles and 
the trees. Collectively, these factors determine the outbreak level and duration.

Host tree abundance, resistance, and size impact MPB infestation differentially, depending on the phase of an 
outbreak10. Indeed, an MPB endemic population first needs sufficient small and weak/stressed trees in order to 
increase the population size to outbreak levels and attack larger and healthier trees10,14. MPB population decline 
happens in the post-epidemic phase when the number of susceptible pines decreases and MPB switches back 
to weaker and smaller trees. This decline in the epidemic that is associated with the reduction in the susceptible 
population is a common feature characterizing epidemic processes15.

Beetle pressure is essential for new MPB infestations at all outbreak phases12. It describes the source of a new 
beetle generation. Outbreak onset relies on local endemic population increase and/or contributions from outside 
sources via dispersal whereas established outbreaks relies on adjacent sources10,11,14.

Among weather factors, temperatures have the greatest impact on MPB population life-history16. Warm 
winter temperatures help MPB individuals in endemic phase to transition to an outbreak by allowing them to 
survive the cold season in greater proportions, thereby possibly increasing their population size to outbreak 
levels11,12,17,18. However, cold snaps in fall or early spring, or generally lower winter temperatures, can lead to 
outbreak collapse10,19. Beetles in the egg stages are also extremely vulnerable to temperatures20 and their exposure 
to mortality-inducing temperatures depends on the timing of adult emergence and oviposition21. Therefore, tem-
peratures over the year are good indicators of beetle development rate and timing. Individuals need a minimum 
of 833 degree-days above 5.5 C to complete their life-cycle22 and high temperatures during flight periods increase 
attack success rate by increasing spatial synchrony11. However, excessively high temperatures during the summer 
can decrease emergence rate as well as dispersal success8,23. In summary, warm temperatures are crucial to MPB 
development but this positive effect on MPB infestation can be counteracted when temperatures become too high 
for successful emergence and dispersal.

Soil moisture is also an essential factor governing MPB populations. Water deficit lowers pine defenses 
against MPB attacks24. These defences consist of the exudation of toxin resin containing phytochemicals that 
prevent MPB from attracting conspecifics and inhibit the formation of galleries and oviposition25,26. Therefore, 
drought can help MPB endemic populations successfully attack sufficient trees to increase their population size 

Figure 1. Representation of the biological processes and infested tree numbers approaches to categorizing MPB 
population phases. The star represents the first detection of the MPB outbreak. The endemic phase has less than 
one mass-attacked tree per stand.
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to outbreak levels10,11. However, it is also necessary to have abundant vigorous trees for a successful outbreak10,14 
and tree vigour can be reduced by drought27. Nonetheless, drought may not be sufficient to decrease vigour levels 
to the point of a suppressed outbreak. For example, entire outbreaks in western US were exposed to drought18. 
Therefore, the timing and intensity of drought can either help or hinder MPB populations.

The combination of observations and data analyses helps picture how ecological and environmental factors 
change in each outbreak phase. However, a deeper quantitative analysis specifically focusing on this question is 
required with detailed connections between models and data via statistical inference. Such analyses exist, but, 
to date, have employed large spatial scales, typically with different sub-regions in different outbreak stages12,18. 
Moreover, management changes the pattern of MPB spread13. Therefore, the ecological and environmental fac-
tors explaining MPB presence could be affected by intensive control for each outbreak phase. To the best of our 
knowledge, there has been no local-scale statistical analysis of ecological and environmental factors governing 
an intensively controlled MPB outbreak, from onset to collapse, where the population is relatively synchronized 
across the study site. The recent Cypress Hills MPB outbreak in Saskatchewan provides a unique opportunity to 
do this very thing. Located far from the main lodgepole pine range, the Cypress Hills MPB infestation is isolated 
from other outbreaks. The Cypress Hills park spatial scale (184 km2) is such that the MPB population has been 
relatively synchronized spatially. The data set is very high quality as the region was completely censused for MPB 
infestation yearly from the onset in 2006 up to the current decrease in 2018. This provides a unique opportunity 
to follow a single outbreak in a fixed location at a small spatial scale, and to perform a comprehensive statistical 
analysis of ecological and environmental factors influencing each outbreak phase.

