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The long-term and excessive usage of pesticides is an enormous burden on the
environment, which also increases pest resistance. To overcome this problem, research
and application of entomopathogenic fungi, which are both environmentally friendly and
cause lower resistance, have gained great momentum. Entomopathogenic fungi have
a wide range of prospects. Apart from Bacillus thuringiensis, Beauveria bassiana is the
most studied biopesticide. After invading insect hosts, B. bassiana produces a variety of
toxins, which are secondary metabolites such as beauvericin, bassianin, bassianolide,
beauverolides, tenellin, oosporein, and oxalic acid. These toxins help B. bassiana
to parasitize and kill the hosts. This review unequivocally considers beauveria toxins
highly promising and summarizes their attack mechanism(s) on the host insect immune
system. Genetic engineering strategies to improve toxin principles, genes, or virulent
molecules of B. bassiana have also been discussed. Lastly, we discuss the future
perspective of Beauveria toxin research, including newly discovered toxins.
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INTRODUCTION

Although chemical insecticides have been remarkably effective against agricultural pests and
medically important arthropods, these often have problems of insecticide resistance and
environmental damage (Naqqash et al., 2016). Therefore, bioinsecticides, such as those produced
from entomopathogenic fungi, are rapidly emerging as prime substitutes (Zhang et al., 2020b).
Notably, filamentous fungi, a major branch of eukaryotes, emerged during a long evolutionary
period. Studies and phylogenetic data over the last four decades indicate that convergent evolution
enhanced fungal virulence to most pests and medically important arthropods. This is the
prominent feature of several fungal lineages, which has drawn wide attention (Vega, 2008; Zheng
et al., 2013; Wang et al., 2021). Apart from the extracted active ingredients from filamentous
fungi, biopesticides also refer to other pesticides that are derived from natural sources such as
animals, plants, bacteria, and certain minerals (Mathur, 2013). As of April 2016, there are 299
biopesticide active ingredients and 1,401 active biopesticide products registered by the United States
Environmental Protection Agency (Kupfer and Mcmanus, 2008). Among these, Metarhizium
anisopliae, Beauveria bassiana, and Bacillus thuringiensis are the most effective biological control

Frontiers in Microbiology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 705343

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.705343
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.705343
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.705343&domain=pdf&date_stamp=2021-08-26
https://www.frontiersin.org/articles/10.3389/fmicb.2021.705343/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-705343 August 26, 2021 Time: 13:5 # 2

Wang et al. Genetic and Molecular Mechanisms

agents against mosquito vectors (Montalva et al., 2016).
Apart from B. thuringiensis, B. bassiana is the most
commonly used biopesticide that can be effectively transmitted
(Baldiviezo et al., 2020).

Beauveria bassiana, first isolated from silkworm cadavers by
Agostino Bassi in the 19th century, can invade more than 200
species of insects in six orders and 15 families (Nakahara et al.,
2009). It multiplies rigorously, producing a variety of toxins
causing exogenous infections (Chelico and Khachatourians,
2008; Naqqash et al., 2016).

Over the past decade, the emergence of genomics, proteomics,
and immense advances in molecular biology and genetic
techniques has helped in the identification of several proteins
or regulatory factors related to stress responses and/or fungal
virulence. The studies in insect host(s), which is a more
suitable research model, could also capture even the transient
interaction with fungi toxins. In general, the host–fungus
biological interactions are more prominent in the host
insect and can be further magnified for research purposes
(Joop and Vilcinskas, 2016).

In recent years, several research papers, including reviews,
about the insecticidal effects of entomopathogenic fungi have
been published; most of these discuss B. bassiana (Khan et al.,
2016; Wang et al., 2016; Chu et al., 2017). Therefore, to
avoid repetition and bring out a new perspective, herein we
unequivocally focus on the Beauveria toxin. We summarize how
it attacks the insect host immune system and discuss genetic
engineering strategies to improve its toxicity, with a special
focus on underlying genetic and molecular mechanisms of fungal
virulence. Furthermore, we mention the newly discovered toxins
with novel insecticidal activity. We believe that this review would
help novice researchers to understand the latest findings in the
field to speed up their research endeavors.

