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Simple Summary: Microorganisms are found in all human tissues. Some of them are responsible for
cancer formation. In our study we found gene expression from bacteria, archaea, and viruses in the
upper female genital tract and this expression was associated with ovarian and endometrial cancer.
We also found that the expression from these organisms may be involved in regulatory mechanisms
of infection and cancer formation. Some of the processes associated with these organisms may affect
cancer heterogeneity and be potential targets for cancer therapy.

Abstract: Bacteria, archaea, and viruses are associated with numerous human cancers. To date,
microbiome variations in transcription have not been evaluated relative to upper female genital
tract cancer risk. Our aim was to assess differences in bacterial, archaea, and viral transcript (BAVT)
expression between different gynecological cancers and normal fallopian tubes. In this case-control
study we performed RNA sequencing on 12 normal tubes, 112 serous ovarian cancers (HGSC) and
62 endometrioid endometrial cancers (EEC). We used the centrifuge algorithm to classify resultant
transcripts into four indexes: bacterial, archaea, viral, and human genomes. We then compared BAVT
expression from normal samples, HGSC and EEC. T-test was used for univariate comparisons (cor-
recting for multiple comparison) and lasso for multivariate modelling. For validation we performed
DNA sequencing of normal tubes in comparison to HGSC and EEC BAVTs in the TCGA database.
Pathway analyses were carried out to evaluate the function of significant BAVTs. Our results show
that BAVT expression levels vary between different gynecological cancers. Finally, we mapped some
of these BAVTs to the human genome. Numerous map locations were close to regulatory genes and
long non-coding RNAs based on the pathway enrichment analysis. BAVTs may affect gynecological
cancer risk and may be part of potential targets for cancer therapy.

Keywords: metagenomics; high grade serous ovarian cancer; endometrioid endometrial cancer;
bacterial; archaea and viral transcripts

1. Introduction

An estimated 15–20% of cancers worldwide are linked to viral, parasitic, or bacterial
infections and they were responsible for 2.2 million cancer deaths in 2012 [1]. Some of
the best examples of cancer-associated infectious agents are hepatitis B virus (HBV), hu-
man papillomavirus (HPV), Epstein-Barr virus (EBV), human immunodeficiency virus
(HIV), and Helicobacter pylori. A subset of these viruses are known to integrate into
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the human genome [2]. H. pylori association with carcinogenesis is one of the best un-
derstood [3], but there are also other microbes that have been associated with cancer [4],
including bladder [5], and colon [6–8]. Some of these bacteria associated with cancer
may alter the microenvironment to favor tumor formation or favor certain alterations in
specific cancers [3].

Several studies, including the Human Microbiome Project Consortium [9,10], have
studied the human microbiome (microbial community occupying the human body). These
studies included the normal microbiome of the vaginal environment. However, few of
them studied the upper genital tract, and even fewer studied gene expression of these
organisms (or metagenomics and metatranscriptomics) in the upper tract [11,12].

There is evidence of a microbiome in the female genital tract with indications of
gene expression from these microorganisms. However, to date, microbiome variations
in transcription have not been evaluated relative to upper genital tract cancer risk. Our
hypothesis is that bacteria, archaea, and viruses influence the risk for cancer in the female
genital tract, specifically tubal/ovarian and endometrial cancer. This influence also may
affect the heterogeneity of these cancers and their distinct responses to therapy. To test this
hypothesis, we first assessed differences in bacterial, archaea, and viral transcripts’ (BAVT)
expression between normal tube and ovarian cancer. Then compare differences of BAVT
expression between different gynecological cancers, ovarian and endometrial. Finally, we
assessed the correlation of significant BAVT with gene and long non-coding RNA (lncRNA)
expression and various regulatory processes.

2. Materials and Methods

This is a retrospective nested case-control study that used clinical and genomic infor-
mation to create and compare classification of metagenomic sequences from high-grade
ovarian and endometrioid endometrial cancers. Due to increasing evidence of the genesis
of high-grade serous cancer (HGSC) in the fallopian tube, we used normal fallopian tube
samples as a normal control for HGSC [13]. We then compare the results from this classifi-
cation with the classification scheme of the Cancer Genome Atlas (TCGA) gynecological
cancer samples: HGSC and EEC.

2.1. Clinical Data

Clinical and pathological data were collected from electronic medical records [14].
Only baseline clinical and pathological characteristics were included.

