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Abstract

Knowledge of the geographical distribution of soils is indispensable for policy and decision

makers to achieve the goal of increasing agricultural production and reduce poverty, particu-

larly in the Global South. A study was conducted to better understand the soilscapes of the

Giba catchment (900–3300 m a.s.l.; 5133 km2) in northern Ethiopia, so as to sustain soil use

and management. To characterise the chemical and physical properties of the different

benchmark soils and to classify them in line with the World Reference Base of Soil

Resources, 141 soil profile pits and 1381 soil augerings at representative sites were ana-

lysed. The dominant soil units identified are Leptosol and bare rock (19% coverage), Vertic

Cambisol (14%), Regosol and Cambisol (10%), Skeletic/Leptic Cambisol and Regosol

(9%), Rendzic Leptosol (7%), Calcaric/Calcic Vertisol (6%), Chromic Luvisol (6%) and Chro-

mic/Pellic Vertisol (5%). Together these eight soil units cover almost 75% of the catchment.

Topography and parent material are the major influencing factors that explain the soil distri-

bution. Besides these two factors, land cover that is strongly impacted by human activities,

may not be overlooked. Our soil suitability study shows that currently, after thousands of

years of agricultural land use, a new dynamic equilibrium has come into existence in the

soilscape, in which ca. 40% of the catchment is very suitable, and 25% is moderately suit-

able for agricultural production. In view of such large suitable areas, the Giba catchment has

a good agricultural potential if soil erosion rates can be controlled, soil fertility (particularly

nitrogen) increased, available water optimally used, and henceforth crop yields increased.
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Introduction

Good land management is characterised by making optimal use of the natural resources

including soils in a sustainable way. In the Giba catchment (5133 km2), north Ethiopia, poverty

has been largely attributed to insufficient crop production [1, 2]. Soil degradation in this area

became important when humans started deforestation almost 5000 years ago [3, 4]. The result-

ing reduced soil protection by vegetation cover, combined with steep slopes and erosive rain-

fall led to excessive soil erosion [5, 6]. Nutrients and organic matter (OM) were lost and soil

depth was reduced. Expanding the agricultural areas into less suitable lands to sustain crop

production would further increase soil erosion rates. Yet, the high population density allows a

more intensive use of the available agricultural land. In recent decades, many soil and water

conservation measures (SWCM) have been carried out to reduce soil erosion rates and to

increase crop production. Ex-situ SWCM include the construction of stone bunds, infiltration

trenches, check dams in gullies, micro-dams and ponds as well as a range of biological mea-

sures (e.g. exclosures), while in-situ soil management measures are being promoted (e.g. inter-

cropping, bed and furrows, zero tillage, zero grazing) [3, 7–11]. Despite these SWCM, soil

erosion still is an important problem, which results in low crop yields and biomass production.

In view of all this, the Tigray region, where the Giba catchment is located, has chronically suf-

fered of food insufficiencies. To curb such situations, soil maps have proven to be powerful

tools for understanding soil processes [12], for the establishment of technical infrastructure

[13], and in support of land management policies [14, 15].

Hunting Technical Services [16] prepared landform and land suitability maps of an area

largely encompassing Giba catchment at a scale of 1:250,000, and further maps of landforms

and soils at 1:50,000 for areas around Mekelle, Hawzien, Sinkata and Wuqro. Soil mapping

and land evaluation have been carried out in several parts of Giba basin by student teams of

IAO Firenze (led by Luca Ongaro and Valeria Alessandro) [17–21]. Other available baseline

soil information for the study area comprises mainly small-scale maps based on FAO [22] at

1:1,000,000; derived maps include the web-based e-SOTER soil information system [23] and

the corresponding sheets in the Soil Atlas of Africa [24, 25]. The development of a national soil

model at scale of 1:500,000 has been attempted [26], as well as soil nutrient mapping through

the EthioSIS and AfroSIS programmes [27], resulting among others in detailed maps of soil

fertility status and recommended fertiliser blends with a resolution of 250 m for the whole

Tigray region [28]. Whereas the latter have a deliberate focus on chemical fertilizer require-

ments [29], all other mentioned maps are very generalized, allowing a regional comprehension

of the soil distribution, but not at all a full understanding of the spatial patterns of the soils in a

given area.

Therefore, the main objective of this study is to contribute to sustainable land management

in the Giba catchment through a better understanding of the soil types and their characteris-

tics, which is a prerequisite for analysing soil suitability for sustainable agricultural

production.

A good knowledge of the geographical distribution of the soils and their chemical and phys-

ical properties is thus indispensable for policy and decision makers to improve land manage-

ment and hence reduce poverty and increase the welfare of the population in north Ethiopia.

Characterisation of benchmark soils of the catchment, both in the field and in the labora-

tory, was combined with all available information into a comprehensive spatially explicit data-

base of soils in Giba catchment, at a scale of 1:250,000. This allows a fundamental insight into

the soil properties and the soilscapes of the Giba catchment which is needed to enhance sus-

tainable natural resource use and management.
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Study area

The Giba catchment is in Tigray region (North Ethiopia), between 13˚18’N and 14˚15’N and

38˚38’E and 39˚48’E, and comprises the region’s capital city Mekelle (Fig 1). The Giba River is

a tributary of the Tekezze River, which becomes Atbara River in Sudan where it flows into the

Nile. The altitude in the catchment varies from slightly over 900 m a.s.l. in the western part to

more than 3300 m a.s.l. in the north. The mean elevation of the catchment is 2144 m with a

standard deviation of 361 m indicating that the topography is very rugged. Because of high ele-

vations, the climate is more temperate than would be expected at this latitude [30].

The geology of the catchment consists of a Precambrian basement complex, Palaeozoic (flu-

vio-)glacial rocks, Mesozoic sedimentary rocks, Tertiary volcanics and Quaternary deposits

[31] (Fig 2). The landscape is characterised by a strongly incised river network. Major faults

are responsible for steep cliffs. The alternation of different lithologies resulted in a stepped geo-

morphology due to selective erosion [32, 33].

According to the Köppen climate classification, the area is hot semi-arid (BSh) [35]. Annual

rainfall depth varies between less than 600 mm and 1000 mm, but no significant relationship

with altitude exists [30, 36]. Most rains fall during the main rainy season, which typically

extends from June to September. Mean annual maximum air temperature ranges from 21 to

31˚C and mean annual minimum temperature from 3 to 16˚C [37]. Monthly potential evapo-

transpiration (PET) exceeds monthly rainfall except during the rainy season due to reduced

sunshine hours and increased rainfall. However, monthly rainfall is only slightly higher than

PET in the northernmost part during the rainy season while elsewhere in the catchment rain-

fall greatly exceeds PET. Hence, the length of the growing period (LGP), defined as the period

during which the precipitation is at least half of the PET [38], is shortest in the northernmost

part.

Fig 1. Map of Giba catchment.

https://doi.org/10.1371/journal.pone.0224041.g001
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Recent land use maps [34, 39, 40] show that 42–50% of the Giba catchment is covered by

cropland, followed by shrubland (37%). Forests are rare (2.3%), however the eastern part of

the catchment holds Des’a Forest, one of the few forests in north Ethiopia, on the edge of the

Rift Valley escarpment.

Based on lithology, geological structure, geomorphology, elevation and climate, the Giba

catchment can be subdivided into 6 major geomorphic regions: the Atsbi horst, the Abergelle

lowlands, the basalt-dominated highlands, the cuesta landscape, the severely incised Antalo

Supersequence plateau with dolerite, and the Sinkata midlands (Fig 3). According to FAO [22]

and the Soil Atlas of Africa [24], the catchment would be dominated by Lithic and Eutric Lep-

tosol, Vertic and Chromic Cambisol, and Haplic Lixisol.

Part I. Soil characteristics

Materials and methods

Field work comprised ten field campaigns in the Giba catchment (1974, 1975, 2001–2011),

and the analysis of 141 profile pits (Table 1). For every field campaign, district authorities

issued permits, and especially, the landholders gave permission for digging profile pits. Gener-

ally they dug out the pit themselves manually and were very keen to discuss the observations

Fig 2. Geological map of the Giba catchment [34].

https://doi.org/10.1371/journal.pone.0224041.g002
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with the researchers. For pits on communal lands we obtained permission from the village

chairperson, who assigned nearby residents for pit excavation. All labour was paid in cash, at a

rate approximately 50% above salaries paid locally for similar works. None of the data

Fig 3. Major geomorphic regions of the Giba catchment, with location of soil profile pits including those characterised in this article (A-T).

https://doi.org/10.1371/journal.pone.0224041.g003

Table 1. Overview of field surveys for soil data collection.

Study area Geomorphic region Profile pits Augerings Notes Source

Ruba Feleg Atsbi Horst 14 175 13 additional augerings for model validation [41]

May Zegzeg Basalt-dominated highlands; Antalo plateau 21 206 [42, 43]

Adawro, Khunale, May Bi’ati Basalt-dominated highlands; Antalo plateau 15 225 [44]

Aqushala Abergelle Lowlands 9 288 16 additional pits for model validation [45]

Chichat Antalo plateau 13 [46]

May Leiba Basalt-dominated highlands 11 230 18 additional augerings for model validation [47]

Tsinkaniet Sinkata Midlands 6 191 20 additional augerings for model validation [48]

Rift Valley shoulder all 12 [49]

Rift Valley shoulder all 20 [16, 30]

Giba catchment all 20 66 [50]

Total 141 1381

https://doi.org/10.1371/journal.pone.0224041.t001
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collection involved endangered or protected animal or plant species. Disturbed and undis-

turbed samples were taken from the different horizons for further chemical and physical analy-

sis. Undisturbed samples were taken with Kopecki rings, 100 cm3 steel cylinders, 5 cm across,

driven in the soil using a ring holder. Here we focus on 20 representative profile pits from

which 46 soil horizons were sampled.

Physical analysis. The texture of all horizons was investigated in the field using the finger

method [51]. Further, formal physical analysis was done both on the disturbed and undisturbed

samples. The analysis of the undisturbed samples was done in Mekelle University (Ethiopia),

the analysis of the disturbed samples was done in KU Leuven (Belgium) soil laboratories.

Texture of the soil horizons was analysed by 2 different methods: with a wet sieving fol-

lowed by a decantation and tentatively with a laser diffraction particle size analyser (LDPSA).

Upper texture class boundaries were conventionally set at 2 μm (clay), 50 μm (silt) and 2 mm

(sand).