THE PROCESS OF FUNGAL
PATHOGENESIS AND TOXICITY

Insect cuticle penetration is the first step of entomopathogenic
fungi infection, which involves mechanical forces, cuticle-
degrading enzymes (chitinase, lipase, protease, etc.), and
hyphae-produced specific infection structures (appressoria)
that penetrate the host cell and proliferate (Chelico and
Khachatourians, 2008). Extracellular fungal proteinases degrade
the insect cuticle, which is composed of chitin and proteins,
facilitating hyphae penetration into the host hemolymphoid.
The key hydroxylating enzymes (Huarte-Bonnet et al., 2018b)
also quickly assimilate hydrocarbons and lipid cuticular layers
(Huarte-Bonnet et al., 2018a). This infiltration process involves
cell walls, surface carbohydrates, and cell epitope(s) (Wanchoo
et al., 2009; Zhang et al., 2011). Fungal or conidia are the
main pathogenic factors of insect infection that get non-
specifically absorbed through the insect epidermis. Under
appropriate conditions, the conidia germinate to form hyphae
and then secrete various insecticidal toxins (Lewis et al., 2009;
Wanchoo et al., 2009). The B. bassiana toxins are primarily the
secondary metabolites and small molecular compounds, such

as beauvericin, bassianin, bassianolide, beauverolides, tenellin,
oosporein, oxalic acid, calcium oxalate crystals, and many
beauvericin analogs. Among these, mycelia-secreted beauvericin
is one of the most important toxins (Molnár et al., 2010;
Rohlfs and Churchill, 2011; Safavi, 2013). In addition, it
possesses nematicidal activity (Xu et al., 2007). Interestingly,
novel derivatives of beauvericin exhibit both cytotoxicity and
insecticidal activity (Xu et al., 2007). Oosporein, apart from
bactericidal and fungicidal activities, also inhibits tumor cell
proliferation (Feng et al., 2015). It has been extensively studied for
its wide spectrum of insecticidal properties and strong economic
and environmental benefits (Figure 1).

The mechanism of pathogenicity varies with the type of toxin
and host. The same toxin may have a different mechanism
of pathogenicity and toxicity scale in different hosts. Thus, it
is impossible to generalize the mechanism of action (Wang
B. et al., 2012). However, the common consensus is that
the fungal insecticidal effect is a cumulative result of several
B. bassiana toxins. The insecticidal mechanisms involve several
strategies, including the proliferation of virulence factors for
continuous virulence, impeding the activation of the host
immune system, disrupting the nerve conduction pathways,
damaging the epidermis of the insect host to facilitate hyphae
penetration, clogging of the spiracles the insect host, absorption
of water and nutrients from the host body, and so on (Xiao
et al., 2012; Ortiz-Urquiza and Keyhani, 2013; Pedrini et al.,
2013). All these processes require high energy, which is met by
the host insect hydrocarbons as a nutrient for the fungi (Kim
et al., 2013; Huarte-Bonnet et al., 2015; Luo et al., 2015). Toxins
also induce a range of symptoms in the host insect, including
severe dehydration, abnormal behavior, lack of coordination,
convulsions, hindered feeding, and metabolic disorders that
eventually cause insect death (Chu et al., 2017).

Under appropriate conditions, the mycelia of the dead host
produce numerous conidia (Feng et al., 2015). The epidermis
of the parasite has already been devastated; the conidia are
carried away with the air to infect other hosts, and a chain
of infection continues (Pedrini, 2018). The spread of infection
certainly requires the participation of other vectors, such as the
leaves, roots, soil, and water, that are usually in close contact with
insects. While these vectors create opportunities for rapid and
widespread dissemination, they may also lead to non-targeted
infection, including harm to beneficial insects.

As shown in Figure 1, most pathogenic fungi infect insects
through the epidermis and then multiply in the hemolymph
system. This is different from bacteria, viruses, and most other
parasites which only trigger an infection after being ingested
by the host (Ortiz-Urquiza and Keyhani, 2013). This unique
mechanism of infection enables fungi to respond to various
adverse environments, such as osmosis, hydrophobic barriers,
electrostatic forces, relative humidity differences, and other
biochemical factors similar to natural barriers, including phenols,
esters, enzyme inhibitors, and proteins (Mazza et al., 2011;
Gołębiowski et al., 2014). The figure shows that the fungal
infection cycle not only depends on the successful penetration of
the epidermis but also requires a dimorphic transition in vivo, i.e.,
the transformation of conidia into hyphae (Wang et al., 2017).
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FIGURE 1 | A schematic of fungal invasion. AMPs, antimicrobial peptides; PPO, polyphenol oxidase; MCL1, myeloid cell leukemia sequence, an antiapoptotic
protein; SOD, superoxide dismutase; ROS, reactive oxygen species; Hsp25, heat shock factor 25. The conidia firstly penetrate the epicuticle to reach the
endocuticle of the insect and then release plenty of hydrolases, including chitinase, protease, and lipase, to rapidly disintegrate the cuticle for more conidia intrusion.
Hyphal bodies that pass through the epidermis intrude into the hemolymph of the insects and secrete plenty of insecticidal substances, such as oosporein,
beauvericin, beauverolides, and tenellin, most of which either suppress the immunocyte or directly destroy the hemolymph. The substances mentioned in the bottom
right of the figure suppress the immune system. The red and blue arrows represent the direct and indirect inhibition responses, respectively.