Our study aims to 1) develop a model to determine the local ecological and environmental factors driving 
MPB presence for the different phases of an outbreak (onset, peak, and collapse) in a forest intensively man-
aged for MPB, 2) assess the degree to which the models predict MPB presence for each outbreak phase, and 3) 
show how selected factors have differing impacts on MPB presence depending on the outbreak phase. For each 
phase, we hypothesized that MPB presence depends on a combination of weather, beetle pressure, control, and 
host-related variables. We model those relationships using logistic regressions during the onset, peak, and col-
lapse phases of one MPB outbreak studied in the Cypress Hills interprovincial park in Saskatchewan, Canada.

Methods
Study area and data. We use data from the Saskatchewan portion of the Cypress Hills interprovincial park, 
located at the border between the provinces of Alberta and Saskatchewan, Canada. This portion of the park is 
separated in two blocks 20 km apart (Fig. 2). The main MPB host tree in this area is the lodgepole pine (Pinus con-
torta, Dougl. ex Loud. var. contorta Engelm). MPB infestation data and ecological and environmental covariates 
from this region provide an opportunity to connect local factors to outbreak phases. In addition to the infested 
trees within the park limits, there were infestations just outside the park in the south (Fig. 2). These infestations 
were not recorded nor managed and they were slightly ahead of time compared to the park infestations. The 
Forest Service Branch of the Saskatchewan Ministry of Environment has implemented a “zero-tolerance” policy 
as of 2006, designed to catch and control as many newly infested trees in the park as possible. Details of this policy 
are described in Kunegel-Lion et al.28.

The ecological and environmental covariates and the infestation response values were distributed discretely 
in space and time. We applied a grid of 18 317 cells of size 100 × 100 meters to the Cypress Hills park extent. 
This cell size was chosen to match the size of the management surveys. The fact that a cell’s area (10 000 m2) and 
a search plot’s area (7 854 m2) are the same order of magnitude make the analogy between grid cell and survey 
plot possible. For each combination of cell and year, the observation consisted of a set of ecological and environ-
mental covariates plus the response variable. The response variable was the presence/absence of MPB derived 
from the presence/absence of infested trees in each cell of the grid based on data from the Forest Service ground 
survey4,28. From these Forest Service surveys, we obtained the locations of infestations controlled by managers 
and we deduced which trees had been infested in the previous year using the red-top trees. We divided these data 

Figure 2. Cypress Hills park boundaries in Saskatchewan (grey). The dashed red line represents the park border 
close to outside infestations in the South. Based on Kunegel-Lion62.
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into outbreak phases and trained and validated the models separately for each phase. The outbreak onset lasted 
from 2006 to 2011, the outbreak peak from 2012 to 2013, and the outbreak collapse from 2014 to 2018 (Fig. 3).

We chose the ecological and environmental covariates to represent as much as possible each of the processes 
described in the introduction (Table 1). Description of these variables is available in Kunegel-Lion et al.28.

For a given year, infested locations can be divided into uncontrolled infestation (Iu) and controlled infestation 
(Ic). Details of these variables are given in Table 1 and Fig. 4. However, some infested trees inevitably remained 
undetected and these were identified as red-tops in the following year. Beetles from these uncontrolled infesta-
tions can disperse short distances within and between cells, and thus provide a source for new infestations. We 
refer to this as nearby beetle pressure. The MPB presence two years prior to the observation is not included as 
MPB is generally univoltine29, so we assume that an infested tree can only be a source of beetle for the following 
year and not the years after that. We also included the distance to the park southern border, which was close to 
external infestations not managed by the Forest Service and potential sources of MPB. Finally, it is possible to 
calculate the total infestation by adding the uncontrolled and controlled infestations.

Data analysis. In this analysis, we select, for each outbreak phase, the weather, vegetation, topography, and 
beetle and host-related variables explaining MPB presence in a forest intensively controlled for MPB and show 
whether the selected variables have a different impact on MPB presence depending on the outbreak phase.