In preparation for the analysis by LDPSA, the samples were dried, roots and small plant

remnants removed, mortared and sieved at 2 mm. With the aid of a sample splitter a very

small amount (<1 g) was separated into a test tube. Distilled water was added and this mixture

was boiled for at least 15 minutes to bring all particles in suspension. This mixture was ana-

lysed with the LDPSA. During the analysis, ultrasonic sound or ultrasound bath was used to

break the particles apart. The laser beam reflected on the particles and this reflection is depen-

dent on the size of the particles. Large particles (sand) provide a reflection at an angle that is

smaller than small particles (clay). Each detector detects a different particle size ranging

from < 0.04 μm to 1822 μm. After the analysis, the mass percentage of each particle size was

known [52].

Standard wet sieving and decantation was also conducted on eight samples to compare the

results with the LDPSA method. About 20 g of the dried and sieved (at 2 mm) soil was

weighted. 50 ml of peptiser (sodium oxalate dispersing agent) was added and the mixture was

diluted with distilled water to about 150 ml. Then the sample was boiled for at least 10 minutes

to destroy the aggregates. After cooling, the mixture was sieved at 50 μm and the filtrate was

used for the decantation. The particles that stayed behind on the sieve were collected in a pre-

weighed cup and dried in an oven of 105˚C for 24 hours, after which the cup was weighed

again. The filtrate was put in a decantation column and diluted to 1 litre. The column was

shaken well for a few seconds. Immediately after that, 50 ml was tapped and added into a pre-

weighed noggin. Three more times 50 ml was tapped at 4’30”, 13’30” and 2h30’, which corre-

sponds to the fractions smaller than 32 μm, 16 μm and 2 μm. Fifteen seconds before each tap-

ping the tube was cleaned by tapping till the next line on the column. The noggins were also

put in an oven of 105˚C for 24 hours and weighed afterwards.

In the LDPSA measurement, unexpectedly, we found for almost all the samples a silt loam

texture [50]. However, the eight samples that were also analysed with the conventional decan-

tation method were clearly finer textured, as clay percentages measured with the decantation

method were much higher than those obtained through LDPSA. To further evaluate the differ-

ence in preparation method between LDPSA and the conventional method, the same eight

samples that were analysed with the conventional method were also analysed again with the

LDPSA but with the same preparation as in the conventional method. This includes the addi-

tion of peptiser and distilled water followed by boiling of the sample. A supplementary analysis

was done with an additional treatment of standard ultrasound before the samples were ana-

lysed but without the addition of peptiser. The clay percentages obtained through all different

LDPSA methods (Table 2) mostly stay well below the results obtained by decantation, particu-

larly in the clay-rich horizons.
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The large difference between the measured texture with LDPSA and the decantation mea-

surements shows that LDPSA underestimates the finer fractions (Table 2), as also observed in

earlier studies [53–55]. This can somehow be corrected by adding peptiser before LDPSA but

the measured clay content still remained far below the values measured by the decantation

method for six of the eight samples. Hence, texture obtained through decantation and finger

methods will further be used consistently in this study.

The field capacity (FC) was measured on the undisturbed samples (in Kopecki rings) with

a pressure plate apparatus. After saturation with water, the samples were weighed (Msat) and

immediately placed in the pressure plate apparatus. A pressure of -1/3 bar (pF 2.53) was

applied. When no more water was expelled (after about 7 days) the samples were weighed

again (MFC), put in an oven at 105˚C for 24 hours, and again weighed (Mdry). Field capacity

was calculated as [56]:

FC ¼
MFC � Mdry

Vkopecki
� 100 ð1Þ

in which:

FC = field capacity (%),

MFC = mass of the sample at pF 2.53 (kg),

Mdry = oven-dry mass (kg),

Vkopecki = volume of the Kopecki ring (l), and

accounting for a water density of 1 kg l-1.

The permanent wilting point (PWP) was measured with a pressure plate apparatus on dis-

turbed samples. First a paste was made by adding water to about 40 g of soil. The samples were

placed in the pressure plate apparatus and a pressure of -15 bar (pF 4.18) was established. Simi-

lar to FC measurement, the samples were weighed when no more water was expelled (MPWP),

and weighed after drying in an oven (105˚C) for 24 hours (Mdry). For each sample, the average

of four analyses was taken. The PWP was calculated as [56]:

PWP ¼
MPWP � Mdry

Mdry
� rb � 100 ð2Þ

in which:

PWP = permanent wilting point (%),

MPWP = mass of the sample at pF 4.18 (kg),

Mdry = oven-dry mass (kg), and

ρb = dry bulk density of the sample (kg / m3).

Table 2. Clay percentages of eight soil horizons obtained through conventional decantation and Laser Diffraction Particle Size Analyser (LDPSA). The last three

rows show results of a second replicate LDPSA analysis, and LDPSA after preliminary sample dispersion. C1 corresponds to the top horizon of profile C (S1 File), C2 corre-

sponds to the second horizon (from the top) of profile C, etc.

Clay %

C1 C2 E1 E2 G2 J2 N2 Q2

Standard LDPSA 1 21.6 29.2 24.1 12.8 18.9 11.8 13.5 20.8

Decantation 45.9 60.7 33.2 40.6 41.9 16.4 28.6 14.4

Peptiser + LDPSA 21.8 27.8 23.9 24.9 25.3 22.4 16.7 25.2

Ultrasound + LDPSA 17.0 20.5 15.7 13.7 19.6 19.9 14.3 22.1

Standard LDPSA 2 12.6 13.7 13.3 11.5 19.6 20.5 11.6 22.7

https://doi.org/10.1371/journal.pone.0224041.t002
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The total available water (TAW) was calculated as [56]:

TAW ¼ FC � PWP ð3Þ

in which:

TAW = total available water (%),

FC = field capacity (%), obtained from (Eq 1), and

PWP = permanent wilting point (%), obtained from (Eq 2).

The porosity was calculated as:

Porosity ¼
Msat � Mdry

Vkopecki
� 100 ð4Þ

in which:

Porosity = porosity of the sample (%),

Msat = mass of the saturated sample (kg),

Mdry = oven-dry mass of the sample (kg),

Vkopecki = volume of the Kopecki ring (l), and

accounting for a water density of 1 kg l-1.

The bulk density was calculated as:

rb ¼
Mdry

Vkopecki
ð5Þ

in which:

ρb = bulk density of the sample (kg / m3),

Mdry = oven-dry mass of the sample (kg), and

Vkopecki = volume of the Kopecki ring (m3).

Chemical analysis. Before performing the chemical analysis, the disturbed samples were

dried at 60˚C, the roots were removed, the samples were crushed and sieved at 2 mm.

The pH-H20 and pH-KCl were measured after two hours of shaking in water and in a 1 M

KCl 1:2.5 solution respectively, with a glass-calomel combination electrode.

The percentage CaCO3 was determined with the ‘rapid titration method’ by Piper [57] was per-

formed. After adding 0.2 M HCL, the solution was titrated the next day with 0.1 M NaOH. The

percentage CaCO3 was calculated based on the added NaOH. As other carbonates such as dolomite

may also be dissolved by this method, the results are referred as ‘calcium carbonate equivalent’ [57].

The available phosphorus (Pav) was measured only on the uppermost horizons because P

is not very soluble or very mobile. The total amount of available phosphorus was determined

by using the Olsen-P method [57]. In this method, the absorbance measured by a spectropho-

tometer at a wavelength of 720 nm is used to determine the amount P in solution (mg/l), and

converted into the amount of P in the soil (mg kg-1). However, after centrifuging and filtering

of the sample extracts, red-brownish colours were observed in most of the samples and no blue

colouring occurred when the mixing reagent was added. This was probably due to the presence

of organic matter in the sample extracts. Due to the lacking blue colours no meaningful mea-

surements could be carried out. Three methods were used to try and remove the organic mat-

ter but all failed [50]: (i) addition of activated coal (Norit) did not work because large amounts

of phosphorus were present in the activated coal; (ii) substituting coal by the polymer poly-

acrylamide [58] failed to absorb the organic matter; and (iii) the lanthanum (La) precipitation

method [59] led to flocculation not only of humic substances but also of phosphorus due to

the high phosphate adsorption capacity of lanthanum [60]. Because none of these methods

succeeded in filtering the samples without adding or removing phosphorus we chose to
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measure the influence of the red-brownish colour in the extracting solution on absorbance.

For this purpose, we contrasted the standard Olsen solution (standard solution; the extracting

solution and the mixing reagent in a 1:1 ratio) with a water solution (the extracting solution

and distilled water in a 1:1 ratio). In the water solution no colouring can occur (because no

mixing reagent is added) and the spectrophotometer measured the influence of the present

colour. In the standard solution the effect of the colouring is measured. By subtracting the

absorbance of the water solution from that of the standard solution, the influence of the red-

brownish colours was then offset. The influence of the absorbance of distilled water was also

taken into account by subtracting this value from the absorbance of the water solution:

Absorbance ¼ Abs� � ðAbs � waterÞ ð6Þ

in which:

Absorbance = the final measured absorbance,

Abs� = measured absorbance of the standard solution (with mixing reagent),

Abs = measured absorbance of water solution (without mixing reagent), and

water = measured absorbance of a sample of distilled water.

The electrical conductivity was measured with a temperature-corrected conductivity

meter in a 1:5 solution.

The cation exchange capacity (CEC) and exchangeable bases were measured with the ‘sil-

ver thiourea method’ [57]. The following exchangeable bases were measured: Ca2+, Mg2+, Na+

and K+. As the measured pH differs not much from 7, it is assumed that the measured effective

CEC (ECEC) is equal to CEC. Base saturation (BS) was calculated as:

BS ¼
ðexch:Ca2þ þ exch:Mg2þ þ exch:Naþ þ exch:KþÞ

CEC
� 100 ð7Þ

in which:

BS = the base saturation (%),

exch. Ca2+ = exchangeable Ca2+ of the sample (cmolc/kg),

exch. Mg2+ = exchangeable Mg2+ (cmolc/kg),

exch. Na+ = exchangeable Na+ (cmolc/kg),

exch. K+ = exchangeable K+ (cmolc/kg), and

CEC = cation exchange capacity (cmolc/kg).

High values of exch. Ca2+ were found with this method because of partial dissolution of cal-

cite [61]. Due to these high values of exchangeable Ca2+, base saturations of more than 100%

were found. To solve this problem the values of exchangeable Ca2+ were reduced up to reach-

ing a base saturation of 100%.

The total organic carbon (TOC) and total nitrogen (TN) were determined by combusting

pre-weighed samples in a Carlo Erba CHNS-O EA1108 elemental analyser. Before analysis, the

carbonates were removed by adding HCL to the samples.