The process can often be also manipulated at the genetic level
by unannotated signaling pathways or downstream effector genes
(Chu et al., 2017), which will be elaborated in the following text.

FUNGAL TOXINS VERSUS THE INSECT
IMMUNE SYSTEM

The pathogenic process of B. bassiana in insect hosts is that
of a facultative pathogen. Thus, infection is not a necessary
physiological process of the fungal life cycle. The course of
infection depends on the physiological state of the host, such as
age, nutritional status, and several other physical and chemical
factors, including ultraviolet light intensity, temperature, and
humidity (Rangel et al., 2015a,b). A fungal infection normally
takes about 6–14 days to kill the host insect (Charnley,
2003). Some insects with developed immune systems counter
fungal infections by upregulating antifungal compounds and/or
activating an innate immune response, including large amounts
of reactive oxygen species (ROS), humoral melanization, and
phagocytosis (Zibaee and Malagoli, 2014). For a successful
infection, B. bassiana needs to resist the adverse physical and
chemical environment and the host immune barrier (Fernandes
et al., 2010; Shi et al., 2013; Barreto et al., 2016). These immune
responses are often regarded as entry points or targets, which can
widely affect the adaptability and the accessibility to the virulent
fungi. Intricate immune responses of insect hosts involve many
regulatory factors, which can be systematically explored to find
specific targets.

Fungal toxicity involves direct and indirect factors (Figure 1).
One such most-studied direct factor is melanin, which is

a phenolic and/or indole compound with lipid or protein
components. Melanin can counter UV, metal cytotoxicity, and
lysozymes in the insect epidermis (Wilson et al., 2010; Shang
et al., 2012). In general, melanin-producing fungi exhibit greater
virulence than their albino mutants. Melanin also participates
in the formation of antifungal compounds, such as defense
peptides that counter the host response, and therefore it is
classified as a direct factor (Langfelder et al., 2003). In addition,
fungi upregulate the expression and the translation of oxidative
stress response genes to counter the host immune response—
for example, upregulation of superoxide dismutase accelerates
the conversion of superoxide ions into molecular oxygen and
hydrogen peroxide, thereby enhancing the B. bassiana tolerance
to oxidative stress by eliminating the insect-produced ROS
(Xie et al., 2010). The overexpression of heat shock factor 25
likewise facilitates fungus penetration and resistance against host
immune attack even at 35◦C in insect epidermis (Liao et al.,
2014). B. bassiana also exerts other factors that can directly
inhibit the host immune system. These are primarily the active
proteins or secondary metabolites with insecticidal properties,
such as cyclooligomer non-ribosomal peptides (beauvericin),
cyclic peptides (beauverolides), and 2-pyridone tenellin (Molnár
et al., 2010; Zhang et al., 2020a,b). These factors may also
function as immunosuppressive compounds. Notably, a study in
Triatoma infestans showed that, compared with the third day
of infection, many of the antimicrobial peptide and defensin
genes were significantly inhibited on the ninth day of infection
(Mannino et al., 2019). Although the regulatory mechanism was
not confirmed, it was largely due to fungal toxins (Baldiviezo
et al., 2020). These findings suggest that fungi which secreted
secondary metabolites can resist the immune system of the hosts
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at both genetic and non-physiological levels, which sets up the
basis for toxin(s) pathogenicity.