To select the relevant variables explaining MPB presence, we used a logistic regression where the probability 
of MPB presence π β( ) depend on parameters βi and ecological and environmental covariates Xi, described in the 
previous section, as defined by
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We trained the logistic regressions on each phase separately using the train function of the R package caret30,31.
For each outbreak phase, we implemented a multiple working hypothesis approach. We used the exhaustive 

enumeration of subsets method32. This method compares all possible combinations of the covariates and selects 
the best models among the ones sharing the same number of covariates. We selected the best model overall and 
the best model per number of covariates using the Bayesian Information Criterion (BIC)33. With our goal of 
determining which factors are associated with MPB infestation at each outbreak phase, we chose the BIC over the 
Akaike Information Criterion (AIC)34 for model comparison. This is because BIC is better indicator of the “true” 
model whereas AIC is more suited to determine which models should be used for predictions35–37. Additionally, 
our number of observations was very large (238121 observations) compared to the parameter space (11 parame-
ters) which also favours the BIC over the AIC. As with the AIC index, a low BIC means a good trade-off between 
the goodness of fit of the model and model complexity. Two models with a BIC difference less or equal to 2 are 
considered indistinguishable whereas a BIC difference of 8 or more provides strong evidence for the model with 
lower BIC38,39.

To be able to differentiate the effect of each covariate, we categorized them into weather (Tmax, Tmin, SMI, CT, 
and Peak), vegetation (Cover, Age, and Height), topography (Dist, N, and E), or beetle-related (Ic and Iu) variables 
and we removed, within each category, highly correlated covariates ( ρ| | > .0 6) but one from our analysis. 
Therefore, among the weather variables, we did not include the maximum temperature in the analysis as it was 

Figure 3. Total number of infested trees over time. The darker grey represents the outbreak onset. The grey 
represents the outbreak peak. The white represents the outbreak collapse.
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correlated with the soil moisture index (ρ = − .0 69) and with the emergence peak (ρ = − .0 76) over the entire 
time period. Indeed, these three indices are all derived from daily temperatures. As might be expected, among the 
vegetation-related variables, pine height and age were also correlated (ρ = .0 95). Therefore, of these two, we only 
kept pine height in our analyses. Note that, in the beetle-related variables, the correlation coefficient for the con-
trolled and uncontrolled infestations is 0.33, therefore the impact of these covariates on the infestation should be 
possible to differentiate. In addition, a posteriori, we did not keep models with poorly estimated coefficients due 
to multicollinearity, i.e. models with a maximum variance inflation factor (VIF) greater than 1040,41.

To assess the performance of the selected models, we performed cross-validation with folds defined by year. 
For each outbreak phase, the cross-validation process works as follow: 1) the models are trained on all years of 
their respective outbreak phase but one, 2) the accuracy of the models is tested on the remaining year of the out-
break phase (=test set) using the area under the receiver operating characteristic curve (AUROC)42,43 and the area 
under the precision-recall curve (AUPR)44,45, and 3) steps 1 and 2 are repeated with a different year held out for 
test until all years have been tested. The AUROC and AUPR indices are then averaged over the folds.

A receiver operating characteristic (ROC) curve42 depicts, for a range of probability thresholds, the true pos-
itive rate (or 1 - false negative rate, also referred to as sensitivity or recall) against the false positive rate (also 
referred to as 1 - specificity). A precision-recall curve44 depicts, for a range of probability thresholds, the propor-
tion of true positives amongst the positive predictions (also referred to as precision or positive predictive value) 
against the true positive rate (sensitivity/recall). For the reader’s convenience, more details on how to calculate 
these indices are given in Appendix A.

A high AUROC or AUPR ( ≤ ≤AUROC AUPR0 / 1) represents a good performance of a binary classifier in 
terms of correspondence between observed and predicted values. A null model has an AUROC of 0.5 and a AUPR 
value equals to the proportion of positive outcomes in the data. The precision-recall curve is more informative 
than the ROC curve for imbalanced data sets45,46 which is the case here as the rate of 0 to 1 in our three data sets 
is between 40:1 and 95:1.