2.2. Biological Data
2.2.1. Samples

Genomic DNA (gDNA) and total cellular RNA were purified from flash frozen tumor
(ovarian and endometrial) and normal tissues stored in the Department of Obstetrics
and Gynecology Gynecologic Oncology Bank (IRB, ID#200209010) which is part of the
Women’s Health Tissue Repository (WHTR, IRB, ID#201809807). A separate approval was
given by the University of Iowa (UI) Institutional Review Board (IRB, ID#201202714) to
collect 20 normal fallopian tube samples in coordination with the University of Iowa Tissue
Procurement Core Facility to be used as controls. Tubal samples came from the junction
of the ampullary and fimbriated end of fallopian tubes of volunteers without any family
or personal history of cancers who were scheduled to undergo salpingectomy for benign
indications (mainly sterilization). No patient indicating a personal or family history of
cancer was included. All tissues archived in the WHTR were originally obtained from adult
patients under informed consent in accordance with University of Iowa IRB guidelines.

2.2.2. DNA and RNA Purification and Sequencing

The WHTR contains more than 60,000 biological samples, including more than
2500 primary gynecologic tumors [15]. All tissues in the WHTR are collected under
informed consent in accordance with the University of Iowa IRB guidelines (IRB Number
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200910784 and IRB Number 200209010). Of the 193 patients identified in the original HGSC
panel, we were able to obtain 112 tumor tissues with sufficient RNA yield and quality for
analysis [16]. Similarly, of the 126 patients identified in the original endometrial endometri-
oid cancer panel, we were able to obtain 62 primary tumor tissues with sufficient RNA yield
and quality for analysis [17]. From the 20 original normal fallopian tube samples, 12 had
sufficient RNA yield and quality for analysis [16] (Figure 1). DNA also was extracted from
10 of these normal Fallopian tubes for analysis. Tumor samples were collected, reviewed
by a board-certified pathologist, and flash frozen. HGSC diagnosis was confirm in paraffin.
Specimens had less than 30% of necrosis.
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Figure 1. Flowchart of patients included in the analysis: (A) samples from patients with normal fallopian tubes, and no risk
factors for cancer. (B) Samples from patients with high grade serous ovarian cancer (HGSC). (C) Samples from patients with
endometrioid endometrial cancer (EEC).

Total cellular RNA was purified from primary tumor tissue using the mirVana RNA
purification kit following manufacturers’ instructions (Thermo Fisher, Waltham, MA,
USA). Yield and quality of purified cellular RNA was assessed using a Trinean DropSense
16 spectrophotometer and an Agilent Model 2100 bioanalyzer. Only RNAs with an RNA
integrity number (RIN) [18] greater than or equal to 7.0 were selected for RNA sequencing.
Equal mass total RNA (500 ng) was quantified by Qubit measurement (Thermo Fisher).
Each qualifying tumor was fragmented, converted to cDNA and ligated to bar-coded se-
quencing adaptors using Illumina TriSeq stranded total RNA library preparation (Illumina,
San Diego, CA, USA).

Genomic DNAs were purified from frozen tumor tissues using the DNeasy Blood and
Tissue Kit according to manufacturer’s (QIAGEN GmbH, Hilden, Germany) recommendations.

Molar concentrations of the indexed libraries were confirmed on the Agilent Model
2100 bioanalyzer and libraries were then combined into equimolar pools for sequencing.
The concentration of the pools was confirmed using the Illumina Library Quantification
Kit (KAPA Biosystems, Wilmington, MA, USA). Sequencing for both RNA and DNA was
then carried out on the Illumina HiSeq 4000 genome sequencing platform using 150 bp
paired-end SBS chemistry. All library preparation and sequencing were performed in the
Genome Facility of the University of Iowa Institute of Human Genetics (IIHG). Quality
control (QC) of RNA sequencing experiments (RNA-seq) were performed to minimalize
technical biases.

2.2.3. Metagenomics Classification

Classification is different from alignment in that classification is performed on a large
set of genomes as opposed to just one reference genome when alignment is done [19].
Before the actual classification is done, an index with the set of genomes to use for the
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classification must be built. We built an index with the genomes of bacterial, archaea, viral,
and human species. Centrifuge is a metagenomics classifier that can store and manage large
number of genomes, taxonomical mappings, and tress [19].