The fungal intervention of the host insect immune system has
also been linked to many indirect factors. Recently, oosporein,
which is considered an indirect factor released by fungi,
was shown to block the insect immune system. Oosporein
involves three mechanistic pathways: (1) It inhibits the splitting
of prophenoloxidase into polyphenol oxidase (PPO), which
then hinders the activation of prophenoloxidase (PO); (2) It
directly inhibits the expression of antifungal peptide gallerimycin
(from Gal gene) at the post-transcriptional level; and (3)
It blocks the antimicrobial peptide cascade response (Feng
et al., 2015). Clearly, all these functions ultimately suppress
the insect immune system. Researchers demonstrated that
oosporein alone causes ∼20% mortality in the sap-sucking
whiteflies, whereas oosporein combined with fungal conidia is
more lethal, causing 92% mortality (Mc Namara et al., 2019).
This suggests that oosporein promotes infection by inhibiting
the immune and/or other defense mechanisms rather than
via a direct cidal effect (Amin et al., 2011). Meanwhile, an
RNA-Seq study, including Kyoto Encyclopedia of Genes and
Genomes pathway annotation analysis, revealed that, at 24 h after
infection, both the antioxidant (10) and peroxidase (7) genes
were highly upregulated, indicating the importance of oxidative
stress suppression during B. bassiana infection (Chu et al.,
2016). Moreover, B. bassiana can inhibit the secretion of various
antimicrobial compounds in insect cuticles, including quinones,
such as methyl-1,4-benzoquinone, ethyl-1,4-benzoquinone, and
1-pentadecene (Villaverde et al., 2007; Yezerski et al., 2007; Joop
et al., 2014). These compounds are natural immune barriers
of insect hosts that must be overcome by B. bassiana for
a successful infection. A protein named MCL1 also masks
cell surface compounds, which hinders detection of hyphal
bodies from insect hemocytes (Wang and St Leger, 2006). This
process indirectly counters the insect immune system. Recent
studies reported that there are multiple homologs of MCL1
in B. bassiana (Wang and St Leger, 2006). In a silkworm
study, Nakahara et al. (2009) showed that entomopathogenic
fungi infection somewhat affected the expression of hemocyte
(granulocytes and plasma cells) immune genes (Nakahara et al.,
2009). Another report showed that, compared with the control
group, the total hemocyte number of Galleria mellonella was
significantly decreased after infection (Bandani, 2004). Overall,
these studies suggest that the immune system is one of the
main targets of B. bassiana toxins. The host insect immunity
played a potent selective force in fungi virulence evolution, most
likely by upregulating the antioxidative stress genes that impede
the activation of key immune pathways (Pedrini et al., 2015;
Rafaluk et al., 2017).

GENETIC AND MOLECULAR
MECHANISMS UNDERLYING FUNGAL
VIRULENCE

Beauveria bassiana benefits from its high genetic diversity.
Recent studies showed that several genes/molecules can alter the

virulence of B. bassiana depending on host and infection stage
(Fang et al., 2004; Xiao et al., 2012). These genes/molecules can
be potential targets to promote the application of B. bassiana
as an effective and sustainable biological control agent. Table 1
summarizes the key genes and their corresponding mechanisms
that play an important role in the fungal infection cycle. The
list can be used as a comprehensive reference for selecting
target genes and improve our understanding of virulence
gene pleiotropy.

Owing to the complex physiology and infection cycle, many
genes of B. bassiana simultaneously participate in the infection
cycle and basic processes such as conidia formation (Zhang
et al., 2020a). Therefore, a gene often has multiple functions and
virulence phenotypes. In gene mutation studies, the subsequent
functional verification and examining the possible influence
of such a candidate gene on the infection of B. bassiana
can be intricate.

Most of such genes encode some virulence-related proteins
or multipotent enzymes, which participate in all stages of
B. bassiana infection, affecting host adherence, germination and
penetration of conidia, cuticle degradation, colonization, and
host death (Raya-Díaz et al., 2017). Therefore, examining the
effects of gene deletion on virulence-related defects has become
a prime theme of current research—for instance, B. bassiana has
four genes encoding fungal pathogenicity, determining proteins
with eight cysteine-containing extracellular membrane domains
(Xiao et al., 2012). The transcription of these genes is partly
controlled by bZIP-or C2H2-type transcription factors (TFs;
Huang et al., 2015). Meanwhile, a BLAST search of insect
pathogen genome against the B. bassiana–host interaction gene
database (a collection of experimentally verified pathogenic,
virulent, and effector genes from fungi and bacteria) revealed
several G protein-coupled receptors, protein kinases, and TFs
that are similar to entomopathogen genes (Gao et al., 2011).
Notably, several of these genes, which are essential for B. bassiana
infection, have strain-specific functions that vary with different
hosts. In a review, Herrero has described these stage-specific
genes in greater detail, especially their expression at various stages
of B. bassiana infection (Herrero et al., 2012). Interested readers
on the subject are welcome to consult Herrero et al. (2012) for
further discussion.

Nutrient absorption and utilization are also important
for B. bassiana parasitism involving genes such as forkhead
transcription factor (Fkh2) (Wang et al., 2015), Bbsnf1 (Wang
et al., 2014), Bbagt1 (a-glucoside transporter gene) (Wang J. et al.,
2013), Bbmpd, Bbmtd (Wang Z.L. et al., 2012), and BbCreA (Luo
et al., 2014). Although these genes do not directly regulate fungal
virulence, they play an inseparable role in the infection process.
A study showed that nearly 4,000 genes were differentially
expressed in B. bassiana after 24, 36, and/or 48 h of infection
(Chu et al., 2016). Importantly, nearly half of the upregulated
genes were of putative secretory proteins (PSPs) that affect fungal
virulence (Stergiopoulos and de Wit, 2009; Collette and Lorenz,
2011)—for instance, putative methyltransferase BbmtrA affects
conidial viability, fungal growth, and virulence (Qin et al., 2014).
Evidently, at least some of the putative secretory proteins are
of particular importance, and therefore proteins of unknown
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TABLE 1 | Underlying genetic and molecular mechanisms of fungal virulence.