To show whether the selected covariates have a different impact depending on the outbreak phase, we com-
pared the order of importance of the standardized estimates βi. Within a model, a large negative or positive βi has, 
respectively, a large negative or positive impact on MPB presence whereas a small βi has a small impact on MPB 
presence.

Results
For the outbreak onset, the best model used seven covariates: northerness, soil moisture index, distance to the 
infested border, emergence peak, pine cover, and controlled and uncontrolled infestations (BIC = 8626.9; 
Table 2). However, the model with the covariate pine height instead of pine cover had Δ BIC <8 which implies 
that pine height and pine cover could be interchanged.

For the peak of the outbreak, the best model used seven covariates: easterness, minimum temperature in sum-
mer, cold tolerance, emergence peak, pine height, and controlled and uncontrolled infestations (BIC = 5480.4; 
Table 3). However, the model without easterness gave a Δ BIC <8, casting doubt on the importance of this index 
on MPB presence for the peak.

Name Description Range Unit

Tmax Highest maximum daily temperature during July and August 26.2–38.2 °C

Tmin Lowest minimum daily temperature during July and August −8.2–6.1 °C

SMI Soil moisture index63 estimates soil water availability for tree growth using temperature and 
precipitation 36.4–97.3 mm

CT Cold tolerance64 estimates the probability of larva survival over the winter using temperature 24.1–86.0 %

Peak
MPB emergence peak (derived from Bleiker and Van Hezewijk’s model 151) estimates when 50% of 
the beetles have emerged from cumulative degree-days above 2 °C starting on May 30th (Julian day 
150)

205–232 Julian day

Cover Coverage of Pinus albicaulis (whitebark pine), Pinus banksiana (jack pine) and Pinus contorta 
(includes subspecies lodgepole pine and shore pine) 0.0–97.2 %

Height Height of the dominant tree species in the cell when the pine cover is greater than 50% 0.0–51.5 m

Age Age of the dominant tree species in the cell when the pine cover is greater than 50% 0.0–200.3 year

Previous-year controlled MPB infestation level in a 3-cell radius around each location

Ic

Ic = number of infested cells with all trees controlled at the same location + 0.5 ×number of infested 
cells with all trees controlled in radius 1 + 0.25 ×number of infested cells with all trees controlled in 
radius 2 + 0.125× number of infested cells with all trees controlled in radius 3 (Fig. 4)

0.00–5.00 —

Previous-year uncontrolled MPB infestation level in a 3-cell radius around each location

Iu

Iu = number of infested cells with uncontrolled trees at the same location + 0.5× number of infested 
cells with uncontrolled trees in radius 1 + 0.25 ×number of infested cells with uncontrolled trees in 
radius 2 + 0.125× number of infested cells with uncontrolled trees in radius 3 (Fig. 4)

0.00–4.25 —

Dist Distance to the park southern border close to external infestations (Fig. 2) 67.6–36151.6 m

N Northerness: spatial property of a slope to face North −1–1 —

E Easterness: spatial property of a slope to face East −1–1 —

Table 1. Description and range of the variables used in the logistic regressions.
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The best model for the outbreak collapse used seven covariates: minimum temperature in summer, soil mois-
ture index, cold tolerance, distance to the infested border, emergence peak, and controlled and uncontrolled 
infestations (BIC = 7448.5; Table 4).

For each phase, the selected models have high AUROC indicating a high level of predictive ability 
( = .AUROC 0 739best onset, , = .AUROC 0 890best peak, , and = .AUROC 0 934best collapse, ; Tables 2 to 4). Compared to 
the null models, the AUPR values are consistent with the higher AUROC values ( = .AUPR 0 174best onset,  with 

= .AUPR 0 010null onset, ,  = .AUPR 0 404best peak,  with = .AUPR 0 024null peak, ,  = .AUPR 0 303best collapse,  with 
= .AUPR 0 011null collapse, ; Tables 2 to 4). The relatively high AUPR values show that the models predict well MPB 

presence without potentially wasting too much management resources on false alerts, which are 
incorrectly-predicted MPB presence.