The interpretation of the measured chemical soil properties was done using Table 3.

Results

Soil chemical properties. The pHH2O of most horizons (Table 4) is around 7 or slightly

alkaline, only 5 soil profiles have a moderately to slightly acid pHH2O. In all horizons, the

pHKCl is lower than the pHH2O except for horizon F2. The CaCO3 content varies between low

and very high. The EC is very low for all analysed horizons.

Ca2+ is the dominant exchangeable base followed by Mg2+; both have high to very high val-

ues in most horizons (Table 4). The values for Na+ and K+ range between very low to high but
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most horizons have a medium value. ECEC values are high or very high for most horizons.

The base saturation is very high in all horizons; most have a value close or equal to 100%.

The %C in most horizons is low to very low but some horizons have high values. The N

content is low to very low for almost all the horizons. The measured available P is highly vari-

able between the different horizons but most horizons have medium or high values.

Soil physical properties. The average field capacity is 27% (± 7%), with a range between 8

and 37%. Values per horizon are presented in the profile descriptions (see S1 File) and have

been tabulated by Tielens [50]. The average permanent wilting point is 21% (± 8%), with a

range between 4 and 38%. The average total available water (TAW) is 7% (± 5%), with a range

between 1 and 16%. In several horizons the calculated TAW was slighty negative, indicating

that the values of PWP and FC were close to each other. In such cases, TAW was not further

taken into account. The average prosity is 42% (± 7%), with a range between 30 and 54%. Like

for the other soil physical parameters, these descriptive statistics concern all profiles and hori-

zons. The average bulk density is 1.34 (± 0.24 g cm-3), with a range between 0.91 and 1.74 g

cm-3.

Discussion

Soil chemical properties. In neutral soils, the exchangeable base complex is dominated by

Ca2+ and Mg2+, in alkaline soils Na+ and K+ are more present and in acid soils Al3+ and H+ are

the most abundant [63]. The profiles with a slightly to moderately acid pH (I, J, K, L and M)

have indeed significantly lower values of exchangeable K+ and Na+ (0.32 cmolc/kg K+ and 0.16

cmolc/kg Na+) in contrast to 0.75 cmolc/kg K+ and 0.76 cmolc/kg Na+ in the other profiles. For

Ca2+, also a significant difference exists between the two groups: 8.14 cmolc/kg for the acid

soils compared to 22.18 cmolc/kg for the alkaline soils. For Mg2+, no significant difference was

found between both groups.

When interpreting the soil chemical properties (Tables 2 and 3), the N content of all sam-

ples is low to very low (0.01–0.22%, with an outlier of 0.36 in Des’a forest), in line with limited

inputs of N [64], high erosion rates and prolonged cultivation. N is the most limiting soil

chemical property and increasing the N content is a must to increase crop yields. Even though

farmers with livestock dispose of the organic form of N (manure), it was observed that this

manure is stored and used in a poor way. In many cases the manure is left exposed to the

weather so rain can leach all the valuable nutrients. In other cases, it is thrown away,

Table 3. Interpretation ratings for soil chemical soil properties. Based on Hazelton and Murphy [62].

Very low Low Medium High Very high

Ec (dS/m) 0–2 2–4 4–8 8–16 >16

Ca (cmolc/ kg soil) 0–2 2–5 5–10 10–20 >20

Mg (cmolc/ kg soil) 0–0.3 0.3–1 1–3 3–8 >8

Na (cmolc/ kg soil) 0–0.1 0.1–0.3 0.3–0.7 0.7–2.0 >2

K (cmolc/ kg soil) 0–0.2 0.2–0.3 0.3–0.7 0.7–2.0 >2

CEC (cmolc/ kg soil) 0–3 3–7 7–15 15–30 >30

Base saturation (%) 0–20 20–40 40–60 60–80 >80

Ntot (g/100 g) 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 >0.4

Ctot (g/100 g) 0–0.6 0.6–1.2 1.2–3.0 3.0–8.7 >8.7

pH-H2O 5–6 6–7 7–8 8–9 9–10

Moderately acid Slightly acid Slightly alkaline Moderately alkaline Strongly alkaline

CaCO3 (g/100 g) 0–0.5 0.5–2.0 2–5 5–15 >15

Pav (mg/kg) 0–5 6–10 11–14 15–20 >20

https://doi.org/10.1371/journal.pone.0224041.t003
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Table 4. Values of the chemical parameters of the different soil horizons. A1 corresponds to the top horizon of profile A (see S1 File), B2 corresponds to the second

horizon (from the top) of profile B, etc.

Horizon Exch Na+ Exch K+ Exch Ca2+ Exch Ca2+� Exch Mg ECEC BS BS� pH KCl pH H2O % CaCO3 %N %C C/N EC Pav

(cmolc/kg soil) % % μS/ cm (mg/

kg soil)

A1 0.59 0.35 21.4 17.15 3.21 21.3 119.8 100 7.62 7.79 19.16 0.22 1.89 8.8 191 15.19

B1 0.21 0.21 31.9 29.05 5.46 34.9 108.1 100 6.86 7.28 2.89 0.09 1.52 17.3 135 8.57

B2 0.25 0.30 31.3 28.87 6.58 36.0 106.8 100 6.62 7.15 2.99 0.06 0.89 15.6 91

C1 0.70 0.65 36.2 31.11 6.08 38.6 113.3 100 6.76 7.5 4.77 0.08 1.37 16.1 167 9.58

C2 0.77 0.42 35.0 30.12 7.60 38.9 112.5 100 6.85 7.61 4.61 0.10 1.39 14.2 187

D1 0.22 1.09 13.3 13.28 0.97 15.8 98.3 98.3 7.75 8.02 9.57 0.06 0.89 13.7 153 14.61

D2 0.73 1.55 17.6 13.91 4.53 20.7 117.6 100 7.48 8.01 17.39 0.08 0.52 6.6 187

D3 0.74 0.59 37.8 33.20 1.16 35.7 112.9 100 7.2 7.86 9.12 0.07 0.80 11.3 120

E1 0.46 0.81 27.3 24.59 5.35 31.2 108.6 100 7.28 7.81 3.26 0.09 0.88 10.2 145 12.03

E2 0.60 0.45 24.9 22.81 7.41 31.3 106.6 100 7.26 7.89 3.17 0.07 0.90 13.3 158

F1 0.06 0.40 11.1 8.43 0.23 9.1 128.7 100 8.59 8.63 1.78 0.02 0.25 13.5 80 32.38

F2 0.15 0.32 12.6 3.78 6.30 10.6 183.2 100 8.96 8.83 2.19 0.01 0.03 4.1 130

G1 0.03 0.39 3.9 3.94 0.29 6.5 71.5 71.5 6.97 7.74 1.29 0.02 0.14 5.6 57 10.83

G2 0.25 0.98 10.5 10.53 2.61 15.9 90.4 90.4 7.22 7.65 0.61 0.03 0.21 7.5 125

H1 0.17 0.48 18.4 18.43 5.10 24.92 97.0 97.0 6.73 7.48 2.54 0.09 0.76 8.8 140 112.68

H2 0.22 0.13 25.0 24.40 13.24 38.0 101.6 100 5.33 7.2 4.55 0.07 0.86 12.7 92

H3 0.19 0.08 24.2 23.14 13.96 37.4 102.9 100 5.56 7.58 4.51 0.03 0.17 6.4 116

I1 0.18 0.13 8.4 8.43 3.58 15.0 81.9 81.9 5.61 6.9 1.40 0.05 0.52 11.0 58 12.81

I2 0.12 0.14 4.6 4.59 3.21 10.2 79.0 79.0 5.37 6.62 1.04 0.04 0.39 10.4 133

I3 0.16 0.16 2.9 2.91 1.99 7.9 66.0 66.0 5.81 6.79 0.75 0.02 0.14 7.2 44

J1 0.04 0.24 11.4 11.38 4.82 19.6 84.0 84.0 5.31 6.68 1.75 0.07 0.63 9.6 48 24.91

J2 0.15 0.13 9.4 9.40 7.91 17.6 100.0 100 5.25 6.46 1.65 0.05 0.50 10.9 46

J3 0.11 0.23 8.9 8.90 4.48 16.4 83.9 83.9 5.08 6.31 1.44 0.05 0.41 8.7 59

K1 0.43 0.14 11.0 11.02 4.60 16.6 97.6 97.6 5.26 5.77 1.17 0.11 0.75 6.6 64 81.11

K2 0.23 0.19 13.8 13.82 5.38 20.0 97.9 97.9 5.05 6.07 1.72 0.11 1.20 11.3 71

L1 0.02 0.30 1.1 -0.18 3.07 3.2 139.2 100 6.08 6.67 0.43 0.06 0.62 10.6 44 38.25

L2 0.09 0.34 1.8 1.83 0.66 5.5 53.5 53.5 6.64 6.96 0.63 0.02 0.23 9.8 52

M1 0.12 0.87 6.4 6.39 3.12 11.9 88.0 88.0 5.82 6.7 0.80 0.05 0.50 9.7 56 58.85

M2 0.11 0.81 13.5 13.52 6.14 21.1 97.7 97.7 5.31 6.4 0.86 0.05 0.61 12.7 43

M3 0.05 0.52 13.8 13.80 6.15 21.3 96.2 96.2 5.51 6.39 0.88 0.03 0.27 8.7 48

N1 2.29 0.47 10.4 10.40 12.62 28.2 91.5 91.5 6.79 7.49 1.94 0.11 0.98 9.2 46 11.95

N2 14.24 0.40 15.7 9.08 9.87 33.6 119.7 100 7.38 7.81 2.54 0.09 1.45 16.1 140

O1 0.16 0.58 29.1 28.29 1.70 30.7 102.6 100 7.19 7.75 13.93 0.09 1.32 14.0 146 19.07

O2 0.35 0.69 29.3 26.36 4.65 32.1 109.1 100 7.24 8.03 12.01 0.09 0.96 11.3 138

O3 0.37 0.52 22.8 22.51 3.50 26.9 100.9 100 7.31 8.07 19.12 0.07 0.39 5.3 186

P1 0.18 0.86 37.3 33.90 1.92 36.9 109.2 100 7.09 7.65 4.36 0.36 3.96 11.1 191 25.68

P2 0.10 0.75 36.9 33.10 1.20 35.2 110.9 100 7.2 7.81 15.73 0.20 2.69 13.8 177

Q1 0.11 0.66 29.1 27.77 0.49 29.0 104.4 100 7.45 7.82 19.37 0.21 2.38 11.3 167 16.55

Q2 0.07 0.45 14.2 14.17 0.26 17.2 86.9 86.9 7.75 8.23 18.55 0.30 3.24 10.7 140

R1 0.13 0.81 29.3 27.94 0.96 29.8 104.6 100 7.56 8.05 19.23 0.19 3.67 18.9 156 13.92

R2 0.09 0.71 20.0 19.98 0.60 21.8 98.2 98.2 7.54 8.16 18.76 0.09 0.81 9.0 128

R3 0.12 1.48 33.9 29.93 1.76 33.3 111.8 100 7.23 8.04 19.36 0.07 0.54 8.1 139

S1 0.08 0.98 34.9 28.94 3.62 33.6 117.9 100 7.19 7.83 19.28 0.16 2.43 14.8 171 19.11

S2 0.22 0.67 35.6 33.38 2.49 36.8 106.1 100 6.91 7.58 4.45 0.30 4.07 13.5 216

T1 0.07 3.69 26.3 23.94 1.91 29.6 107.9 100 7.19 7.72 19.06 0.19 1.86 9.7 162 42.77

(Continued)
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particularly in the eastern part of the catchment, or it is dried and used as a fuel. The inorganic

form (mineral fertiliser) was less popular [29] because of its high cost [64, 65], as well as unreli-

able rainfall.