Gene Encoded protein Function Knock-out mutant
phenotype

The process of
participation

References

hyd1 Hydrophobic protein Modulate surface
hydrophobicity, adhesion,
and virulence

Inhibits virulence and
conidia hydrophobicity

Adhesion, pathopoiesis,
and cuticle degradation

Zhang et al., 2011

hyd2 Hydrophobic protein Modulate surface
hydrophobicity, adhesion,
and virulence

Decreases conidia
hydrophobicity and surface
adhesion

Adhesion, pathopoiesis,
and cuticle degradation

Zhang et al., 2011

VLP4 Vacuole-localized
protein 4

Promote the melanization and
the expression of Pr1

Increase virulence Aerial conidia production
and development,
pathopoiesis

Chu et al., 2017

Mdj1 Heat shock protein Manipulates several toxins at
the transcriptional and/or
post-transcriptional level

Mdj1 mutants have serious
defects, such as damaged
cell wall integrity,
vulnerability to metal ions,
and some physical and
chemical pressures

Regulation of toxicity,
conidia production, and
transition from conidia to
mycelia

Wang et al., 2017

pks15 Multifunctional enzymes Synthesizes polyketides in
fungi

Exhibits slow growth and
decreases virulence

Overcome host immune
responses, pathopoiesis

Toopaang et al., 2017

PgpdA Promoter; transcription
regulators

Encodes the promoter of
glyceraldehyde-3-phosphate
dehydrogenase of Aspergillus
nidulans

Affects virulence conidia production, and
regulation of toxicity

Ruiz-Díez, 2002

Ras1, Ras2 Conserved hypothetical
protein

Encode conserved
hypothetical protein Ras

Affect virulence Signal transduction and
secrete toxins

Luo et al., 2014

BbcreA Transcription regulators Homologous genes of
transcription regulators

Affects the virulence and
the homeostasis of
B. bassiana

Secrete toxins, hyphal
extrusion, and conidiation

Luo et al., 2014

Bbslt2,
Bbhog1,
Bbmpk1

a-Glucose transporter;
mitogen-activated
protein

Encode an Slt2 family MAPK Maintain the conidiation,
cell wall integrity, and
virulence

Secrete toxins, hyphal
extrusion, and conidiation

Zhang et al., 2009

trx1-6 Thioredoxin
antioxidants

Encode antioxidant activity
thioredoxins

Reduced virulence,
germination, conidiation,
and stress tolerance

Host adhesion and conidia
production

Zhang et al., 2015

function, such as VLP4 and many more small PSPs, need proper
investigations for their role in fungal virulence.

In addition, some powerful gene promoters can stably
enhance the expression of host target genes increasing the
insecticidal virulence of B. bassiana (Ruiz-Díez, 2002)—for
instance, in filamentous fungi Aspergillus nidulans, PgadA is
expressed under the promoter of glyceraldehyde-3-phosphate
dehydrogenase (Liao et al., 2008). Similarly, some genes encoding
for the conserved hypothetical protein Ras, such as Ras1 and
Ras2, showed different insecticidal virulence to the larvae of
G. mellonella in different strains of B. bassiana (Luo et al., 2014).
Certain homologous genes of transcription regulators, such as
the carbon catabolite repressor transcription factor homolog
(BbcreA), can also affect the virulence and homeostasis of
B. bassiana (Luo et al., 2014).

Like other pathogenic fungi, B. bassiana has several GATA-
type TFs. Apart from virulence gene regulation, these are
also involved in multiple functions, including nutrient uptake,
mating-type switching, and chromatin rearrangement (Xiao
et al., 2012). In B. bassiana, bZIP- and C2H2-type TFs that show
a higher activity under alkaline conditions behave similar to
GATA-type TFs and regulate pathogenicity (Huang et al., 2015).
Therefore, it seems that some fungal virulence-related genes are

majorly governed by TFs, and identifying many more regulatory
components can establish good biochemical and molecular data
that can further reveal the pathogenicity of B. bassiana.

GENETIC ENGINEERING STRATEGIES
TO IMPROVE FUNGAL TOXICITY

In addition to directly involved genes, some genes indirectly
participate in toxicity. These genes can adjust the host–fungi
interaction in favor of the pathogen, which increases the fungal
virulence (Rohlfs and Churchill, 2011; Mascarin and Jaronski,
2016). Genetic engineers believe that such genes can be the prime
targets to increase virulence. We have listed several such genes in
Table 2 as a reference for such efforts.