We obtained fastq files from RNA-seq experiments of all samples. Then, we applied the
Centrifuge algorithm to extract reads from fastq files and classify resultant transcripts in four
possible indexes: bacterial, archaea, viral and human genomes. After the classification, we
took the transcripts counts for all indexes and used DESeq2 package to import, normalize,
and log2-transform the data for analysis [20]. There were 9957 different transcripts resulting
from the classification, including different Taxonomic ranks. For the study we compare
only transcripts at the species Taxonomic rank: a total of 5042 unique transcripts for HGSC,
EEC and control (fallopian tubes) samples.

2.3. Statistical Analysis

Comparisons between the number of BAVTs found in normal fallopian tube and
HGSC samples were assessed with chi-square. A p-value < 0.05 was considered significant.

2.3.1. Association of BAVT with HGSC

Comparison of BAVT between normal fallopian tubes and HGSC samples was per-
formed with multiple t-test of normalized, log2-transformed transcript counts. To account
for multiple comparisons, differences of transcripts (BAVT) expressions between the classes
(HGSC and normal tube) at the univariate significance level of p < 0.005 were considered
significant [21]. Then, we performed a multivariate lasso regression analysis to assess the
independent BAVTs associated with cancer was built introducing significant variables in
the univariate analysis. Lasso is a multivariate regression method that allows simultaneous
selection and estimation of the effects of variables, while accounting and adjusting for
confounding factors [22].

2.3.2. Differences of BAVT Expression between HGSC and EEC

Comparison between BAVT among HGSC and EEC samples were performed as
previously (t-test). Similarly, multiple comparisons were accounted for.

2.3.3. Validation of Differential BAVT between HGSC and EEC in TCGA Dataset

Validation of BAVT expression was performed using the TCGA HGSC and EEC
databases. BAM files were downloaded from TCGA website. Then, these files were trans-
formed to fastq format with bedtools a suite of tools for genomic analysis [23]. Then fastq files
were processed as previously to obtain normalized, log2-transformed BAVTs from HGSC
and EEC samples form TCGA. For validation of previous results, those BAVTs that were
considered significant in previous comparisons were assessed in TCGA BAVT expressions.

2.3.4. Correlations between BAVT Expression and Gene and lncRNA Expressions

Correlations between BVAT and gene and lncRNA expression were performed using
Spearman’s rank correlation test, as the expression between these genomic elements is
not completely independent from one another. Statistical significance was assessed with
p-value and Bonferroni correction for multiple comparisons [21].

2.3.5. Power Calculation

If we take the 50th percentile of the variance distribution, we will need 13 samples
per group, for the analysis to have 80% power to find transcripts with a mean difference
of 1 in expression (log2-transformed) between classes and 0.005 Type 1 error. For the 75th
percentile of the variance distribution we would need 23 samples per group.
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2.4. Bioinformatics
2.4.1. Mapping Significant Transcripts to the Human Genome

To identify exactly where significant BAVT is mapped in the human genome, we first
downloaded reference sequences (from the NCBI, or National Center for Biotechnology
Information) of those species that were detected and found to be significant in previous
analyses. These sequences were aligned with fastq files from ovarian cancer patients using
another aligning method, HISAT2 software [24]. Concordant aligned pairs were selected
using the SAMtools software [25]. A concordant pair aligns with the expected relative
mate orientation and with the expected range of distances between mates. Then, selected
alignments with BAVT were blasted against the human genome (hg38 version) with
BLASTN, megablast option [26]. The best alignments were mapped with UCSC Genome
Browser into the human genome (hg38) at the chromosomal level. Genes and transcripts
were included in the same UCSC visualizing window that the mapped sequences were
considered to be in the vicinity (around 25kb per side).

To assess expression count, RNA-seq reads were mapped and aligned to the human
reference genome (version hg38) using STAR, a paired-end enabled algorithm [27]. BAM
files were produced after alignment and featureCount to measure gene expression from
BAM files [28]. LncRNA were also determined using BAM files as input and processing
the files with UClncR [29]

2.4.2. Pathway Enrichment Analysis

To identify over-represented and significant pathways among the selected list of
genes we used clusterProfiler (R project), an integrated and curated “knowledge-based”
platform that uses KEGG databases [30,31]. The p-value of significant associated pathways
represents the probability that a particular gene of an experiment is placed into a pathway
by chance, considering the numbers of genes in the experiment, and total genes across
all pathways.

Except for Centrifuge, most analyses were performed using R statistical package for
statistical computing and graphics (www.r-project.org, accessed on 20 January 2020) as
background, using Bioconductor packages as open-source software for bioinformatics
(bioconductor.org, accessed on 20 January 2020).