For the three outbreak phases, the model including only information about nearby beetle pressure (Iu) is the 
best model among the ones with one covariate. Compared to the overall best model of each phase, the model 
including only nearby beetle pressure is predicting MPB presence with a lower accuracy ( = .AUROC 0 650I onset,u

, 
= .AUROC 0 879I peak,u

, and = .AUROC 0 864I collapse,u
; Tables 2 to 4). The AUPR values are consistent with these 

AUROC values except for the outbreak peak where the AUPR value is higher for the model with only nearby 
beetle pressure ( = .AUPR 0 436I peak,u

).
For the outbreak onset, the order of the covariates by importance (absolute standardized estimates) is: soil 

moisture index, emergence peak, distance to the infested border, uncontrolled infestations, pine cover, norther-
ness, controlled infestations (Fig. 5). The order and the selected covariates differ from the peak: emergence peak, 
uncontrolled infestations, cold tolerance, minimum temperature in summer, pine height, easterness, controlled 
infestations, and the collapse: uncontrolled infestations, soil moisture index, minimum temperature in summer, 
cold tolerance, controlled infestations, distance to the infested border, emergence peak (Fig. 5).

Some covariates have a negative impact on MPB presence. A larger distance to the infested border decreases 
the probability of infestation in a cell (Fig. 5). Other covariates have a positive impact on MPB presence. A larger 
nearby controlled or uncontrolled infestation, larger soil moisture index, higher pine cover, larger pine height, 
northerness, or easterness increases the probability of infestation in a cell (Fig. 5). The minimum temperature in 
summer has both a positive impact of MPB presence at the outbreak peak and a negative impact at the outbreak 
collapse. The cold tolerance has a negative impact at the outbreak peak and a positive impact at the outbreak 
collapse. Finally, the emergence peak has a positive impact at the outbreak onset and peak and a negative impact 
at the outbreak collapse (Fig. 5).

We can visually characterize the spatial patterns of infestations for each outbreak phase. During the onset, 
there are few large areas with high infestation risk and they are directly adjacent to the park infested border 
(Fig. 6). However, other smaller areas at risk are present in the rest of the park. During the peak, more large areas 
with high risk of infestation arise and they are located nearby previous infestations rather than adjacent to the 
park infested border (Fig. 6). Note that since the first areas with high infestation risk were close to this border, 
most areas at risk during the peak are still located in the same general region. During the collapse, the areas with 
high risk of infestation generally decrease in size but locations similar to the ones during the peak are at risk 
(Fig. 6).

Figure 4. Representation of the adjacent cells taken into account in the covariates (cf. Table 1). White: focus 
cell; dark grey: 4 adjacent cells (radius 1); medium grey: next 8 adjacent cells (radius 2); light grey: next 16 
adjacent cells (radius 3). Based on Kunegel-Lion62.
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Discussion
Our analyses showed how the impact of environmental variables on MPB infestation change with the outbreak 
phase in a forest managed for MPB. The selected models showed high AUROC values and relatively high AUPR 
values compared to the null models suggesting, respectively, good predictive abilities overall and good predictions 
of MPB presence while avoiding false alerts. Therefore most variables driving MPB infestations are likely included 
in the models.

The selected environmental factors and their impact change depending on the outbreak phase. The source of 
beetles, represented by the presence of uncontrolled infestations in the neighbourhood and the distance to the 
infested border, always have a major impact on MPB presence. The importance of beetle pressure and history has 
also been widely found in previous studies10–12. However, the presence of uncontrolled infestations by itself is 
less influential during the onset. The source of beetles shifts from the infested border during the onset to nearby 
uncontrolled infested trees as beetles establish themselves in patches at the peak and collapse phases. Perhaps 
surprisingly, this positive impact on MPB presence was also seen for entirely controlled cells, albeit at a lower 
level. We interpret this as being correlative but not causal, and arising from the MPB showing a preference for 
certain environmental conditions. These conditions persist from year-to-year even after the MPB infested trees 
are controlled. Good management reduces effectively the likeliness of infestation, since controlled infestations 
always have a lower impact on MPB presence than the presence of uncontrolled trees.