With the advancement of biotechnology, genetic engineering
strategies seem to be the most convenient method to improve
fungal virulence. However, there are conspicuous controversies.
Many believe that genetically modified toxins are not safe
and therefore lack wide acceptance; the products of genetic
modification may also not be stable, causing uncontrollable
consequences due to unknown events (Mascarin and Jaronski,
2016). Therefore, genetic modification studies usually need a long
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TABLE 2 | Target genes that improve virulence by genetic engineering strategies.

Modified gene Mode of action Effect References

Pr1A Fused CDEP1 with Bbchit1 and Pr1A LT50 decreased by 25%
LC50 decreased by 25%

Fang et al., 2009; Fan et al., 2010

Cyt2Ba Transformed pBARGPE1-Cyt2Ba into
blastospores

Infection rate increased
LT50 decreased
Reproductive rate decreased

Deng et al., 2019b

TMOF Introduced Aea-TMOF into B. bassiana LT50 decreased by 15%
LC50 decreased by 40%

Kamareddine et al., 2013

TMOF Fused CP of TMV with TMOF LC50 decreased Borovsky et al., 2006

Spn43Ac Introduced Spn43Ac of Drosophila into
B. bassiana

LT50 decreased by ∼24%
LC50 decreased by 300%

Yang et al., 2014

time to apply in the field, and the commercialization takes even
longer. On the contrary, synthesizing new chemical insecticides
requires an investment of at least 250 million dollars and several
years, which can be a huge economic burden in many countries
(Glare et al., 2012). Genetic strategy can improve the adverse
characteristics of B. bassiana such as low toxicity, slow effect, and
its adaptability to harsh environments, including heavy rain and
ultraviolet (St Leger and Wang, 2010). Recent reports showed that
genetic strategies that improved fungal toxicity are safe; however,
safety must remain a priority in the future, too.

To find differential genes that may increase virulence requires
large-scale transcriptome sequencing and screening (Glare et al.,
2020). This strategy has become a common theme of the fungal
virulence field. Compared to other insect pathogens, B. bassiana
has great genetic diversity, showing a significant diversity among
isolates (Lee et al., 2018). Therefore, finding appropriate target
genes could be a challenging task. However, past efforts have
already shown that some of the protease-related genes and their
transcription regulators may greatly improve the virulence of
B. bassiana. Presently, differential genes are scanned at three
levels: (1) screening the differentially expressed genes (DEGs) of
B. bassiana before and after pathopoiesis (Shi et al., 2013), (2)
screening the DEGs in different natural strains of B. bassiana
with a different pathogenicity (Luo et al., 2015), and (3) forcing
mutation in B. bassiana by exposing the mycelia to abiotic stresses
(such as strong acid, strong alkali, strong ultraviolet, hypoxia,
and nutrient deficiency) to screen for DEGs that affect virulence
(Rangel et al., 2015b). These themes can help researchers to
quickly screen out suitable mutant strains and mutant genes.
Regardless of the screening method, the wide natural genetic
variation within B. bassiana provides a huge possibility of DEG
screening (Pedrini, 2018) that can also be used for subsequent
genetic engineering strategies.

The other common theme is to improve virulence through
direct gene manipulation or gene recombination of protoplast
fusion (Raya-Díaz et al., 2017). CRISPR-Cas9 technology-based
novel RNA-guided mutagenesis and genomic data mining
can establish good recombinant DNA techniques for genetic
engineering strategies (Xiao et al., 2012). Meanwhile, protein
engineering, involving direct evolution, sequential error-prone
PCR, DNA shuffling, and so on, is another viable method to
tailor the toxicity-related proteins or enzymes of B. bassiana.
In brief, heterologous transgenic expression and/or fusion

protein technique(s) have been successfully applied to improve
fungal toxicity. Cytolytic δ-endotoxin (Deng et al., 2019b) and
trypsin-modulating oostatic factors (TMOFs; Ortiz-Urquiza and
Keyhani, 2015) are examples of heterologous transformation that
improved the toxicity of insecticidal toxin genes, albeit with a
suitable promoter and an expression vector. TMOF-CP, a fusion
of TMOF with the tobacco mosaic virus coat protein (CP), is an
example of a fusion protein approach. This transgenic CP showed
little effect on the growth of plant leaves, while it produced large
amounts of RNA and protein in infected plant cells (Borovsky
and Meola, 2004). The improved production efficiency of CP-
TMOF chimeras also showed better larval lethality (87.5% at
26.4 µM, equivalent to 140 ng/ul TMOF or 2.33 µg/µl CP-
TMOF), exhibiting a 7.5-fold improvement over TMOF alone
(Borovsky et al., 2006).