3. Results
3.1. Association of BAVT with HGSC

We found 4.7% BAVT in normal tubal samples and 3.1% in HGSC, p < 0.001 (Figure 2A,
Figures S1 and S2). There were 202 BAVT that were significant in the univariate t-test
analysis. These differences are observed with a heatmap (Figure 2B). Species with highest
difference are detailed in Figure 2C.

We introduced all significant differentially expressed BAVT between normal tubes
and HGSC into a multivariate lasso regression model. The model resulted in 12 species
independently associated with HGSC (Figure 3A,B). As previously, the majority of BAVT
were more highly expressed in the normal tissue than in cancer samples (Figure 3C).

3.2. Differences of BAVT Expression between HGSC and EEC

Then we compared BAVT expression levels between HGSC and EEC and found
93 BAVTs differentially expressed between both types of gynecologic cancers. In Figure 4
we present a heatmap of the differentially expressed BAVTs by location (Figure 4A). When
we compared the expression of the twelve BAVT species independently expressed be-
tween HGSC and normal tubes between HGSC and EEC samples, 7 of them were also
significant: Pusillimonas sp. ye3, Riemerella anatipestifer, Salinibacter ruber, Bacillus
tropicus, Nostocales cyanobacterium HT-58-2, Orgyia pseudotsugata, and Corynebac-
terium pseudotuberculosis. We represented BAVT expression of these 12 independently
expressed BAVT between HGSC and normal tubes in all samples to appreciate expression
patterns (Figure 4B). Furthermore, when the normalized mean expression of indepen-
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dently significant BAVT were plotted by sample anatomical location, normal fallopian tube
had the highest overall expression. Between EEC and HGSOC samples, the majority of
BAVT expression was higher in EEC samples and expression in HGSC samples was the
lowest (Figure 4C).

To evaluate whether genomic material from these microorganisms was present only
in the transcriptome or if it was also present at the genetic (DNA) level, we extracted
DNA also from some of the normal fallopian tubes (n = 10) and performed whole genome
sequencing. To classify tubal germline DNA in bacterial, archaea, or viral (BAV) we applied
the centrifuge classification algorithm. We then assessed the presence of BAV germline DNA
copies with BAVT expression in normal tubes and we found over 10,660 different BAV
genomic sequences (Figure 5). We looked for those DNA sequences from all the BAVT that
were significant in the univariate analysis comparing tubes and HGSC, N = 202 (Figure 5A).
There were only 10 BAVT significant in the univariate analysis that had no genomic DNA
copies (Figure 5B), but all BAVT significant in the multivariate analysis had their respective
DNA copy (Figure 5C).
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3.3. Validation of BAVT Analysis in TCGA Dataset

To assess whether our findings are also observed in other genomic databases, we
downloaded TCGA datasets for EEC and HGSC, converted BAM files into fastq format
and applied the centrifuge classification algorithm. We observed that 0.8% of all transcripts
in the combined TCGA dataset (EEC = 407 and HGSC = 373) were BAVT (Figure 6A).
We also identified 91 out of the 93 significant BAVT in the comparison between EEC
and HGS performed in samples from the UI: 88 were significant, with a p-value < 0.05
(Figure 6B) with an accuracy of 64% (95% CI: 59%, 71%, Figure 6C). All BAVT significant in
the multivariate analysis between tube and HGSC were also significant in TCGA analysis of
EEC versus HGSC (all with p < 0.001, Figure 6D). We note that RNA-seq of TCGA samples
was done on 75 mers while for the UI RNA-seq we used 150 mers. This may have affected
the background noise of the measurement and, potentially, the accuracy.
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3.4. Mapping Significant BAVT and Correlation with Gene and lncRNA Expression

