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Abstract: Accurate stratification of sepsis can effectively guide the triage of patient care and shared
decision making in the emergency department (ED). However, previous research on sepsis identifi-
cation models focused mainly on ICU patients, and discrepancies in model performance between
the development and external validation datasets are rarely evaluated. The aim of our study was
to develop and externally validate a machine learning model to stratify sepsis patients in the ED.
We retrospectively collected clinical data from two geographically separate institutes that provided
a different level of care at different time periods. The Sepsis-3 criteria were used as the reference
standard in both datasets for identifying true sepsis cases. An eXtreme Gradient Boosting (XGBoost)
algorithm was developed to stratify sepsis patients and the performance of the model was compared
with traditional clinical sepsis tools; quick Sequential Organ Failure Assessment (qSOFA) and Sys-
temic Inflammatory Response Syndrome (SIRS). There were 8296 patients (1752 (21%) being septic)
in the development and 1744 patients (506 (29%) being septic) in the external validation datasets.
The mortality of septic patients in the development and validation datasets was 13.5% and 17%,
respectively. In the internal validation, XGBoost achieved an area under the receiver operating
characteristic curve (AUROC) of 0.86, exceeding SIRS (0.68) and qSOFA (0.56). The performance
of XGBoost deteriorated in the external validation (the AUROC of XGBoost, SIRS and qSOFA was
0.75, 0.57 and 0.66, respectively). Heterogeneity in patient characteristics, such as sepsis prevalence,
severity, age, comorbidity and infection focus, could reduce model performance. Our model showed
good discriminative capabilities for the identification of sepsis patients and outperformed the existing
sepsis identification tools. Implementation of the ML model in the ED can facilitate timely sepsis
identification and treatment. However, dataset discrepancies should be carefully evaluated before
implementing the ML approach in clinical practice. This finding reinforces the necessity for future
studies to perform external validation to ensure the generalisability of any developed ML approaches.
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1. Introduction

Sepsis, defined as “life threatening organ dysfunction caused by a dysregulated host
response to infection” [1], is a global health problem with high mortality and morbidity [2].
Epidemiologic estimates have reported that the crude mortality of sepsis patients is over
20% [2–5], and the global cost of sepsis is estimated to be $16.7 billion [6,7]. Numerous
studies [8–10] have demonstrated that timely identification of sepsis and initiation of an
evidenced-based treatment protocol could decrease in-hospital mortality, shorten length of
stay and reduce healthcare costs. Nevertheless, because of the heterogeneity of infectious
insults and the diversity of hosts, efficiently recognising and treating sepsis remains highly
challenging for physicians [11].

Early sepsis identification relies upon clinical data that is readily available during
hospitalisation [12]. The currently available clinical sepsis risk scores, namely the Systemic
Inflammatory Response Syndrome (SIRS) and quick Sequential Organ Failure Assessment
(qSOFA), have several shortcomings, which hamper their utilisation in identifying the early
signs of organ failure [13–15]. Therefore, it is urgently needed to develop a more precise
and personalised tool to recognise sepsis in a timely manner. The increasing availability
of electronic health records (EHR) and advancing machine learning (ML) techniques has
stimulated attempts to identify patient conditions through the automated analysis of
medical records. Previous studies have shown that the ML approach can facilitate the
detection of sepsis and septic shock [10,16–18]. However, the clinical utility of these models
in the emergency department (ED) setting remains uncertain. The majority of previous
studies developed and validated the ML models using clinical data only from the intensive
care unit (ICU) [18–23].

To better evaluate the clinical utility of ML approaches for identifying sepsis patients
in the ED, we developed an ML technique to correctly identify sepsis patients, using clinical
predictors available in the electronic health record (EHR). Afterward, we validated our
model externally using a distinct dataset from a geographically separate institute that
provided a different level of care. Finally, we compared model performance with currently
available risk scores.