Though the genetic strategies have increased fungi virulence,
mass production remains a problem. Nearly 90% of commercially
available fungal insecticides are produced by convenient asexual
propagation methods using liquid media, which requires less
culture time (Mascarin and Jaronski, 2016). However, in this
technique, only about 10% of the offspring exhibit genetically
modified phenotypes, which is not conducive enough (Mascarin
and Jaronski, 2016). A market research report found that price
is also a major factor; the price of genetically modified biocides
is much higher than that of field strains, hampering consumer
acceptance (Mckinnon et al., 2017).

NEWLY DISCOVERED TOXINS AND
ENZYMES

In recent years, many novel B. bassiana toxins or enzymes have
been discovered, which are now being industrialized to meet
the market demand. Most secondary metabolites/toxins possess
different industrial significance according to their potential in
various agricultural and pharmaceutical applications (Pedrini
et al., 2015). The growing understanding of the evolution of
toxin diversity will ease the further development of B. bassiana
bioinsecticide in a more eco-friendly and efficient way.

Khan et al. extracted Bb70P, a toxic protein to insects, from
the B. bassiana 70 strain. Bb70P is approximately 35.5 kDa,
with an isoelectric point of 4.4 (Khan et al., 2016). Purified
Bb70p is most active in weakly acidic media and remains
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TABLE 3 | Characteristics of genomes of four different Beauveria bassiana strains.

Species Strain Accession number Genome length Number of introns Genome size without introns

Beauveria bassiana e17 KT201149 29,944 3 25,859

Bb13 EU371503 29,961 3 25,807

Bb147 EU100742 32,263 5 25,740

k4 KT201148 28,816 2 25,712

active up to pH 4–10 (Khan et al., 2016). Hemocoel injection
bioassays showed that the LC50 of Bb70p against G. mellonella
was 334.44 µg/larvae (Kavanagh and Reeves, 2004). It was
suggested that, after treatment, Bb70p triggers the melanism of
G. mellonella, changing the body color of the insect from black
or brown, as an immunoreaction of the host. Moreover, Bb70p
transformed inactive PO into active PPO (Kavanagh and Reeves,
2004), suggesting the importance of host insect immune invasion
for fungal pathogenesis.

Lysyl-tRNA synthetases (Krs), a family of aminoacyl-tRNA
synthetases, have a small N-terminal tRNA anticodon binding
domain, a large C-terminal catalytic domain, and three conserved
sequence motifs (Desogus et al., 2000; Guo and Yang, 2014; Oka
et al., 2015). The cytoplasmic Krs of B. bassiana support conidia
germination and dimorphic transition. As an independent
virulence factor, the deletion of Krs significantly decreased
the aerial conidiation (∼47%) and conidia tolerance to wet–
heat stress (∼15%) and ultraviolet (∼46%) (Zhu et al., 2017).
Importantly, the virulence of the Krs-deleted strain against
G. mellonella was 60% lower than the wild-type strain. This
was attributed to delayed conidial germination and reduced
extracellular Pr1 enzyme activity, which reduced mycelial
penetration into the host epidermis (Zhu et al., 2017).

Vegetative insecticidal proteins (Vips), with intense
insecticidal activity, were originally isolated from B. thuringiensis
(Schnepf et al., 1998). Vip3A showed a specific insecticidal
activity in Lepidopteran insects (Mesrati et al., 2005; Milne
et al., 2008). Qin et al. (2010) used the Vip-encoding gene
to construct Vip3Aa1-transformed B. bassiana BbV28 and
induced Vip3Aa1 expression in both mycelia and conidia.
The study found that conidia expressing Vip3Aa1 were the
main source of insecticidal virulence, at least during the first
3 days of infection (Qin et al., 2010). Compared with the
wild-type strain, the Vip3A1-transformed strain not only
exhibited improved insecticidal spectrum and virulence to pests
but also infected the host by surface infiltration and per os
(Qin et al., 2010). Besides this, the Vip3Aa1 expression under
the promoter (Phyd1) of the B. bassiana class I hydrophobin
gene (hyd1) increased the insecticidal virulence by 9.8-fold
(Wang Z.L. et al., 2013).

There is a readily available toxin, a chitosanase-like protein
(Bclp), which was isolated from the B. bassiana 618 strain. This
28-kDa toxin protein is highly hydrophilic, with an isoelectric
point of 4. It kills G. mellonella via melanization (Fuguet et al.,
2004). It also primarily damages the epithelial cells of the
epidermis and the trachea. The damaged outer epidermis leads
to hemocyte infiltration and injury (Fuguet and Vey, 2004).
Based on these features, this protein is considered a potent toxin;

however, it is vulnerable to high temperatures (60 and 115◦C) and
proteases (Fuguet et al., 2004).