Values of soil OC are also low (0.03–1.9%) except in Des’a forest where a mean value of

2.6% was found. Such low soil OC contents are the consequence of severe soil erosion, limited

inputs (manure or crop residues) and overgrazing, which results in a low vegetation cover [3,

66]. In line with the OC content, the soil organic matter (SOM) plays an important role in the

soil: it improves structure, water holding capacity, nutrient absorption and release to plants

[67]. The higher values in Des’a forest are the consequence of the nearly absent soil erosion,

and the vegetation cover that leads to larger biomass inputs. Exclosures also trap upslope

eroded sediments, which have very high organic carbon content, allowing a fast regeneration

of soil productivity [44].

Soil physical properties. As may be expected in these landscapes that hold an extremely

varied lithology, there are strong contrasts in soil texture. Sandy soils occur in profiles derived

from sandstones, silty on the precambrian metamorphic rocks. Despite the fact that the inade-

quacy of the LDPSA laboratory analysis hampered the study, the decantation analysis showed

that soils and horizons with clay contents beyond 40% are common (Table 2). For some part,

they represent the pristine soil before major human interventions, either in the topsoil (profiles

B, C, J and N) or as a buried horizon (profiles G and K). The mountainous nature of the topog-

raphy led to frequent occurrence of colluvium, but pedogenesis on such colluvium is com-

monly leading to textural fining in the top horizons.

Additionally, mass movements have in many places transported materials from the basaltic

uplands over the lower-lying sedimentary rocks, increasing the opportunity for clay soils to

develop (see Part II).

Overall, the measured TAW (7.6% ± 4.9%) is lower than the expected 10 to 20% for silty

clays and clay soils, or 15 to 25% for silt loam, loam and silty clay loam [68]. Such low values

for TAW could be the result of low values for FC or high values for the PWP. As PWP mea-

surements, done under extremely low pressure, are subject to errors, our measurements were

repeated four times and found to be consistent.

On the other hand, the relatively low FC values (average of 27%) are most probably related

to the space occupied by the frequent small rock fragments in the soils (and in the undisturbed

samples alike). For instance, a 40% rock fragment content in soils has been demonstrated to

reduce the field capacity by 50% [69]. Low TAW is, hence, explained by the stoniness of the soils.

Similarly, Descheemaeker et al. [70] analyzed TAW of top horizons of Cambisols, Calcisols

and Phaeozems in exclosures and eucalyptus forest in the Giba catchment. In these soils with

relatively high clay percentages (average of 37%) and relatively high SOM content (average of

3.7%) [70], the average TAW was 12% (± 2%) [70]. Taking into account the higher OC con-

tent, capable of holding larger amounts of water [71], these values are still at the lower limit of

what may be expected based on texture [68]. Overall, the TAW for plant roots is strongly

affected by the stoniness of many soils.

Table 4. (Continued)

Horizon Exch Na+ Exch K+ Exch Ca2+ Exch Ca2+� Exch Mg ECEC BS BS� pH KCl pH H2O % CaCO3 %N %C C/N EC Pav

(cmolc/kg soil) % % μS/ cm (mg/

kg soil)

T2 0.20 1.81 25.4 25.43 1.43 29.4 98.1 98.1 7.31 7.82 19.09 0.18 1.75 10.0 148

�: adjusted value for exchangeable Ca2+ and BS.

https://doi.org/10.1371/journal.pone.0224041.t004
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Part II. Soil profiles

Methodology: Soil auger and profile pit observations

In total 1381 soil auger and 141 profile pit observations were made in the catchment. The exact

location of these augering sites and profile pits were determined by discussion among authors,

and based on the reconnaissance studies and the interpretation of the digital data. These obser-

vations were made along soil catenas across the whole catchment.

The augerings were made with an Edelman auger. If augering depth was limited due to

stoniness of the profile, multiple augerings were conducted and the deepest profile was

described. For each augering the following properties were recorded: position; elevation; slope

gradient; land use; depth; parent material; soil texture (assessed by finger test).

The profile pits were described in detail using the FAO guidelines for soil description [72]. The

following properties of the different soil horizons were characterised: depth; colour (Munsell Soil

Colour Chart); texture; structure; stickiness; distribution of roots; reaction with HCl; surface stoni-

ness. The profiles were classified according the World Reference Base for Soil Resources [73].

Local land users provided additional information–individuals who appear on profile pit

photographs have given written informed consent to publish the photograph. Among the 141

soil profiles, 20 are presented in detail, well distributed over the different geomorphic regions

of the Giba catchment (Fig 3).

Soils on basement and Palaeozoic (fluvio-)glacial deposits

Precambrian lithology and Palaeozoic sedimentary rocks. The basement rocks of the

catchment belong to the Arabian-Nubian shield [74, 75], which was formed as a consequence

of the collision of East and West Gondwana causing low-grade metamorphism of the rocks

[76]. They cover about 27% of the catchment and 6 different units exist: granitic intrusions,

metalimestone, metasediments, metaconglomerate, metagreywacke and metavolcanic rocks.

The Precambrian metalimestone is blackish (Fig 4) or light grey to white and has quartz

veins. It can be found in the Negash syncline where it has undergone strong folding and in the

Abergelle lowlands [31].

The metasediments are phyllites and slates, both the result of low graded metamorphism of

shale. Both are very fine grained and can be found in the same areas as the metalimestone. The

slates are reddish or greyish, very cleavable and quartz veins are common. The reddish colour

is due to the presence of hematite (Fe2O3). The phyllites are more metamorphosed than the

slates, which explains the shiny surface, but in contrast to the slates they are not cleavable.

Metaconglomerates are only found in the northern part of the catchment, around Negash

and on the Atsbi horst. The metagreywacke is mainly limited to the Atsbi horst. It is coarse

grained and probably derived from pyroclastic materials ejected during back-arc volcanism

[74, 77]. The sedimentary structure, which distinguishes them from the metavolcanic rocks, is

explained by the transportation and reworking by running water [31].

As metavolcanics, both acidic and basic volcanic rocks occur in the western part, near the

outlet, in the north around Negash and on the Atsbi horst and show a fine to medium grained

texture [78].

Coarse-grained granitic intrusions are the youngest Precambrian formation in the Giba

catchment [74]. Its spatial coverage is limited, the most extensive exposures are found west of

Negash (almost 50 km2), around Abiy Addi and at the outlet of the catchment. These intru-

sions are a possible source of the granite boulders in the Edaga Arbi tillites.

Palaeozoic (fluvio-) glacial deposits are the oldest sedimentary rocks in the catchment. They

are unconformably overlying the first planation surface formed on the basement rocks [33].
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Two different units can be found: the Edaga Arbi tillites and the Enticho sandstone. Generally,

the tillites overlay the Enticho sandstone, but the two are often interfingering [31].

The Edaga Arbi tillites consist of poorly sorted, unstratified and poorly consolidated fine-

grained sediments (silt- to claystones) with colours varying from red, purple to dark grey and

black [31, 79]. At some locations varved proglacial deposits can be found. Another evidence of

a glacial environment is given by the presence of dropstones of various sizes [79–81]. Glacial

landforms like roches moutonnées also occur, with the presence of striations, grooves and

chattermarks in the underlying rocks, indicating direct ice contact [79, 81, 82]. The area cov-

ered by tillites is small (<1%), and is located near Abiy Addi, Wuqro and Idaga Hamus.

The Enticho sandstone is a white, medium- to coarse-grained sandstone and is characterised

by cross beddings [31]. Deposited as glacial outwash [81], it unconformably overlies the base-

ment rocks. Precipitation of iron at the contact between layers made it very resistant to erosion

and is the reason why plateaus of Enticho sandstone stand out in the landscape. The Enticho

sandstone covers a large area (8%), particularly in the northern part of the Giba catchment.

Fig 4. Black meta-limestone outcropping near Taget. Note the presence of white quartz fragments at the soil surface that originate from quartz veins.

https://doi.org/10.1371/journal.pone.0224041.g004
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Soils in the Abergelle lowlands. The Abergelle lowlands are in the western part of the

catchment (Fig 3). This area is dominated by Precambrian rocks including metalimestone,

metasediments (phyllite and slate), metavolcanic rocks and granitic intrusions [31]. In the

east, the geomorphic region is confined by a steep Adigrat Sandstone cliff (Fig 5, left). Typical

for the Precambrian rocks are the occurrence of many small rounded hills that are mainly

aligned in a NE-SW direction. The vegetation cover is limited due to lower precipitation and

higher mean annual temperatures, and provides little protection against erosion by water

which resulted in shallow soils. The dry climatic conditions and shallow soils make this area

not suitable for cultivation. Most of the land is bare land or rangeland. Deeper, mostly culti-

vated, soils are observed in the valley bottoms, often corresponding to areas with metalimes-

tone as parent material.

Towards the outlet, the landscape is strongly incised by the Giba River which is reflected in

a very rugged terrain with steep slopes, shallow soils and very limited cultivation. At the foot

and toeslopes of the steep Adigrat Sandstone cliff, Palaeozoic tillites outcrop and a 0.01 to 10

m thick layer of colluvium has been deposited.