To investigate the potential origins of these BAVT, we mapped these sequences to the
human genome, hg38 version. First, we mapped independently significant BAVT from
the HGSC vs. tubal multivariate analysis, on reference sequences downloaded from the
NCBI (Table 1). The best concordant aligned sequences were blasted against the human
genome and then mapped into the UCSC human genome (Figure S3 and Table S4). Known
genes and transcripts in the vicinity of the mapped sequences were identified: those that
were located within the margins of the blasted sequence, and those that were close to that
location. See Table S4 for more information about the proximity of these loci, and Figure S5
for detailed mapping of these BAVTs on hg38 chromosomes.
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The majority of these BAVT were located within or close to genes or lncRNAs. Seven
BAVTs, Bacillus megaterium, Cutibacterium acne, Orgyia pseudotsugata, Mycobacterium
shigaense, Bacillus tropicus, Pusillimonas sp., were mapped close to lncRNAs: AL591845.1,
WARS2-AS1, LINC01594, AC091685.1, AF279873.3, LINC00350, LINC01224, FP671120.4,
FP236383.3, AL807742.1, AC114814.3, AC092691.3, AC137810.1, LINC01170, LINC02553,
AC090680.1, LINC00399, AL163541.1, LINC00273. Other BAVTs were mapped within or in
close proximity to 38 independent genes (Table S1). Several BAVTs mapped in multiple
loci in the genome. To evaluate the association between BAVT mapping and gene/lncRNA
expression, we correlated the expression of mapped BAVT with the expression of lncRNA
close by and with expression of those 38 genes, as explained in the Methods section
(Figure 7). Then, we evaluated the association between significantly correlated lncRNA in
Figure 7A (LINC02553, AL591845.1, and AL163541.1) with all expressed genes (Table 2).

3.5. Pathway Enrichment Analysis

All significantly correlated genes with either mapped BAVT or with significant lncRNA
(LINC02553, AL591845.1, AL163541.1) were introduced in an enrichment pathway analysis.
Overrepresented and statistically significant pathways in this list of genes are displayed
in Table 3. Most of these pathways are involved in infectious processes, including the
novel Coronavirus disease—COVID-19 pathway (representation of KEGG pathways are in
Figures S6–S8).
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color) in the normal tube. (C) All independently significant BAVT in the multivariate analysis had genomic copies in the
normal tubal DNA.
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Table 1. Significant species aligned to normal tube and HGSC samples. Represented are the species nucleotides that better
aligned with the RNA-seq transcripts of the HSGC samples. The last two columns contain averages of aligned bases. TaxID:
Taxonomy species ID; Nucleotides: NCBI accession numbers of the reference sequence of significant species.

Species TaxID Nucleotides Tube Cancer

Morganella morganii 582 NZ_CP033056.1 107.72 105.56
Bacillus licheniformis 1402 NZ_CP021669.1 75.95 76.12

Bacillus megaterium 1404
NZ_CP026740.1 121.36 122.05
NZ_CP026741.1 133.93 132.99

Corynebacterium pseudotuberculosis 1719
NZ_CP046731.1 199.59 201.63
NZ_CP046732.1 199.59 201.63

Cutibacterium acnes 1747

NZ_AP019664.1 262.37 253.21
NZ_CP012351.1 265.00 258.35
NZ_CP012352.1 301.50 266.20
NZ_CP012354.1 266.00 243.00
NZ_CP012355.1 261.00 265.87
NZ_CP012647.1 264.69 259.79

Riemerella anatipestifer 34,085
NZ_CP029760.1 125.79 141.15
NZ_CP045564.1 84.00 89.71
NZ_LT906475.1 85.11 79.47

Salinibacter ruber 146,919
NZ_CP030356.1 23.20 28.50
NZ_CP030716.1 26.94 27.13

Orgyia pseudotsugata multiple nucleopolyhedrovirus 262,177 NC_001875.2 148.10 160.98
Mycobacterium shigaense 722,731 NZ_CP022927.1 127.22 126.70

Nostocales cyanobacterium HT-58-2 1,940,762 NZ_CP019636.1 58.18 57.39
Bacillus tropicus 2,026,188 NZ_CP041081.1 223.61 212.87

Pusillimonas sp. ye3 2,028,345 NZ_CP022987.1 89.07 87.06

Table 2. Correlation of significant lncRNAs with all gene expression. LncRNAs that were significantly
correlated with mapped BAVT: LINC02553 with Cutibacterium Acnes, AL591845.1 with Pusillimonas
sp., and AL163541.1 with Orgyia Pseudotsugata, were latter correlated with gene expression to
understand the possible association between both expressions.