The pine height and cover have a limited impact on MPB presence. Pine height does not explain MPB pres-
ence during the outbreak collapse suggesting that beetles are not targeting taller trees at that time. However, MPB 
presence is higher in locations with taller trees during the outbreak onset and peak. Given the positive relation-
ship between tree diameter and height47, this result agrees with the fact that sufficient large and vigorous pines are 

Size Selected variables VIFmax BIC Δ BIC AUROC AUPR

0 null 12705.2 4078.3 0.500 0.010

1 Iu 1.0 10121.8 1495.0 0.650 0.154

2 Peak, Iu 1.0 9317.5 690.6 0.770 0.142

3 Peak, Iu, Ic 1.0 8787.9 161.0 0.786 0.172

4 Dist, Peak, Iu, Ic 1.2 8718.7 91.8 0.866 0.180

5 SMI, Dist, Peak, Iu, Ic 1.6 8675.3 48.4 0.705 0.179

6 SMI, Dist, Peak, Cover, Iu, Ic 1.6 8644.6 17.7 0.731 0.176

7 N, SMI, Dist, Peak, Cover,Iu, Ic 1.6 8626.9 0.0 0.739 0.174

7 N, SMI, Dist, Peak, Height, Iu, Ic 1.6 8633.4 6.5 0.731 0.174

8 N, SMI, Dist, Peak, Cover, Height, Iu, Ic 1.6 8628.3 1.4 0.741 0.173

8 N, Tmin, SMI, Dist, Peak, Cover, Iu, Ic 2.3 8630.1 3.2 0.743 0.175

9 N, Tmin, SMI, Dist, Peak, Cover, Height, Iu, Ic 2.3 8631.4 4.5 0.745 0.174

10 N, E, Tmin, SMI, Dist, Peak, Cover, Height, Iu, Ic 2.3 8639.8 12.9 0.751 0.173

11 N, E, Tmin, SMI, CT, Dist, Peak, Cover, Height, Iu, Ic 2.4 8650.6 23.7 0.751 0.172

Table 2. Comparison of the models’ BIC, AUROC, and AUPR for the outbreak onset. All models are 
compared to the one with the lowest BIC using ΔBIC. For each number of variables, we show the best model 
and competing models with a difference of BIC ≤8. The model in bold is the one selected from the ΔBIC ≤ 2. 
“AUROC” stands for the area under the ROC curve, “AUPR” stands for the area under the precision-recall curve.

Size Selected variables VIFmax BIC Δ BIC AUROC AUPR

0 null 8341.5 2861.1 0.500 0.024

1 Iu 1.0 5557.7 77.3 0.879 0.436

2 Height, Iu 1.0 5540.7 60.3 0.902 0.430

3 Height, Iu, Ic 1.4 5520.4 40.0 0.907 0.427

4 E, Height, Iu, Ic 1.4 5507.8 27.4 0.907 0.429

5 CT, Peak, Height, Iu, Ic 4.1 5497.4 17.0 0.912 0.425

6 Tmin, CT, Peak, Height, Iu, Ic 6.9 5485.5 5.1 0.886 0.400

7 E, Tmin, CT, Peak, Height, Iu, Ic 6.9 5480.4 0.0 0.890 0.404

8 E, Tmin, CT, Peak, Cover, Height, Iu, Ic 7.2 5484.8 4.4 0.890 0.402

9 E, Tmin, CT, Dist, Peak, Cover, Height, Iu, Ic 7.1 5494.9 14.5 0.889 0.401

10 N, E, Tmin, CT, Dist, Peak, Cover, Height, Iu, Ic 7.1 5505.4 25.0 0.891 0.404

Table 3. Comparison of the models’ BIC, AUROC, and AUPR for the outbreak peak. All models are compared 
to the one with the lowest BIC using ΔBIC. For each number of variables, we show the best model and 
competing models with a difference of BIC ≤8. The models in bold are the ones selected from the ΔBIC ≤ 
2. “AUROC” stands for the area under the ROC curve, “AUPR” stands for the area under the precision-recall 
curve.
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Size Selected variables VIFmax BIC
Δ 
BIC AUROC AUPR