Profile A: Calcaric Rendzic Leptosol. Profile A is situated on the shoulder of a small metali-

mestone hill (Fig 4) in Taget, Abergelle. Despite the rather steep slope, the shallow soil and the

very high topsoil stoniness, this area is used for (marginal) cultivation. The parent material is

strongly weathered metalimestone. Chemically this soil is rather rich and characterised by very

high CaCO3 values (19%). The contents of Ca2+ (17.15 cmolc/kg) is very high and Mg2+ (3.21

cmolc/kg) high (Table 3). The available P (15.19 ppm) is high and the C (1.9%) and N (0.22%)

contents are medium. The texture is silt loam, but many small rock fragments are present,

which reduce the water holding capacity. This soil profile, like all others, is described in detail

in the S1 File, which contains also all analytical data.

Fig 5. Location of soil profile pit E in Agbe, Abergelle lowlands (left) and profile E (Chromic Vertisol, right). At the back, the Adigrat sandstone cliff is visible; arrows

indicate the approximate locations of soil profiles D and F.

https://doi.org/10.1371/journal.pone.0224041.g005
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Profile B: Epileptic Proto-vertic Cambisol. This soil profile is at the toeslope of the same

metalimestone hill as profile A. The soil depth is limited to 45 cm. The rock fragment content

is less and almost no rocks occur in the B horizon. The parent material is the same strongly

weathered metalimestone. All the soils in the area are used for cultivation. The CaCO3 content

is medium (2.9%) and the pH (7.2) is slightly alkaline. The higher clay percentages result in

very high effective cation exchange capacity (ECEC) values (35.5 cmolc/kg) which makes this

soil rather fertile. The available P (8.57 ppm) and total N (0.07%) contents are however low

and very low. The clay has swell-shrink properties as evidenced by small but not completely

developed slickensides. Soil that is located near one of the numerous termite mounds gives bet-

ter crop yields according to the farmers and the mounds are therefore not destroyed [83].

Profile C: Pellic Vertisol. Profile C is situated about 0.5 km east of profile B in the valley bot-

tom where thick black clays cover metalimestone. Small limestone fragments can be found

throughout the profile. The whole area is intensively used for cultivation (sorghum). The very

high ECEC value (ca. 38 cmolc/kg) makes this soil chemically very rich. The organic carbon

content (1.4%) is medium but the available P (9.58 ppm) and N (0.09%) contents are low and

very low respectively. The clay percentage in the B horizon (61%, in contrast to 46% in the A

horizon) is very high and clearly developed slickensides are visible. The swell-shrink properties

of the clays result also in an angular blocky structure. At the surface, black metalimestone frag-

ments (up to 1 m across) can be found. Five-centimetre wide and up to one-metre deep cracks

develop in the topsoil during the dry season. The surface horizon meets the requirements of

the qualifier ‘Grumic’ (strong fine granular structure) but it was chosen not to use this qualifier

because the structure might have been caused by recent ploughing.

Profile D: Colluvic Calcic Luvisol. This profile is situated in a gently sloping area about 2.5

km south of the Adigrat Sandstone cliff (indicated by an arrow on Fig 5). The parent material

is Adigrat Sandstone colluvium. Besides sandstones, also basalt fragments are found at the sur-

face which confirms the colluvial origin. Maize is cultivated on this location. The colluvial ori-

gin can explain the loamy nature of the A horizon. A clear clay jump occurs in the B horizon,

which meets the requirements of an ‘argic’ horizon. In this horizon many small CaCO3 concre-

tions were observed. Chemically this soil, and particularly the B horizon, is dominated by a

high CaCO3 content (12.1%) and Ca2+ (20.3 cmolc/kg) values; it was classified as calcic. The

ECEC (24 cmolc/kg) is also high but the exchange complex is mainly dominated by Ca2+. The

organic C (0.71%) and total N (0.07%) contents are low to very low, as reported earlier on for

the wider region [84]. The available P (14.61 ppm) is medium.

Profile E: Chromic Vertisol. This profile is situated less than 1 km downhill (south) of pro-

file D (Fig 5). In contrast to profile D, no sandstones but only basalt fragments were found.

The area is used for irrigated agriculture; cotton and red pepper are intercropped. Chemically

the soil has very high ECEC values (31.24 cmolc/kg). The very high values for Ca2+ (23.4

cmolc/kg) and Mg2+ (6.4 cmolc/kg) are typical for soils derived from basalt. The clay percent-

ages are also high (33% to 41%) and clear slickensides can be observed in the B horizon which

indicates the swell-shrink properties of the clay. Like the other soils, the levels of organic C

(0.90%) and N (0.09%) are low to very low.

Profile E was classified as a Vertisol. Other Vertisols were also found in the area (profile C)

but the location of this Vertisol is remarkable: it is found a few km downslope from the Adigrat

Sandstone cliff whereas the whole surrounding area is covered by reddish, sandy colluvial

material of this cliff. In stead, the Vertisol developed on materials derived from basalt; as a

mafic rock, it is rich in Ca and Mg and therefore an ideal parent material for smectites [85].

The nearest potential source of basalt are the Hagere Selam highlands: 5 to 6 km north of pro-

file E and are almost 1 km higher (on top of the escarpment depicted in Fig 5). Most probably,

a debris flow transported these sediments to the lowlands, the path of which can be identified
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on aerial photographs [50]. Debris flows in the Hagere Selam highlands [86] are capable of

transporting debris over much larger distances than local landslides. The fact that a Vertisol

developed on the deposited basalt-derived sediments indicates that the debris flow occurred at

least several thousand years ago [87, 88]. Humid periods favourable to pedogenesis existed in

the study area roughly between 10 000 and 5000 yr BP and between 2500 and 1500 yr BP [3]. It

is therefore likely that the Vertisol formed during one of those two periods.

Profile F: Lithic Leptosol. Profile F is situated about 1 km uphill (north) of profile D, closer

to the Adigrat Sandstone cliff (Fig 5). The parent material is strongly weathered Adigrat Sand-

stone. Because of the very limited soil depth this area is used as rangeland but the vegetation

cover is sparse. The sandy characteristics result in a chemically very poor soil with ECEC val-

ues around 10 cmolc/kg. The amounts of organic C (0.12%) and N (0.01%) are very low.

Profile G: Haplic Planosol. This profile is in a large gully, close to the Adigrat Sandstone

cliff south of Abiy Addi (Fig 6). The area is, like profile F, used as rangeland and dominated by

small trees and shrubs. The A horizon is sandy, but at a depth of 40 cm a very abrupt textural

change occurs, with 42% clay in the B horizon. Chemically this soil is very poor. The lower,

clayey layer (below a depth of 40 cm) has a higher ECEC (15.9 cmolc/kg) but organic C

(0.17%) and N (0.02%) content is very low. We classified this soil as a Planosol, given the

abrupt textural change in the soil profile [73], between the coarser uppermost layer and the

underlying one.

No mineralogical analysis was conducted in this research, but the high pH (around 7) and

high base saturation (BS > 71%) indicate that the actual conditions are not suitable for ferroly-

sis, in line with suggestions elsewhere in Ethiopia [89]. Given the location of these Planosols,

the geogenetic process [85] is the most likely cause: they are situated very close (within 1 km)

of the Adigrat Sandstone cliff. The coarse surface layer is a colluvial deposit from the cliff, simi-

lar to the surface layer of profile D. The finer textured layer underneath is a clayey layer of the

Edaga Arbi tillites that outcrop under the sandstone cliff. Hunting T.S. [49] presents a

Fig 6. Location of soil profile pit G in sandstone colluvium overlying tillites, south of Abiy Addi (left) and profile G (Haplic Planosol, right).

https://doi.org/10.1371/journal.pone.0224041.g006
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description of a profile (PE/9) that is very similar to the above-described Planosol, in a similar

geomorphic setting.

Soil types observed in Aqushala in the Abergelle lowlands [45] comprise (1) in the meta-

morphosed black limestone, Endoleptic Calcisol at the upper slope; Endoleptic Cambisol and

Vertic Leptosol at the middle slope, Hypercalcic Calcisol at the footslope and Grumic Vertisol

in the valley bottom; (2) in the metasediments, Leptosol at the upper and footslope, Regosol at

the mid slope position and Fluvisol in the valley bottom; and (3) in metamorphosed banded

marl, Leptic Calcisol at the upper slope, Haplic Calcisol at the foot slope, and Fluvisol in the

valley bottom. The soil-landscape model was successfully tested in the Taget area (where pro-

files A, B and C are located).

Soils on the Precambrian and Palaeozoic rocks of the Atsbi horst. The Atsbi horst is in

the north-eastern part of the catchment (Fig 3). At the west, it is demarcated by the Negash

geosynclinal fold and a major normal fault [90]. Both the fault and fold lines are running

north-south [31]. In the south, the horst is bordered by the younger Wuqro fault belt. In the

eastern, northern and locally in the central part Enticho sandstone outcrops occur. Due to dif-

ferential erosion, the Enticho sandstone now stands out in the landscape and forms mesas or

smaller buttes [16, 49]. However, most of the area is covered by Precambrian rocks: metacon-

glomerate, metagreywacke, and dominant metavolcanic rocks. Almost all the land except for

the steep slopes is under cropland (Fig 7).

Profile H: Leptic Luvisol. This profile is situated on the Atsbi Horst on the level top of a

ridge. The parent material is strongly weathered metasediment. Despite of the level topogra-

phy, soil depth is limited to 60 cm. Chemically, this soil has high ECEC values and in the B

horizon even very high values (38 cmolc/kg) were measured. The values of Ca2+ (22.0 cmolc/

kg) and Mg2+ (10.7 cmolc/kg) are high to very high and the pH (7.3) is slightly alkaline. In the

B horizon, a clay jump occurs and this horizon is classified as ‘argic’. The organic C (0.6%) and

Fig 7. Location of soil profile pits H (in front) and I (Leptic Cambisol, at the foot of the hill) on the meta-sediments of the Atsbi horst (left) and soil profile H

(Leptic Luvisol, right).

https://doi.org/10.1371/journal.pone.0224041.g007

Spatial patterns of soils for sustainable agriculture in northern Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0224041 October 22, 2019 18 / 42

https://doi.org/10.1371/journal.pone.0224041.g007
https://doi.org/10.1371/journal.pone.0224041


total N (0.06%) contents are low to very low. The top horizon has the highest measured value

of available P (112.7 ppm) of all surface horizons. Despite the loamy nature of the C horizon,

this horizon has a very high ECEC value (37.4 cmolc/kg).