lncRNA mRNA r2 p-Value

AL163541.1 MIR4539 0.32 0.0002
AL163541.1 FXYD7 0.32 0.0003
AL163541.1 ARL9 0.31 0.0004
AL163541.1 KCNQ5-AS1 0.31 0.0004
AL163541.1 ZNF433 −0.30 0.0008
AL163541.1 MIR933 0.29 0.0010
AL163541.1 FXYD5 0.29 0.0010
AL163541.1 OR8B8 0.29 0.0012
AL163541.1 MYCNOS −0.29 0.0013
AL163541.1 RYBP −0.29 0.0013
AL163541.1 RNU6-69P −0.28 0.0014
AL163541.1 SLC22A6 −0.28 0.0016
AL163541.1 ANO10 −0.28 0.0016
AL163541.1 PANO1 0.28 0.0016
AL163541.1 LOC642366 0.28 0.0019
AL163541.1 POLM 0.27 0.0020
AL163541.1 SMC6 −0.27 0.0029
AL163541.1 MIR4733 −0.26 0.0030
AL163541.1 ZNF90 −0.26 0.0033
AL163541.1 TTC32 −0.26 0.0033
AL163541.1 VTRNA1-1 −0.26 0.0034
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Table 2. Cont.

lncRNA mRNA r2 p-Value

AL163541.1 MIR466 0.26 0.0035
AL163541.1 IFNA21 0.26 0.0036
AL163541.1 DKKL1 −0.26 0.0036
AL163541.1 MYCN −0.26 0.0038
AL163541.1 MIR5582 −0.26 0.0039
AL163541.1 TAF1B −0.26 0.0039
AL163541.1 RDX −0.26 0.0039
AL163541.1 RPS12 0.26 0.0041
AL163541.1 KRTAP24-1 0.26 0.0041
AL163541.1 PDCD6IPP2 −0.26 0.0041
AL163541.1 GJC2 0.25 0.0043
AL163541.1 ITGA3 0.25 0.0044
AL163541.1 ANXA8 0.25 0.0044
AL163541.1 MIR3944 0.25 0.0045
AL163541.1 MIR3126 0.25 0.0047
AL163541.1 ZNF676 −0.25 0.0048
AL163541.1 FAM50B 0.25 0.0049
AL163541.1 MESDC2 −0.25 0.0050

Table 3. Pathway enrichment analysis with clusterProfiler (R project) with all significant correlated
genes between mapped BAVT and/or significant lncRNAs (LINC02553, AL591845. AL163541.1).
Based on KEGG Database information.

ID Description p-Value Symbols

hsa05168 Herpes simplex virus
1 infection 0.002 ZNF433/ZNF90/IFNA21/ZNF676/JAK1

hsa04151 PI3K-Akt signaling
pathway 0.003 IFNA21/ITGA3/HGF/JAK1

hsa05171 Coronavirus
disease—COVID-19 0.008 IFNA21/RPS12/JAK1

hsa01521 EGFR tyrosine kinase
inhibitor resistance 0.009 HGF/JAK1

hsa05165
Human

papillomavirus
infection

0.021 IFNA21/ITGA3/JAK1

hsa03450 Non-homologous
end-joining 0.024 POLM

hsa05162 Measles 0.027 IFNA21/JAK1
hsa05160 Hepatitis C 0.033 IFNA21/JAK1
hsa04217 Necroptosis 0.034 IFNA21/JAK1

hsa04630 JAK-STAT signaling
pathway 0.035 IFNA21/JAK1

hsa05161 Hepatitis B 0.035 IFNA21/JAK1
hsa05164 Influenza A 0.039 IFNA21/JAK1
hsa05152 Tuberculosis 0.043 IFNA21/JAK1

hsa04621 NOD-like receptor
signaling pathway 0.043 IFNA21/JAK1

hsa05167
Kaposi

sarcoma-associated
herpesvirus infection

0.049 IFNA21/JAK1

4. Discussion

Bacterial, archaea, and viral transcripts’ (BAVT) expression is found in RNA-seq exper-
iments of samples from normal tissues and cancers [11,32–34]. Most of the metagenomic
and metatranscriptomics studies are focused on cancers from the gastrointestinal tract [35],
or skin [36], or head/neck regions [37]. However, the presence of microorganisms and
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BAVT in the female upper genital tract has recently been reported [11,12,34]. These studies
not only have demonstrated the existence of microorganism in the female genital tract,
but also have observed that components of this ecosystem gradually change from the
vagina to the peritoneal fluid [12]. Also, there were differences in the composition of
transcripts found in these areas which showed genes involved in metabolism, replication
and repair, membrane transport, and drug resistance in upper areas, whereas in the lower
areas predominated genes were involved in translation, energy metabolism, and cofactors
and vitamins metabolism. Though vaginal specimens were well represented, there were
few samples from the upper tract and that limited the scope and generalizability of their
conclusions [12]. With the present study we add further evidence of the presence of BAVT
in the upper genital tract in normal and cancer samples from patients. Further, we found
genetic copies of bacterial, archaea, and viral DNA in benign fallopian tube samples. It
must be noted that in our study all samples were obtained during surgery, so they were
collected under clean conditions. We do not completely understand the origin of these
BAVT, but we have determined that there are loci in the human genome that seem to
preferentially harbor genetic material from these microorganisms. We do not know as yet
if they are functional or if they are transcribed. BAVTs could potentially originate partially
from normal genital tract flora and partially from inserted microbial genetic material. Some
of the BAVT that were significant in the univariate analysis had no reciprocal DNA copy in
the genome of the tube, supporting the idea of external BAVT production.