2. Materials and Methods

Overview of the study: The ML model was developed and externally validated to
identify sepsis patients in the ED. The overall process of our study is depicted in Figure 1.
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2.1. Study Population

From the EHR, we retrospectively collected clinical information from all adults
(≥20 years old) admitted to the ED as inpatients (July 2016 to October 2016) at Chi-Mei
Medical Center, a tertiary teaching hospital located in Southern Taiwan. Sepsis cases
were assessed based on a manual chart review according to the Rhee clinical surveillance
criteria [24]. Two experienced clinicians independently reviewed the medical records of the
study cohorts, throughout the clinical course from ED arrival to hospital charge or death,
to determine whether a patient had sepsis. Patients were excluded if they were (a) less
than 20 years old, (b) identified as septic patients before ED admission. This study was
reviewed and approved by the Institutional Review Board of Human Research at both the
Chi-Mei Medical Centre and the Taoyuan General Hospital (IRB No: TYGH107014).

2.2. Sepsis Definitions

Sepsis was confirmed when either one of the following two conditions were fulfilled
(Table 1): (1) the Sepsis-3 definition [1], that is, having a suspected infection (prescription
of antibiotics and sampling of bodily fluids for microbiological culture) combined with
evidence of organ dysfunction, defined by an increase in the Sequential Organ Failure
Assessment (SOFA) score greater than or equal to two, and (2) having a suspected infection
combined with evidence of hypoperfusion and shock, including lactate >2 mmol/L and
the presence of vasopressor medications.

Table 1. Sepsis-3 (revised) definition for sepsis compared with the traditional sepsis definition.

Traditional Definition Sepsis-3 Definition

Sepsis Suspicious/known infection + ≥2 SIRS Suspicious/known infection + rise in
SOFA score ≥2

Severe sepsis

Sepsis
+

SBP < 90 mmHg or MAP < 65 mmHg,
lactate > 2 mmol/L (18 mg/dL)

INR > 1.5 or a PTT > 60 s
Bilirubin > 34 µmol/L

Urine output < 0.5 mL/kg/h for 2 h
Creatinine > 177 µmol/L
Platelets < 100 × 109/L
SpO2 < 90%on room air

Not a category

Septic Shock

Sepsis
+

hypotension
after adequate fluid resuscitation

Sepsis
+

Vasopressors needed for
MAP >65 mmHg

+
Lactate > 2 mmol/L

after adequate fluid resuscitation

2.3. Predictor Variables

We collected the following clinical information which was available in the EHR:
patient’s vitals upon arrival acquired by a triage nurses including; systolic blood pressure
(SBP), diastolic blood pressure (DBP), respiratory rate (RR), Glasgow coma scale (GCS),
body temperature (BT), heart rate (HR), and the first acquired laboratory study results
during the patient’s stay at the emergency department, including complete blood count,
lactate level, C-reactive protein (CRP), random glucose, sodium level (Na), potassium level
(K), blood urea nitrogen (BUN), creatinine (Cr), glutamic oxaloacetic transaminase (GOT),
glutamate pyruvate transaminase (GPT), total bilirubin (T.bil), high sensitivity Troponin I
(hs-TnI), and creatine kinase-MB (CK-MB).
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2.4. Model Development and Validation

The development dataset was split into training and testing sets (internal validation)
with an 80–20 ratio in a stratified fashion to preserve the same prevalence of sepsis cases
as in the development dataset. We developed eXtreme Gradient Boosting (XGBoost), a
highly scalable end-to-end tree boosting system proposed by Chen and Guestrin [25], on
the training cohort using all clinical variables and validated this model internally to stratify
sepsis patients.

XGBoost does not require data normalisation of input features and has the ability to
cope with sparse data. It surpasses traditional tree-based models by introducing regulari-
sation to avoid overfitting, by utilising gradient boosting to ensemble multiple tree models
for better performance, and by mitigating biases. The objective function was utilised in
minimising logistic loss, and we used the grid search method to tune the hyper-parameters
of our model. During the training process, five-fold cross validation was applied to reduce
sample bias. We selected the threshold that gave the highest F2-score. The equation for
calculating the F2-score is given below:

F2 = (5 × Precision × Recall)/(4 × Precision + Recall)

Modelling was developed using the software Python version 3.6.3 and XGBoost
Package version 1.2.1.

2.5. Evaluating Model Performance

We present the performance of the XGBoost model on the internal validation data
for identifying sepsis using AUC. We calculated accuracy, sensitivity, specificity, negative
predictive value (NPV), and positive predictive value (PPV). We compared the performance
of model with traditional clinical tools, namely SIRS and qSOFA.