Profile I: Leptic Cambisol. Profile I is situated at the footslope of the same metasediment

hill as profile H (Fig 7). Despite its 10% slope gradient, this area is used for cultivation. The sur-

face stoniness is very high and besides metasediments and metavolcanic rocks, quartz frag-

ments are abundant. Chemically, this soil differs greatly from profile H. The amounts of

exchangeable cations and the ECEC values (10.4 cmolc/kg) are much smaller. Over the entire

profile, this soil has one of the lowest measured base saturation (52.7%). The CaCO3 content

(1.0%) is low and the pH is slightly acidic (6.8). Both the organic C (0.35%) and total N

(0.03%) are very low, and decrease with depth.

Profile J: Haplic Cambisol. Profile J is 1.5 km west of profiles H and I, almost in the valley

bottom, covering metavolcanic rock. The slope is very gentle and the soil is much deeper than

the previous two profiles. Similar to profile I, quartz fragments occur at the surface but are less

abundant. At the surface 2–3 cm of overwash was observed. Small nutty structures were

observed in the B horizon, but the clay percentages are too low to consider it as a nitic horizon.

Consequently, this soil is chemically not as rich as profile H in ECEC and Ca2+. The pH is

slightly more acid (6.5) than profile I. Like most soils in Giba catchment, this soil has very low

to low values of C (0.5%) and N (0.05%). The available P (24.9 ppm) content, however, is very

high.

Lithic Leptosol, Leptic Cambisol and Leptic Regosol were also observed on and near rock

outcrops in the Ruba Feleg and Kuret sub-catchments whereas in areas where thin colluvium

of Enticho Sandstone covers the Precambrian, associations of Haplic Cambisol, Haplic Regosol

and Skeletic Regosol were observed [41].

Soil profiles in the Sinkata midlands. The Sinkata midlands are in the north-western

part of the catchment. They start north of the Wuqro fault and extend northwards to the

basalt-dominated highlands of Mugulat. In the East, the midlands are bounded by the Atsbi

horst. The midlands can be subdivided into three units with their own geological and geomor-

phic characteristics.

The first unit, in the northern part, is covered by Enticho sandstone, with occurrences of

Edaga Arbi glacials in the lower positions. The area is a very gently undulating plain and most

of the area is used as agricultural land (Fig 8, left). A relatively high base saturation was

observed in these soils despite a high quartz content which has been attributed to the calcitic

cement in the sandstone [30]. Leaching of the bases on the higher sites and accumulation in

the depressions together with selective downslope transport of finer particles resulted in

coarse-textured and more acidic soils on the higher sites and finer textured and base saturated

soils in the depressions [30]. At some locations the soil is very shallow where the Enticho sand-

stone outcrops with its protective ferruginous sandstone cap. Frequent occurrence of rounded

pebbles does mostly not indicate fluvic properties, as such pebbles occur as lenses in the Enti-

cho sandstone, and throughout the tillites.

The second unit can be found south of the previous unit and is covered by Precambrian

rocks and some smaller Enticho sandstone outcrops. The metavolcanic rocks cover the largest

area, followed by metaconglomerate. In the centre, a large granite batholith is present [33]

which forms a series of concentrically oriented ridges with narrow intervening valleys [49].

These ridges are composed of very rocky tors and are thus not suitable for cultivation; in the

wider valleys the soil depth allows cropping.

The last unit is the Negash synclinorium [90] and consists of metasediments and metali-

mestone. The landscape is very steep with locally alluvial terraces with deeper soils which are

used for cultivation.
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Profile L: Arenic Lixisol. Profile L is situated near the town of Sinkata on a small plateau.

Weathered Enticho sandstone is the parent material. Just like most of the northern part of the

Sinkata midlands this area is used for cultivation. Chemically this soil is the poorest of all

described profiles. The ECEC of the B horizon is low (5.47 cmolc/kg). Due to the presence of a

clay jump, the B horizon was qualified as an ‘argic’ horizon. Organic C (0.4%) and total N

(0.04%) are again low to very low due to the agriculture practices, but the available P content

(38.25 ppm) is very high. In view of the presence of an argic horizon, and base saturation of

more than 50%, this soil is classified as a Lixisol. In the entire profile small, reddish iron nod-

ules/coatings were observed.

Profile M: Haplic Fluvisol. This profile is situated almost in the valley bottom of the Sinkata

midlands, on grazed fallow land, but the adjacent lands were cultivated. Fluvic material was

found beneath the shallow A horizon. Two different horizons, separated by a gravel layer

(sandstone and metavolcanics) at 40 cm depth, can be distinguished in the fluvic material.

Chemically the A horizon differs from the underlying horizons. The ECEC values in the fluvic

horizons (21 cmolc/kg) are almost double of the uppermost (12 cmolc/kg) horizon. The per-

centages of organic C (0.4%) and total N (0.04%) are very low in the entire profile. Like profile

L, the entire profile is slightly acid (pH of 6.5). At the bottom of the profile strongly weathered

sandy material with purple colours was present.

Profile N: Mazic Sodic Vertisol. This profile is situated a few metres from profile M but in

the thalweg (Fig 8). In contrast to profile M this area is used as permanent grassland. A few

metres further, ground water was observed in a small depression but no groundwater nor

gleyic colour patterns were observed in the profile. Due to the hardness of the soil, the profile

was only excavated to a depth of 80 cm. Chemically and physically this soil differs strongly

from profile M. The texture is more clayey and becomes very hard upon drying. In the B hori-

zon, not fully developed slickensides could be observed, indicating vertic properties. At the

surface, a gilgai microrelief was observed although it was not very distinct.

Fig 8. Location of soil profile pit N in the Sinkata midlands (left) and profile N (Mazic Socid Vertisol, right).

https://doi.org/10.1371/journal.pone.0224041.g008
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ECEC values (30.1 cmolc/kg) are high to very high as can be expected with swell-shrink

clays. However, the most prominent characteristic are the very high values of exchangeable

Na+. In the B horizon, this value is even extremely high (more than 14 cmolc/kg). 42% of the

exchange complex is occupied by Na.

In the Tsinkaniet catchment of the western Midlands, Tesfu Woldegerima (48) found

Endoeutric Cambisol and Haplic Regosol on 10–15% slopes, Haplic Leptosol on 5% slopes,

Cutanic Luvisol and Mazic Vertisol on 1% slopes, and Arenic Fluvisol along the rivers. The

soil-landscape model was applied in another similar area (Sendeda Guims), with a rate of accu-

racy of 30%. Thin-section analysis showed the presence of soils with an argic horizon in the

plains and on plateaux which were mainly classified as Lamelli-Arenic Luvisol [91]. Hunting

TS [16] presents profile descriptions for Chromic, Eutric, and Vertic Cambisols as well as for a

Chromic Vertisol and a Cambic Arenosol in the wider Hawzien area (just outside and north-

west of the Giba catchment, but part of the Sinkata Midlands).

Soils on Mesozoic sedimentary rock

Mesozoic rocks. The Mesozoic rocks cover more than half the catchment (53%) and are

the result of a transgression-regression cycle. During the transgression and regression two

sandstone formations were deposited: the Lower (Adigrat) and Upper (Amba Aradam) Sand-

stone formations. During the transgression period, the wider area was below sea level and the

Antalo Formation was deposited, which consists of limestone, shale, marl and minor intercala-

tions of gypsum layers [92].

The Adigrat Sandstone has a maximum thickness of nearly 700 m around Abiy Addi and it

is further exposed around Wuqro, Hayki Meshal, north of Idaga Hamus and in some deeply

incised gorges of the Giba R. and its tributaries [31, 93].

The Antalo Formation can be found south of the Wuqro fault belt, all the way to the south-

ern part, and in the western part it stops around Hagere Selam. The thickest depositions in the

east are estimated at 1100 m; the formation pinches away towards the west [31].

The upper sandstone formation (Amba Aradam) is a near-shore deposition with cross bed-

dings. The sandstone is reddish coloured which indicates the presence of oxidised iron (hema-

tite and magnetite). It is fine grained and overlain by flood basalts which created a ‘baked’

contact in the upper part of the formation [94, 95], leading to induration and low permeability.

The maximum thickness of the Amba Aradam Sandstone is around 50 m; it covers <1% of the

catchment, particularly in the Hagere Selam highlands and on the Amba Aradam mountain in

the southern part of the catchment [31].

Cuesta landscape. The cuesta landscape west of Wuqro stretches till Hawzien (outside the

Giba catchment). The cuestas, with their back slopes dipping towards the south-southeast,

occur both in the Adigrat and the Antalo Formations. The Suluh River cuts consequently

through the cuesta fronts. Overall, the slopes are rather steep in this landscape and agriculture

is limited to the flatter areas where alluvio-colluvial deposits occur [96], on which Hunting TS

[16] described a Cambic Arenosol. The steep slopes, especially on the cuestas, are transformed

to exclosure or used as grazing land (Fig 9). Due to these steep slopes, the soils are very shallow

and stony. The soils in the colluvial deposits are deeper but still rather shallow with generally a

depth around 30 to 40 cm.

Soils of the incised Antalo Supersequence plateau. This unit covers the largest area in

the catchment; to the north it is confined by the Wuqro fault, in the west it is limited by the

Hagere Selam highlands and the steep Amba Aradam Sandstone cliff. The whole area is

severely incised due its rapid uplift which started around 25 million years ago and amounted

roughly to 2000 metres [97]. The dominant lithologies are limestone, shale and marl (part of
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the Antalo Supersequence) with many dolerite sills and dykes. When exposed, dolerite forms

steep cliffs or flat mountain tops. The dykes are mainly found in the major fault areas, like the

Mekelle and Chelekot fault. Because of the high resistance to erosion, these dykes mostly form

cliffs when exposed to the surface, Dykes are often associated with tufa dams, when transversal

to a river channel. Locally, Adigrat Sandstone outcrops in deeply incised gorges of the larger

rivers.

Three main half-grabens are confined by the 3 major faults, from north to south: the

Wuqro, the Mekelle and the Chelekot basins (Fig 2). At many places along these fault belts,

dolerite has been injected. A more dense and lush vegetation covers the fault escarpments that

are lined by dolerite as compared to the limestone cliffs.

In the Wuqro basin, limestone and shales each cover half of the area, the terrain morphol-

ogy is characterised by entrenched river valleys bordered by steep cliffs and separated by undu-

lating to rolling interfluves [49]. On steeper slopes, soil depth is limited and limestone is often

outcropping, for instance in Des’a forest (Fig 10). These areas are less suitable for agriculture

Fig 9. Cuesta landscape between Wuqro to Hawzien.

https://doi.org/10.1371/journal.pone.0224041.g009
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and mainly used for grazing or transformed to exclosures. On gentle slopes, the soils are rather

deep and vertic properties are common especially in the valley bottoms which are often deeply

incised. These soils are fertile and almost all of them are under cropland.