0 null 11071.0 3622.5 0.500 0.011

1 Iu 1.0 8182.2 733.7 0.864 0.264

2 Iu, Ic 1.0 7498.5 50.0 0.929 0.306

3 SMI, Iu, Ic 1.0 7468.9 20.3 0.935 0.305

4 SMI, Dist, Iu, Ic 1.1 7458.0 9.5 0.937 0.305

5 SMI, Dist, Peak, Iu, Ic 1.4 7462.7 14.2 0.936 0.305

6 Tmin, SMI, CT, Dist, Iu, Ic 3.2 7461.2 12.7 0.935 0.305

7 Tmin, SMI, CT, Dist, Peak, Iu, Ic 3.3 7448.5 0.0 0.934 0.303

8 Tmin, SMI, CT, Dist, Peak, Cover, Iu, Ic 3.3 7454.3 5.8 0.935 0.301

9 E, Tmin, SMI, CT, Dist, Peak, Cover, Iu, Ic 3.3 7464.2 15.6 0.934 0.300

10 N, E, Tmin, SMI, CT, Dist, Peak, Cover, Iu, Ic 3.3 7474.8 26.3 0.934 0.299

11 N, E, Tmin, SMI, CT, Dist, Peak, Cover, Height, Iu, Ic 3.3 7485.6 37.1 0.933 0.299

Table 4. Comparison of the models’ BIC, AUROC, and AUPR for the outbreak collapse. All models are 
compared to the one with the lowest BIC using ΔBIC. For each number of variables, we show the best model 
and competing models with a difference of BIC ≤8. The model in bold is the one selected from the ΔBIC ≤ 2. 
“AUROC” stands for the area under the ROC curve, “AUPR” stands for the area under the precision-recall curve.

Figure 5. Standardized estimates (± standard error) for each selected model by outbreak phases. Variables in 
white have weak evidence from ΔBIC (see Tables 2 to 4).
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necessary to sustain high epidemic population size10. Northerness and easterness have very little impact on MPB 
presence although they are selected during the selection process, respectively at the outbreak onset and peak. At 
the onset, MPB presence is more likely in locations facing north whereas at the peak, MPB presence is more likely 
in locations facing east. This directionality could be explained by the fact that the dominant winds in Cypress 
Hills come from the south-west. Indeed, MPB tends to disperse downwind until they encounter an attractive 
odour which they then follow upwind48,49.

The weather factors have a varying impact on MPB presence throughout the outbreak. The minimum temper-
ature over the summer increases the probability of MPB presence during the outbreak peak. Cold temperatures in 
the summer decrease adult emergence and dispersal and egg survival20. However, this factor has a negative rela-
tionship with MPB presence during the outbreak collapse. This could be explained by the possibility that, during 
the collapse, temperatures cold enough to have an impact on beetle emergence and egg survival are not reached. 
Higher larvae cold tolerance over the winter increases MPB presence during the outbreak collapse. This result is 
also found in other study11,12,18. This relationship is expected as warm winter temperatures help increase beetle 
population size19. However, higher cold tolerance decreases the probability of MPB presence during the outbreak 
peak. The VIF for the cold tolerance during the outbreak peak is above 5 (another commonly used cutoff41) which 
suggests that this unexpected direction of impact might be the result of a confounding effect. The soil moisture 
index is having a strong positive impact on MPB presence except during the outbreak peak. This direction of 
impact is unexpected as water deficit decreases the pines’ ability to defend themselves against MPB24. However, 
soil moisture tends to increase within a year of MPB attacks due to a reduction in evapotranspiration50. Since 
there is a spatio-temporal correlation between locations previously attacked and locations currently attacked by 
MPB11, the relationship between the decrease in evapotranspiration and MPB attacks could essentially create a 
link between wetter locations and current MPB presence, thereby biasing the soil moisture covariate. During the 
outbreak onset and peak, MPB presence increases with later estimated emergence peak whereas during the col-
lapse MPB presence increases with earlier estimated emergence peak. Over the entire study period, the estimated 
peak date ranges from July 24 to August 20 (Julian days 205–232) which is comparable to what was previously 
observed for mountain pine beetle8,51. However, since the flight period model was estimated for north-central 
Alberta51 and not Cypress Hills, the estimated emergence peak date is likely biased. Indeed, MPB development 
timing changes with latitude52.