Other studies tested genetically fused toxins to generate higher
virulence—for example, the subtilisin-like serine protease gene,
CDEP2, contains an open reading frame of 1,137 bp and can
be translated into a 379-amino-acid protein (3.9 kDa) with
an isoelectronic point of 8.21 (Xia et al., 2009). Xia et al.
(2009) fused this gene with the B. thuringiensis cry1Ac gene into
plasmid pHT315 to form a plasmid pHAc-CDEP2, under the
promoter cry1Ac. After electroporation into B. thuringiensis, the
recombinant gene was translated into a 130-kDa cry1Ac protein
and a 76-kDa CDEP2 protein, which significantly improved the
fungal toxicity against the third instar larvae of Helicoverpa
armigera (Hübner). In another research, a scorpion neurotoxin
peptide, aaIT, and the Pr1A were fused for a simultaneous and
stable expression in B. bassiana strain 13 to improve the lethality
of the original toxins. B. bassiana that expressed aaIT alone
and those co-transformed with aaIT and Pr1A showed an LT50
of 4.5 days and 4.75 days, respectively, against Dendrolimus
punctatus Walker. Compared to the wild-type strain (7.5 days),
this was 40 and 36.7% reduction, respectively. Similarly, the LT50
against G. mellonella was 3.25 and 3.4 days, a decrease of 24.4
and 20.9%, respectively, compared to the wild type (4.3 days)
(Lu et al., 2008; Deng et al., 2019a). These results suggest that
the interaction between the protein products should be seriously
considered before generating the corresponding fusing genes
which may be vulnerable to insect proteases.

The high genetic diversity of B. bassiana suggests that it
is not a monophyletic strain, and therefore further genome-
wide phylogeny of B. bassiana is necessary (Rehner et al.,
2006; Ghikas et al., 2010). Herein we list the characteristics of
genomes from four different strains in Table 3, which allows
the comparison and discovery of new toxins. Newly discovered
toxic proteins, which may function like chemical pesticides, can
improve the entomopathogenic activity of B. bassiana. Further
in vivo and in vitro studies could help drive the commercialization
of these novel toxins.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In pest control, the B. bassiana biological control agent
has the unique advantage of a broad-spectrum insecticidal
activity against most agricultural pests and medically important
arthropods (Jackson and Jaronski, 2009; Montalva et al., 2016).
Although B. bassiana has been a proven effective biopesticide
for decades, there is still some resistance to its commercial
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application: (1) Increasing taxonomic complexity within the
genus Beauveria has made the true taxonomic status of many
commercial and experimental Beauveria strains uncertain; (2)
A wide range of phenotypic characteristics have not yet been
reported; and (3) Insects can develop resistance to B. bassiana
by upregulating the expression of certain genes, such as P450s
and epidermal protein genes. B. bassiana has evolved a series
of effective virulence mechanisms involving the breach of the
epidermal barrier and host insect immune attack systems,
such as secretory epidermis-degradative enzymes, mechanical
penetration, avoidance of being engulfed by phagocytes,
and inhibition of the release of active immune substances
(Kirkland et al., 2005; Almudena et al., 2013; Pedrini et al.,
2013). However, a growing number of studies found many
adverse factors that may limit the use of B. bassiana as a
biopesticide, including a relatively long time to kill the target
insect, effect on non-target invertebrates, allergies in humans,
dependence on ambient temperature and humidity, growing
insect resistance, and uncertain taxonomic status of the fungi.
Fascinatingly, genetic engineering can specifically improve
these deficiencies; however, most of these strategies have so
far been restricted to the laboratory and need to be extensively
popularized and applied.

The discovery of new biocides or toxins is largely
serendipitous or coincidental, but for now, improving the toxicity
of fungus based on genetic engineering strategies may be the
most appropriate option. Fungal secondary metabolites are
also of additional concern. They not only affect the insecticidal
process but also intervene with the host plant pathophysiology,
as shown in numerous crop species (Mckinnon et al., 2017).
In addition, some fungal secondary metabolites have potential
medical applications (Glare et al., 2020).

Since the vertebrate and the invertebrate immune pathways
are not the same, manipulating the insect immune system
for fungal invasion and infection may be a desirable method.

A natural insecticide such as B. bassiana may ensure human
safety and provide an environment-friendly pest control strategy
(Fernandes et al., 2010; Barreto et al., 2016). Besides this,
along with existing chemical insecticides or synergists, novel
researched toxins, after a thorough understanding of their
structural properties, in vitro insecticidal mechanism, insecticidal
efficacy, effects on other non-target organisms, and increasing
toxin production by in vitro synthesis, may be an effective way to
ameliorate the development of insecticide resistance and improve
insecticidal efficiency.
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