The dominant lithology in the Mekelle basin is Agula shale, and dolerite dykes and sills are

a common feature. A clear distinction can be made between the western and the eastern part.

In the west, the terrain is more hilly and incised. Here, the soils are similar to those of the

Wuqro basin. Soil depth is limited on the steeper slopes and not favourable for agriculture; on

the gentler slopes soil depth increases and vertic properties are common. The alluvial plains of

the larger rivers hold well-developed Fluvisols. The Mekelle basin in the east is rather flat to

gently undulating. Vertisol is very common in this semi-graben and provides excellent agricul-

tural lands. The hills that stand out in the landscape consist of dolerite, which is more resistant

to erosion compared to the shales.

The Chelekot basin is more incised and more rugged, especially in the area south of the

Hagere Selam highlands. South of the Giba River the presence of dolerite resulted in the for-

mation of steep cliffs which demarcate a gentle undulating plateau.

Profile P: Vertic Calcaric Phaeozem. This profile is in Des’a forest (dominated by Juniperus

procera and Olea europaea ssp africana [98]) in an open spot in the forest. The parent material

is Antalo Limestone. Profile depth is rather limited with bedrock at 70 cm. The A and B hori-

zons have a very good structure and roots are abundant. The A horizon has an organic C con-

tent of almost 4% and was classified as a ‘mollic’ horizon. ECEC values (35.7 cmolc/kg) are

very high in the entire profile and Ca2+ (33.4 cmolc/kg) is dominant on the exchange complex,

in line with the high percentages of CaCO3 (10.1%). This soil has some vertic properties (sea-

sonal cracks).

Profiles Q and R: Mollic Calcaric Cambisols. These two profiles are also located in Des’a

forest but in more densely vegetated areas (Fig 10). Profile depth is limited to 75 cm with

Antalo Limestone as parent material. ECEC values (18.5 cmolc/kg) are lower than in profile P

Fig 10. Location of soil profile pit R in Des’a forest (left) and profile R (Mollic Calcaric Cambisol, right).

https://doi.org/10.1371/journal.pone.0224041.g010
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but still high. Organic C content (2.4–3.7%) is medium to high in the A horizons which were

also classified as mollic horizons. In the topsoil, rock fragments up to 5 cm are common. Very

high CaCO3 values (18.7%) are found in the entire profiles.

Profile S: Rendzic Leptosol. This profile in Des’a forest is situated in a densely vegetated

area. Profile depth is limited (25 cm) due to the outcrop of Antalo Limestone. Like all soils in

Des’a forest, this one has also high C values but the highest values are found in the lower layer,

below 5 cm (4.1%) which is also darker coloured. The CaCO3 content is very high in the top-

soil (19.3%) and decreases strongly in the lower layer (4.5%). Both observations tend to indi-

cate that the upper 5 cm may be considered as overwash. ECEC values (34.8 cmolc/kg) are

again very high and Ca2+ (30.4 cmolc/kg) is dominant on the exchange complex.

Profile T: Mollic Calcaric Cambisol. The above described forest soils can be considered as

the baseline from which most currently occurring soils in the Antalo Supersequence plateau

have developed under longstanding human activity, through either truncation of the topsoil or

burial by colluvium. Such is for instance the case of profile T along the road between Agula’e

and Birki, very close to Birki. The profile is situated on an old river terrace of the Agula’e River

at the convex border to the lower lying current terrace. The area is used for cultivation. Profile

depth is very limited; at 40 cm depth Antalo Limestone is found.

Chemically this soil is rich with a high ECEC (29.5 cmolc/kg), mainly dominated by Ca2+,

but the high to very high values of exchangeable K+ are remarkable (3.69 cmolc/kg in the top

horizon). As expected by the parent material, the percentages of CaCO3 (19.1%) are very high

and the pH (7.7) is slightly alkaline. Organic C (1.7%) values are medium, total N (0.18%) val-

ues are low and available P (42.8 ppm) is very high. The 25-centimetre thick A horizon has

enough organic C (1.9%) to be classified as a mollic horizon.

Similar degraded soils have been described near Mekelle [49]: a Lithic Cambisol and a “Ver-

tic Lithosol”, as well as a Pellic Vertisol. Similarly, two Calcaric Regosol profiles were described

in the lower part of the May Zegzeg catchment, which is at the western margin of the Antalo

Supersequence plateau, as well as a Phaeozem under forest [43]. In the same area, besides the

forest Phaeozems, Calcisol, Calcaric Regosol and Calcaric Cambisol profiles were described on

degraded steep slopes [44].

Soils on Cenozoic volcanics

Basalt and dolerite. During the Cenozoic, northern Ethiopia was exposed to very intense

magmatic and tectonic activity. It is also in this period that the Ethiopian rift valley formed

which caused the uplift of the northern Ethiopian highlands [99]. Two kinds of volcanic depo-

sitions can be found in the catchment: flood basalts and dolerite dykes and sills.

The flood basalts were extruded during the Oligocene, and different series of eruptions led

to a trap (stepped) landscape [100]. During periods of lesser activity sediment was deposited in

lakes that formed in the basalt landscape. Such geological layers are white coloured and consist

mainly of very fine grained lacustrine sedimentary rocks which have been silicified [100, 101].

Dolerite is a mafic intrusive rock which has comparable chemical properties as basalt. How-

ever, as it did not reach the surface it had more time to crystallise and the crystals are thus big-

ger compared to basalt. Typical for dolerite is the rounded weathering. Because it is an

intrusive rock it is present in the form of sills and dykes. The sills are mainly found in the

Antalo Supersequence and may reach a thickness of 80 to 130 m [31]. The dykes are mainly

found in the major fault areas, like the Mekelle and Chelekot faults.

Basalt-dominated highlands. The basalt-dominated highlands comprise the southern

edge of the catchment, the northern Mugulat Mountains (Fig 2) and the central-western part

near Hagere Selam. There, the selective erosion of basalt flows led to a trap landscape covering
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the underlying sedimentary rocks. In the north, the basalt covers the Adigrat Sandstone while

around Hagere Selam the Amba Aradam Sandstone is underlying the flood basalts. In both

areas, the baked contact of the basalt and the sandstone has (i) increased the resistance against

erosion which resulted in a steep cliff, and (ii) induced the local occurrence of perched water

tables [102].

Due to the presence of many nutrients in basalt, the soils in these areas are chemically very

rich and suitable for cultivation. However, the weathering of basalt may lead to high clay con-

tents, which makes it physically hard to cultivate these soils but if managed properly they are

excellent agricultural land. In the Hagere Selam highlands almost all the land is used for culti-

vation. Especially in the basalt areas, even the steep slopes (up to 30%) are used for cultivation

[103].

Hunting TS [49] present a profile description of a Pellic Vertisol some kilometres west of

Hagere Selam, most probably in the upper part of the May Zegzeg subcatchment where a

detailed soil study was carried out later on [43]. These Vertisols are part of a “red-black soil

catena”: from Leptosol over Skeletic Regosol, Cumuli(skeletic) Regosol, Vertic Cambisol to

Vertisol [43, 47]. Remnant forest patches also here typically have conserved Phaeozems [44].

Landslide and debris flow deposits are a common feature in this area due to the presence of

swelling clays (smectites) derived from basalt, the presence of the lacustrine marl-clayish

deposits, the presence of steep slopes and the less permeable baked contact [86, 104]. Basaltic

material has been displaced downhill over the sandstone cliff and locally covers sandstone,

limestone and marls. A consequence of the occurrence of such ancient landslide and debris

flow deposits is the transfer of fertile material to the poorer soils on the sandstone and lime-

stone which provides better conditions for growing crops. In the May Leiba sub-catchment,

Van de Wauw [47] noticed that areas covered with basaltic debris were more cultivated than

the adjacent fields on limestone and marl of the Antalo Supersequence, and they describe soil

profiles in the landslide material that originated from the basalt highlands and covering adja-

cent limestone: a Vertic Cambisol, a Skeletic Cambisol and a Haplic Vertisol. Therefore, land-

slides have a significant impact on geomorphology and the spatial pattern of soils in this the

landscape and a correct mapping of them is important when making a detailed soil map [47].

Soils in valley bottoms with Quaternary deposits

Two types of recent Quaternary deposits can be found in the catchment: alluvial sediments

and carbonate precipitates. The area covered by these deposits comprises only 1% of the catch-

ment, mainly in the floodplains of the Giba River and its tributaries. These deposits may range

from well-sorted to poorly-sorted mixtures of clay, silt, sand and pebbles [31] (Fig 11).

Carbonate precipitates include tufa which is rather rare and small in extent, however tufa

dams may have a significant impact on landscape evolution. Waterfalls at knickpoints in the

longitudinal river channel profile created favourable conditions for CaCO3 precipitation due

to degassing [105]. Tufa deposition needs more humid conditions than the current climate

and is therefore an indication of a wetter period in the past; the dams are generally dated early

Holocene [106–108]. At some locations, these tufa deposits could grow up to 10 m high and

more, resulting in wide dams, which blocked the course of rivers leading to the formation of

small lakes. These tufa dams and their backfill deposits are mainly found on the Mesozoic sedi-

mentary rocks in the central part of the Giba catchment.

Profile K: Haplic Fluvisol. In this profile in a river bank on the Atsbi horst, two layers were

distinguished in the fluvic material. The upper layer is of lighter colour and in the lower layer

four distinct gravel deposits occur. The area is used as grazing land for the nearby village. The

upper layer (C1 horizon) has a lower pH, a lower ECEC value, a lower CaCO3 content and a
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lower organic carbon percentage compared to the underlying stony horizon C2. The darker

colour of the lower layer reflects a period of more stability during which organic material

could accumulate. The different gravel layers indicate periods of larger stream power that

allowed these gravels to be transported.

Profile O: Mollic Calcaric Fluvisol. This profile is in the Agula’e river bank between Agula’e

and Birki (Fig 11). The farmland of this profile was not under cultivation, but further away

from the river bank almost the entire area is used for cropping. At the bottom of these at least

4 m thick alluvial deposits, large boulders are very abundant, but the deposits become finer

towards the top. The uppermost 130 cm was described and three different horizons were dis-

tinguished. Chemically and physically the three horizons are quite alike, with high ECEC val-

ues (29.9 cmolc/kg); CaCO3 values (15%) are high to very high and the pH (7.9) indicates

slight to moderate alkalinity. The percentages of organic C (1.3%) and BS (100%) are high

enough to classify the upper (C1) horizon as a mollic horizon.