2.6. Feature Selection

To determine the major predictors of stratifying sepsis patients, feature selection
was performed. We used XGBoost’s built-in function in Python, “feature importances”,
and analysed the top ranking features. This provided the information of the relative
contribution of the corresponding feature to the model calculated by taking each feature’s
contribution for each tree in the model. A higher ranked feature on the chart implies that it
is more important for generating the prediction.

2.7. External Validation

A separate cohort of 1744 unique adult patients admitted to the ED at Taoyuan General
Hospital, a regional hospital located in Northern Taiwan, from January 2018 to March 2018
was used for external validation. We collected the following information from external
validation datasets: (1) patient’s underlying comorbidities; (2) if antibiotics were prescribed,
the triage-to-drug time; (3) whether the discharge summary, either from the ED or after
hospitalisation, contained sepsis-related diagnosis codes; (4) documented infection focus
for the sepsis.

2.8. Statistical Analysis

Statistical analyses were performed for top ranking predictors of the model between
the development dataset and the external validation dataset. Additionally, in the external
validation dataset, with the prediction results of the machine learning model, we compared
the comorbidities and the infection source for sepsis between the true positive group and
the false negative group, and between the true negative and the false positive group. All of
the statistical analyses were performed using SAS Enterprise Guide 8.3. Student’s t-test was
used for continuous variables and the chi-squared test was used for categorical variables to
evaluate differences between the two groups.
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2.9. Promoting Interoperability

This article followed TRIPOD (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis) guidelines [26] (Supplementary Table S1).

3. Results
3.1. Patient Characteristics

After applying the exclusion criteria, the final development cohort sizes were
8296 patients (6637 (80%) for training and 1659 (20%) for internal validation). However,
the external validation cohort included 1744 patients, and 506 (29%) of them were sepsis
patients. The mortality of sepsis patients in the development and the external validation
dataset was 13.5% and 17%, respectively. In our external validation dataset, the average
triage-to-antibiotic time for patients coded as having sepsis was 3.18 h, whereas the average
triage-to-antibiotic time for true sepsis patients was 3.96 h (Table 2).

Table 2. Description of the development dataset and the external validation dataset.

Development Dataset Validation Dataset

Case number 8296 1744
Geographical region Southern Taiwan Northern Taiwan

Data collection period 1 July 2016 to
31 October 2016

1 January 2018 to
31 March 2018

Study design Retrospective Retrospective
Setting A tertiary teaching hospital A regional hospital

Inclusion criteria All the adult ED visits (≥20 years old) admitted as inpatient without further transferring during
the whole hospitalisation

Reference standard for
sepsis Sepsis-3 definition

Prevalence of sepsis 21% 29%
Mortality for sepsis 13.5% 17%

Meanlength of stay (days) 9.8 6.3
Model predictors mean s.d. mean s.d.
Average of SIRS 1.22 1.02 1.71 1.04

Average of qSOFA 0.33 0.62 0.57 0.76
Vital signs at triage

SBP 142.2 33.21 132.5 36.94
DBP 84.57 17.94 76.52 23.62
RR 18.24 3.48 20.30 3.83

GCS 14.27 2.23 13.65 2.99
BT 36.93 0.96 36.46 3.42
HR 92.80 21.74 93.44 25.54

Initial lab results at ED
WBC 10.94 6.14 11.45 5.74

Segment 76.30 15.77 76.84 13.07
Band 0.45 2.28 0.15 1.26

Eosinophil 1.38 2.38 1.21 1.95
Basophil 0.34 0.36 0.34 0.41

Lymphocyte 16.45 11.14 15.32 11.07
Platelet 232.6 96.85 247.6 121.9

Haemoglobin 12.52 2.87 12.04 2.91
Haematocrit 36.77 7.53 37.01 8.38

MCH 29.45 3.3 29.24 3.46
MCHC 33.16 1.64 32.34 1.74
MCV 88.76 8.45 90.25 8.87
RBC 4.16 0.90 4.135 1.00
RDW 14.24 2.39 11.29 2.34

Lactate 3.02 2.80 3.15 4.01
CRP 60.08 74.65 67.66 66.87
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Table 2. Cont.