Some of the described microorganisms associated with HGSC and EEC have been
associated previously with cell proliferation, some types of cancer or even cancer treatment.
The Orgyia pseudotsugata nuclear polyhedrosis virus expression of proteins that inhibit
apoptosis in immature thymocytes have also been implicated in cell division, cell cycle
regulation, and cancer [38]. Cutibacterium acnes (formerly Propionibacterium acnes)
have also been linked to the development of prostate cancer [39]. Also, certain types of
splenic lymphomas have been associated to disseminates infections of Mycobacterium
shigaense [40]. Lastly, a lipopeptide from the bacteria Bacillus megaterium seems to be
a potent chemosensitizer in docetaxel resistant breast cancer cells by reducing the AKT
signaling pathway [41].

We have observed that the amount of BAVT expression is associated with the presence
of gynecological cancer and may also be important to the location of the cancer. BAVT ex-
pressions in the normal tissue were the highest and were decreased in EEC and even more
in HGSC samples. Moreover, potentially, BAVTs could originate from the host genome and
from normal flora within the genital tract. The balance between both sources could deter-
mine the quantity of transcript present, and that could turn out to be vital in modulating
the risk of cancer. Any condition that alters this balance may also influence specific cancer
risks or may modulate a variety of genomic features that may affect tumor heterogeneity.
For example, in epidemiological studies it has been observed that tubal ligation, that usu-
ally blocks tubal lumen and passage, decreases the risk for ovarian cancer [42,43]. Also,
endometriosis has been postulated as a risk factor for ovarian cancer [44,45]. Inflammation
due to tubal endometriosis is a known factor involved in ovarian cancer carcinogenesis,
mainly through DNA mutation mediated by free radicals associated with inflammatory
process [46]. Further alteration of the microenvironment through microbiome and BAVT
dysregulation may be synergistic or inhibitory of these mechanisms. Another example is
the use of powdered talc in the genital area. This chemical may alter the microenvironment
subsequently elevating the risk of cancer [47]. Finally, in observational studies patients
with ovarian cancer or predisposition for ovarian cancer (germline BRCA1 mutation) were
associated with a specific microbiome in the vagina/cervix [48]. Further studies are needed
to identify the exact origin of these BAVT (host or microorganisms), the balance that is
needed for organ homeostasis, and the unbalance that may lead to alterations.