Figure 6. Maps of the predicted infestation probabilities π β( ) using the parameters from the best model for 
each outbreak phase. The onset is represented by the year 2009, the peak by the year 2013, and the collapse by 
the year 2016. For each outbreak phase, the prediction patterns are similar among years. The risk of infestation 
ranges from low (blue) to high (red).
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Overall, MPB presence during the outbreak peak mostly depends on nearby beetle pressure whereas it relies 
more on additional weather and host conditions for the other outbreak phases. Despite intensive management of 
the study area, the relevant factors of each phase are mostly in agreement with the literature. Therefore, control is 
likely not impacting considerably the roles of ecological and environmental variables.

The presence of uncontrolled infestations in the neighbourhood the previous year is consistently a good pre-
dictor of MPB presence. Furthermore, we found that this variable is the single most important covariate explain-
ing MPB presence at each outbreak phase. Indeed, including beetle pressure is essential for MPB detection53. 
Using only nearby beetle pressure, as it is mostly the case for the current detection strategy in Cypress Hills, we 
obtain a poor detection ability (as estimated using the AUROC) at the outbreak onset and a rather satisfactory 
detection ability at the outbreak peak and collapse. However, the addition of weather and host characteristics 
improves our detection ability. Susceptibility indices for MPB typically focus on detailed host and stand charac-
teristics54–57. This is because managers can actively modify stand characteristics in most cases. Therefore, knowing 
the susceptibility of their stands give them the option of using preventive measures against MPB58. However, if the 
focus is detection and not prevention, adding variables that managers have no control on, like weather variables, 
increases the predictive accuracy.

A limitation of this work comes from the fact that we are working with presence/absence in cells and not 
actual numbers of infested trees or beetles. The number of infested trees is a good proxy for the beetle population 
size5. Our use of presence/absence instead of number of infested trees does, however, allow us to deal with the 
issue that a small part of the data is expressed as infested zones and not actual tree locations.

Some ecological factors influencing MPB infestations, such as predators and competitors, were not available 
to us and therefore were not included in this analysis. These factors are not as readily and broadly available as 
weather variables, and thus are often not included in analyses. Other factors linked to host and stand character-
istics, such as pine cover and height, were only available for a couple of years within our study period. Therefore, 
they were largely estimated. However, future work should focus on gathering such data and analyzing the impact 
of MPB predators and competitors, along with stand characteristics, on MPB location59–61.

Finally, when determining the outbreak phases, we considered the outbreak status in Cypress Hills as a whole 
instead of differentiating the status of each cell. For example, some cells could be newly infested during the out-
break peak or collapse. However, since the study area is small, it makes sense to see the outbreak as a whole as 
factors usually have larger yearly variations than within-year variations.

To conclude, the impact of weather, vegetation, and beetle or host-related factors on MPB infestations were 
shown to vary in a clear, ecologically interpretable manner during an outbreak. This gives managers guidance 
regarding which stands to focus on for an efficient control. For example, they could use the risk probability maps 
to inform survey locations62. These results also point out that the predictive ability of models using data from an 
incomplete outbreak to determine future infestations may be limited. Indeed, with such a change in the factor 
impacts from an outbreak phase to another, the predictions for a specific phase should be biased if model training 
is done with data from another phase. However, while the size of impact does change, the direction of impact of 
most covariates seldom changes as a function of the outbreak phase so this may limit prediction error.

Data availability
The dataset analyzed in this study is described in Kunegel-Lion et al.28 and is available from Dryad repository 
(https://doi.org/10.5061/dryad.70rxwdbt9).
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