Development Dataset Validation Dataset

Glucose 159.2 104.2 171.6 130.8
Na 142.3 29.38 137 6.50
K 4.08 1.37 4.14 0.73

BUN 30.17 27.10 29.80 27.36
Cr 1.39 1.80 1.67 2.07

GOT 87.29 187 61.68 225.7
GPT 42.1 114.2 42.91 104.4
T.bil 2.95 4.98 1.43 1.91

hsTnI 1043.8 21569.8 811.8 20073.5
CK-MB 8.24 32.53 6.10 22.46

Note: MCH = mean corpuscular haemoglobin; MCHC = mean corpuscular haemoglobin concentration; MCV = mean corpuscular volume;
RBC = red blood cell; RDW= red cell distribution width; SBP = systolic blood pressure; DBP = diastolic blood pressure; RR = respiratory
rate; GCS = Glasgow Coma Scale; BT = blood temperature; HR = heart rate; CRP = C-reactive protein; Na = sodium; K = potassium;
BUN = blood urea nitrogen; Cr = creatinine; GOT= aspartate aminotransferase; T.bil = bilirubin test; hsTnI = high sensitivity troponin;
CK-MB = creatine kinase-MB.

3.2. Model Performance for Identifying Sepsis Patients

When compared with the existing identification tools, the XGBoost model showed
significantly greater discrimination of sepsis. In the development dataset, there were
1742 sepsis patients. The XGBoost model showed significantly greater discrimination
(AUC: 0.86) in identifying sepsis patients. The area-under-the-curve (AUC) for external
validation was 0.75. However, XGBoost exhibited a higher AUC compared with SIRS and
qSOFA for identifying sepsis both in the internal and external validation sets (Figure 2).
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Figure 2. The area under the receiver operating curve comparison of XGBoost model with SIRS and
qSOFA; (A) internal validation and (B) external validation.

Table 3 presents the performance comparison between the XGBoost model and tra-
ditional sepsis tools. In the internal validation, XGBoost had a sensitivity of 80% and
specificity of 78%. For the identification of sepsis, SIRS had a sensitivity of 64% and speci-
ficity of 66%; qSOFA had a sensitivity of 35% and specificity of 96%. The predictive values
of XGBoost (PPV: 0.47, NPV: 0.94) were higher than that of SIRS (PPV: 0.34, NPV: 0.77) and
qSOFA (PPV: 0.76, NPV: 0.79). In the external validation, XGBoost had a sensitivity of 67%
and specificity of 70%, which was higher than SIRS (sensitivity: 66%, specificity: 47%), and
qSOFA (sensitivity: 36%, specificity: 89%). The PPV and NPV for XGBoost were 48% and
84%, respectively.
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Table 3. Diagnostic performance of the identification of sepsis.

Model Performance XGBoost SIRS qSOFA

Internal validation
Accuracy 0.78 0.69 0.79
Sensitivity 0.80 0.64 0.35
Specificity 0.78 0.66 0.96

PPV 0.47 0.37 0.53
NPV 0.94 0.88 0.81

External validation
Accuracy 0.70 0.34 0.75
Sensitivity 0.67 0.66 0.36
Specificity 0.70 0.47 0.89

PPV 0.48 0.34 0.76
NPV 0.84 0.77 0.79

Note: PPV = positive predictive value, NPV = negative predictive value.

3.3. Most Important Predictors of Sepsis as Assessed with the XGBoost Model

Figure 3 shows the feature rankings of the XGBoost model and the statistical analysis
of the 15 top-ranking features between septic patients in the development dataset and
septic patients in the external validation dataset. These 15 top-ranking features accounted
for 65% of the total weight.
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Figure 3. The upper bar plot shows the 15 top ranking features of the machine learning model. The
lower table is the statistical analysis of these features between septic patients in the development
dataset and septic patients in the external validation dataset. Most of the important predictors had a
heterogeneous distribution between the two datasets. (Lympho = percentage of lymphocytes in the
differential of the complete blood count).