Significant BAVT in multivariate analysis comparing normal tube versus HGSC were
correlated with gene expression and expression of some regulatory lncRNAs. In the
pathway analysis, these associated genes seem to play a role in pathways of infection
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and intracellular signaling which also are important in cancer genesis [49]. IFNA21 is
one of the genes correlated with BAVT and is a member of the alpha interferon gene
cluster that are produced in response to viral infection. Similarly, IFNA21 is an important
component of the PI3K-AKT/mTOR pathway and was significantly correlated with the
lncRNA AL163541.1, which in turn is significantly associated with the presence of Orgyia
pseudotsugata transcripts. Also, IFNA21, as part of the alpha interferon gene cluster,
mediates the immune response and interfere with viral replication. It has been observed
that deletions of chromosome 9 short arm, which harbors a cluster of these interferon genes,
may occur in acute lymphoblastic leukemia and in gliomas. Deletions are observed in lower
frequency in lymphomas, melanomas, lung cancers, and other solid tumors [50]. ITGA3 has
been implicated in the infectivity and associated signaling pathways in Kaposi’s sarcoma-
associated herpesvirus HHV-8 entry into target cells [51]. JAK1 is one of the components
of the PI3K-Akt signaling and JAK/STAT3 signaling pathways. The PI3K-AKT/mTOR
pathway has a critical malignant transformation of human tumors [52] and, specifically, is
one of the major pathways that is aberrantly activated in ovarian cancer and associated
with tumor progression and poor prognosis in patients with ovarian cancer [53]. This
pathway is a potential target for new therapeutic agents [54]. PI3K-AKT/mTOR pathway
is downregulated by PTEN, a tumor suppressor. Mutations in PTEN are the most frequent
genetic alteration in endometrial cancer [55]. In cell cultures, PTEN mutated cells seem
to be more sensitive to poly ADP-ribose polymerase (PARP) inhibitors [55]. Some viral
infections, like SARS-CoV2, also seem to hyperactivate the JAK1/2-STAT1 signaling system,
especially in critical patients [56]. The hepatocyte growth factor (HGF) has been known
to play a predominant role in many types of human cancers, promoting invasiveness and
metastasis of ovarian cancer cultured cells. Interestingly, these effects may be mediated
by PARP-1 [57]. Finally, EGFR tyrosine kinase inhibitors (TKI) modulate the antitumoral
activity of immune cells. However, long-term exposure of ovarian cancer cells to TKIs
may reduce the responsiveness to treatment [58]. Anti-EGFR TKIs may help modulate
that resistance with promising results in colon cancer [59]. Pathway analyses could inform
how genes correlated with BAVT are associated with signaling pathways. However, we
need functional analysis to better understand how BAVTs influence signaling pathways,
like JAK/STAT and PI3K-AKT/mTOR. Even more importantly, functional analysis could
better inform whether changes in BAVT expression could help in the selection of targeted
therapies, like: JAK inhibitors to target the JAK1/STAT3 signaling pathway [53], or mTOR
inhibitors [54], PARP inhibitors to target HGF-mediated activation in ovarian cancer [57]
or PTEN-mutated cells in endometrial cancer [55], and double TKIs therapy to counteract
EGFR TKI resistance in endometrial cancer [59].

A limitation of this study is the retrospective nature of the design. These studies were
not originally designed to be a functional analysis of BAVTs expression. Thus, despite
statistical significance in the association between BAVTs and cancer and correlation with
gene regulation, these results will have to be examined and validated mechanistically.
Likewise, it is difficult to determine the exact origin of BAVT expression whether intrinsic
(from the host) or extrinsic (by colonizing microorganisms). To better identify and quantify
origins, functional analyses are needed that are beyond the scope of this study. A major
strength of this study is that the data were collected at a single tertiary medical center,
which ensured protocol consistency in sample collection and analysis procedures. In
addition, due to the diversity of patients treated at a large tertiary medical center, the
samples included in this study likely represent a broad array of the clinical phenotypes
of EEC and HGSC. Despite the limited number of normal fallopian tube control samples,
tubal RNA-seq analysis findings were validated by determinations of BAVT gene copies
with DNA-seq of the same tubal samples. Validation of BAVTs expression comparison
between EEC and HGSC was performed in the independent, well-known, and validated
TCGA database. Although samples were collected in a clean environment (OR setting),
contamination has been reported in laboratory instruments such as spin columns [60]. We
do not believe that the results were biased due to contamination. Validation of RNA-seq
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results with DNA-seq determinations and with validation in an independent dataset along
with independent lab processing minimizes the possibility of bias by contamination.

5. Conclusions

In summary, we have identified bacterial, archaea, and viral transcripts’ (BAVT) expres-
sion in samples from normal fallopian tubes and gynecologic cancers. We find that BAVT
expression levels vary between different gynecological cancers. Although confirmation is
needed, some of this BAVT expression may originate from genomic material embedded
in the human genome. Genes and lncRNAs correlated with BAVTs were associated with
infectious and cancer signaling pathways. Some of these pathways associated with BAVT
could inform of potential candidates for targeted therapy in future mechanistic analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/5/1109/s1, Figure S1: Transcript expression of bacterial, viral and archaea organisms between
normal tube tissue and ovarian cancer, Figure S2: Sankey diagram visualization of the flow of values
of human, bacterial, viral and archaea transcripts: the width of the diagram measures the size of
transcripts, Figure S3: Sequence of methods with Cutibacterium Acnes (nucleotide NZ_AP019664.1)
as an example, Figure S4: Detailed mapping of significant BAVT integrated into the human genome,
Figure S5: Herpes simplex virus 1 infection pathway (KEGG ID hsa05168), Figure S6: PI3K-Akt
signaling pathway (KEGG ID hsa04151), Figure S7: Coronavirus disease - COVID-19 pathway
(KEGG ID hsa05171), Table S1: Methodological process using Cutibacterium Acnes (nucleotide
NZ_AP019664.1) as an example.
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