3.4. Potential Clinical Confounders of Model Performance

Table 4 shows the statistical analysis of comorbidities and infection source for sepsis
between the true positive (TP) group and the false negative (FN) group, and between
the true negative (TN) and the false positive (FP) group in the external validation dataset
after implementing the machine learning model. The result suggests that age, presence of
coronary artery disease, chronic kidney disease, urinary tract infection, and pneumonia
might interfere with the model performance.
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Table 4. Statistical analysis of comorbidities and infection source among patients in the external validation dataset, divided
according to the model output.

TP FN p-Value TN FP p-Value

Age (years) 74.4 67.8 <0.001 61.8 59.9 0.1063
Presence of comorbidity

(%)
Diabetes mellitus 40.18 36.36 0.4097 27.75 29.23 0.5967

Hypertension 49.56 49.09 0.9212 41.63 36.89 0.1204
Coronary artery disease 14.37 13.33 0.7531 15.6 9.02 0.0021
Chronic kidney disease 12.02 9.7 0.4378 8.6 5.19 0.0388
End-stage renal disease 7.62 5.45 0.3671 4.93 5.74 0.5586

Cerebrovascular accident 19.35 16.36 0.4154 5.05 7.38 0.1074
Congestive heart failure 9.09 7.27 0.4917 5.16 3.55 0.2216

Malignancy 11.14 10.91 0.9317 8.37 11.2 0.116
Presence of infection

focus (%)
Urinary tract infection 28.45 20.61 0.0591 6.65 19.13 <0.0001

Cellulitis 3.52 3.03 0.7749 6.77 7.1 0.8302
Pneumonia 24.05 8.48 <0.0001 4.93 24.32 <0.0001

Intra-abdominal infection 2.93 6.06 0.0905 6.31 6.28 0.9878

Note: TP: True positive; FN: False negative; TN: True negative; FP: False positive.

4. Discussion
4.1. Main Findings

In the present study, we developed and externally validated an ML model to cor-
rectly identify sepsis in patients admitted to the ED. The XGBoost model demonstrated
great performance with an AUROC of 0.85 and 0.75 in the internal and external vali-
dation, respectively. Our current model significantly outperformed the other clinically
available stratifying tools. The findings of our study suggest that the XGBoost model has
an important clinical role in identifying sepsis patients in the ED.

4.2. The Pivotal Role of the ED in Developing a Sepsis Identification Model

International consensus has continued to emphasise the benefit of the early recognition
of sepsis, followed by timely treatment on patient outcomes [27]. Because the ED is
generally the initial arrival site for septic patients [24,28], this recommendation underscores
the pivotal role of optimising sepsis identification in the ED.

In order to minimise the risk of bias, our study followed the published recommenda-
tions [29,30] to develop and externally validate an ML model for sepsis identification in
the ED. The study shows that ML, even when externally validated in a discrepant dataset,
could demonstrate acceptable discriminative power in identifying sepsis patients and
outperformed the existing SIRS and qSOFA criteria.

In contrast to the neural network, which is like a “black box”, we adopted the XGBoost
model for its better clinical interpretability. According to Figure 2, the top-ranking features
of the machine learning model, such as CRP, Na, Cr, BP, and platelets, correspond well
with the key clinical features that physicians use to identify sepsis or to assess the severity
of sepsis.

4.3. Machine Learning Might Help Shorten the Triage-to-Antibiotic Time

Early administration of antibiotics is crucial for improving outcomes in septic patients.
A delay in starting antibiotics is associated with increased in-hospital mortality [30,31],
especially in patients with septic shock. The survival rate can drop by 7.6% with each
hour of delay after hypotension has developed [30]. However, the door-to-antibiotic
time varies significantly among different attending physicians in the ED setting [32];
studies have shown that the median interval from the time of presentation to antibiotic
administration can range from 71 to 359 min, with a median of 4 h [33,34]. Physician and
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hospital related factors that contribute to such variation in time to antibiotic treatment
include diagnostic delays, computerised order entry systems and ED crowding [32]. In
our external validation dataset, the average triage-to-antibiotic time for patients coded
as having sepsis was 3.18 h, whereas the average triage-to-antibiotic time for true sepsis
patients was 3.96 h. Previous prospective interventional studies have demonstrated that the
implementation of computerised systems for assisting sepsis identification could shorten
the time to intervention for patients who triggered the sepsis alert [35–37]. These results
support the potential of ML for facilitating timely sepsis care and improving patient
outcomes.

4.4. Factors Associated with the Heterogeneity of Model Performance

Variations in the predictive performance of a model across different patient co-
horts have been well-documented for models developed using traditional statistical ap-
proaches [38–41]. However, the impact of heterogeneity in patient characteristics on model
performance has rarely been assessed for sepsis prediction models in the previous liter-
ature [42–45]. Among published models targeting sepsis identification in the ED setting,
only the one developed by Faisal et al. [46] was examined by external validation, which
also showed discrepant performance between the development dataset and the external
validation dataset. However, the authors did not elucidate the reason for the discrepancy.
Heterogeneity between the two independent datasets can generally be categorised into
“figure drifting” (i.e., differences in predictors) and “label drifting” (i.e., differences in
outcomes) [45]. Figure drifting and label drifting can originate from the data itself (e.g.,
differences in prevalence or severity), or the criteria used for determining the predictor
values or outcomes [41,47]. Different designs of external validation, such as temporal
(i.e., same institute, different study period), institutional (i.e., two geographically adjacent
institutes), and geographical (i.e., two institutes in different regions, or even countries),
determine the extent of heterogeneity between the external validation dataset and the
source dataset.

In the external validation dataset, we reaffirmed that ICD coding may not be an
appropriate surrogate for the Sepsis-3 criteria as the reference standard to identify sep-
sis [27,48,49]. However, even when the determination of outcomes (i.e., presence of sepsis)
was controlled by a standardised review process in this study, our results still show that
the performance of the ML model declines when the prevalence of the outcome and the
distribution of predictors differed between the two geographically and temporally inde-
pendent datasets. Patient comorbidities and infection sources, although not predictors, also
appeared to interfere with model performance. This finding indicates that the intended
population should be specifically defined to ensure the clinical applicability of the model.
Correspondingly, a thorough examination of data heterogeneity should be conducted to
judge the efficacy of ML on the targeted clinical setting.

4.5. Study Limitations

There are several limitations of this study. First, the development dataset and vali-
dation dataset were both derived from a single institute, which suggested that selection
bias might exists. However, the in-hospital mortality for patients with sepsis present on
admission, using the Sepsis-3 criteria for sepsis identification was similar to the previous
epidemiologic result (13.5% in our study vs. 13.4% in previous study) [24]. Second, hetero-
geneity in study designs has been shown to hinder the comparison of performance among
different models [18,27]. Therefore, we could hardly compare the performance of our
model with previous models [50–53] because considerable heterogeneity was found among
our study and previous studies, including the patient characteristics (e.g., all ED visits
versus only ED admissions, with differences in sepsis prevalence), selecting predictors (e.g.,
vitals, lab test results versus text data from the EHR), the reference standard for sepsis (ICD
coding versus the Sepsis-3 criteria), and diagnostic outcomes (e.g., sepsis versus severe
sepsis and septic shock versus mortality). Third, information on patient age, comorbidities,
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and infectious focus for sepsis was lacking in the development dataset for the comparison
of the two datasets. However, the collected vital signs and lab tests results appeared to
be sufficient to reflect the discrepancies in clinical manifestations between the two patient
cohorts. Finally, because our study results suggested several patient characteristics (such
as age, certain comorbidities, and infection focus) might interfere with the model perfor-
mance, whether the implementation of a ML model can shorten the triage-to-antibiotics
time requires future, prospective interventional trials.

5. Conclusions

Using commonly available clinical variables, we developed and externally validated a
ML model to effectively identify sepsis patients in the ED. This study demonstrated that
the XGBoost model outperformed the pre-existing conventional tools in identifying sepsis
patients; however, we also revealed that differences in patient characteristics, while being
key predictors, could reduce model performance. This finding reinforces the recommen-
dation of performing external validation to ensure the generalisability of clinical decision
support models. Because heterogeneity among patient cohorts seems inevitable, future
studies are needed to solve this model adaptation problem.
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