Part III. Soil geography and soil use

Materials and methods

Soil mapping. Using the description of 141 profile pits, and 1381 soil augerings (Table 1),

the soil geography was analysed and mapped. A field-based approach was used in which repre-

sentative sub-catchments were first mapped in detail (using expert-based delineation of soil

polygons [109]), and the obtained recurring land systems and soil groups extrapolated to the

larger corresponding geomorphic region. Land systems, conceptualised by CSIRO [110], are

areas with specific and unique geomorphic and geological characteristics, and which can be

characterised by a particular soil distribution as specified by the soil catena. In line also with

the “pédopaysages” approach [111, 112], all available soil information was combined into a

comprehensive map at 1:250,000. Given the complex geology and topography of the

Fig 11. Location of soil profile O along the Agula’e river (left) and profile O (Mollic Calcaric Fluvisol, right).

https://doi.org/10.1371/journal.pone.0224041.g011
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catchment, this method was preferred over digital or predictive soil mapping [113, 114]). The

following digital data were used: the Aster DEM of the catchment, the geological map [31],

Landsat images (February 2003), SPOT images (January 2005) and aerial photographs (Janu-

ary 1994). Earlier baseline soil information for the study area was consulted, mainly small-

scale maps based on FAO [22] at 1:1,000,000; derived maps include the e-SOTER map [23]

and the corresponding sheets in the Soil Atlas of Africa [24, 25] (Fig 12). All these documents

follow a different concept from ours, i.e. soil types are overtly generalized and mapped as

exclusive polygons.

Soil suitability assessment. A soil suitability assessment for agricultural field crops

(wheat, barley, teff, lentil, field peas, horse beans and sorghum) was then carried out, in which

soil limitations were derived from the soil units following the Soil Fertility Capability System

of Sanchez, Palm [115], and the suitability of each soil type was interpreted by the limitation

approach [116, 117]. After qualitative assessment, the soil types were grouped into three soil

suitability classes (very suitable, moderately suitable and not suitable soils for rainfed cultiva-

tion of annual crops), following the principles of the scale-independent FAO Framework for

Land Evaluation [118].

Fig 12. Soil types in Giba catchment, according to the Soil Atlas of Africa [24], which, for Ethiopia, is based on work carried out for FAO in the 1980s

[22]. Soil types, by decreasing order of occurrence: LPli = Lithic Leptosol; LPeu = Eutric Leptosol; CMvr = Vertic Cambisol; LXha = Haplic Lixisol;

CMcr = Chromic Cambisol; LPrz = Rendzic Leptosol.

https://doi.org/10.1371/journal.pone.0224041.g012

Spatial patterns of soils for sustainable agriculture in northern Ethiopia

PLOS ONE | https://doi.org/10.1371/journal.pone.0224041 October 22, 2019 27 / 42

https://doi.org/10.1371/journal.pone.0224041.g012
https://doi.org/10.1371/journal.pone.0224041


S1: Very suitable soils are soils which do not restrict the expected yield much. The yield is

thus not negatively affected by their soil properties (both chemically and physically), nor by a

steep relief. These are soils that are deep enough, have a good natural fertility and can store suf-

ficient amounts of water.

S2: Moderately suitable soils are soils that restrict the expected yield considerably due to

their chemical and/or physical properties or by being located in steep terrain. These can be

shallow soils, soils with a limited natural fertility or soils which are not capable of holding and

releasing adequate amounts of soil moisture.

N: Not (or marginally) suitable soils are soils that greatly restrict and reduce the expected

yields. In our catchment, these are very shallow and stony soils with limited soil depth (gener-

ally on steep slopes) or soils with impeded drainage.

Results

Land systems and soil map. Based on soil profile descriptions, augerings, and available

soil studies, typical soil units were defined (Table 5), with their main characteristics and classi-

fication. The studied region shows a large variability, as can be expected in a mountainous,

lithologically contrasted region that has been subject to millennia of land degradation. Within

the major geomorphic regions (Fig 3), land systems were defined considering the regional

soil-landscape relationships [50]. Soil unit 1 (Leptosol and bare rock) is by far the most domi-

nant soil unit in this very rugged and strongly incised catchment (18.7% coverage). In total,

the shallow soils (soil units 1 to 9) cover 39.7% of the area. Soil unit 10 (Vertic Cambisol) is the

second most dominant soil unit (13.9% coverage). Together with soil units 11 and 12 (both

Vertisol), they cover 24.9% of the catchment. Another dominant soil unit is unit 21 (Eutric

Regosol and Cambisol) with a coverage of 9.8%. These are young soils which are mainly found

at footslopes.

Soil suitability for agricultural field crops. The different soil units were classified accord-

ing to their suitability for agricultural field crops [117, 118] (Table 6). Very suitable soils, i.e.

soils where the crop yield is not limited by their chemical (fertility) and physical (depth, water

holding capacity) soil properties, include, in the study area, soils with vertic properties (Verti-

sol, Vertic Cambisol), Phaeozem, Luvisol and well-drained Fluvisol. These cover 40.2% of the

whole catchment. Moderately suitable soils, i.e. soils that hamper the expected crop yield con-

siderably such as shallow soils, soils with limited natural fertility or other soils which are not

capable of holding/releasing large amounts of soil moisture, in the Giba catchment include

Leptic Phaeozem and Leptic Luvisol, Rendzic Leptosol, Regosol, Cambisol and shallow soils

with vertic properties. They cover 25.1% of the catchment. The soils that are not suitable are

very shallow and stony soils (e.g. Leptosol, Skeletic Cambisol), soils with a hard layer which

prevents root penetration (Petric Plinthosol) or soils with impeded drainage (e.g. strongly

expressed gleyic properties). These cover 34.7% of the entire catchment.

Soil distribution and its controlling factors. The soil catenas of each land system [50]

indicate that topography (relief) and geology (parent material) are the most importing control-

ling factors that determine the spatial distribution of the different soil units (Fig 13, Table 5, S2

File). Besides these two major factors, vegetation (or land cover) may not be overlooked.

Leptosol and bare rock are found on the steepest slopes (>40%) (soil units 1, 2 and 3). On

slopes between 20 and 40% soil depth is still limited but besides Leptosol also shallow and

stony Cambisol, Regosol and Phaeozem (if a denser vegetation cover is present) might be

found (soil units 4, 5, 6).

On the lower slopes/foot slopes (10–20%), with overal more vegetation cover, more devel-

oped but still young soils like Cambisol or Regosol (soil units 4, 5, 21, 22) can be found. The
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Table 5. Description and WRB [73] classification of the different soil units. The corresponding soil profile description is given between brackets.

Soil unit Main soil characteristics Soil classification

Shallow soils

1 Undifferentiated, very shallow soils with rock

outcrop

Complex of rock outcrops, very stony and very shallow soils Lithic Leptosol (F), Leptosol, Rock

outcrop

2 Undifferentiated, very shallow soils on

calcaric material

Complex of rock outcrops, very stony and very shallow soils on calcaric

material

Calcaric Leptosol

3 Shallow, stony, dark, silt loamy to loamy soils Shallow to very shallow soils with a well-structured, dark-coloured surface

horizon overlying calcaric material

Rendzic (Calcaric) Leptosol (A,S)

4 Shallow to very shallow, very stony, silt loamy

to loamy soils

Shallow to very shallow, somewhat excessively drained soils with very high

amounts of stones

(Cumuli)Skeletic Cambisol, Leptic

Cambisol (I), Skeletic Regosol

5 Shallow, very stony, silt loamy to loamy soil

on calcaric material

Shallow to very shallow, somewhat excessively drained soils with very high

amounts of stones on calcaric material

Skeletic Calcaric Cambisol

6 Shallow to moderately deep, dark, silt loamy

to loamy soil

Shallow to moderately deep, well drained, dark soils with a good natural

fertility

Rendzic Phaeozem, Leptic

Phaeozem

7 Shallow to moderately deep silt loamy to

loamy soil

Shallow to moderately deep, well drained, brown-yellow soils with a moderate

natural fertility

Leptic Luvisol (H)

8 Shallow to very shallow, stony loamy to sandy

loam soils

Shallow, stony soils, somewhat excessively drained soils developed on colluvic

material

Colluvic Leptosol

9 Shallow sandy to sandy loam soils with

indurated layer

Shallow soils with a indurated very hard layer which prevents root

penetrating and drainage

Petric Plinthosol

Fine textured

10 Moderately deep, stony, dark cracking clays Moderately well or imperfectly drained, moderately deep, very dark greyish

brown or black stony clays with good natural fertility

Vertic Cambisol

11 Deep, dark cracking clays on calcaric material

with ponded drainage

Moderately well or imperfectly drained, moderately deep to deep, very dark

greyish brown to black clays with strong structure and very good natural

fertility on calcaric material

Calcaric Vertisol, Calcic Vertisol

12 Deep, dark cracking clays with ponded

drainage

Poorly to very poorly drained, deep, dark greyish brown or very dark clays

with strong structure and very good natural fertility, temporarily waterlogged

during the wet season

Chromic Vertisol (E), Pellic

(Calcaric) Vertisol (C)

13 Deep, very hard cracking clays with ponded

drainage

Poorly to very poorly drained, deep, very dark clays with very strong structure

and very hard upper horizon, good natural fertility, temporarily waterlogged

during the wet season

Mazic (Sodic) Vertisol (N)

14 Dark loamy to clay loamy moderately deep

soils

Dark, moderately well drained soils with good developed structure and a very

good natural fertility

Vertic Phaeozem

15 Deep, dark cracking clays with ponded

drainage

Poorly to very poorly drained, deep, very dark clays with strong structure and

very good natural fertility, temporarily waterlogged during the wet season

(Pellic) Vertisol

16 Dark, silt loamy to clay loamy moderately

deep soils on calcaric material

Dark, moderately well drained soils with good developed structure and a very

good natural fertility on calcaric material

Vertic Calcaric Phaeozem (P)

17 Moderately deep, stony, dark cracking clays

on calcaric material

Moderately well or imperfectly drained, moderately deep, very dark greyish

brown or black stony clays with good natural fertility on calcaric material

Calcaric Vertic Cambisol

18 Shallow, stony, dark clay loamy soils Moderately well or imperfectly drained, shallow, very dark greyish brown or

black stony clays with moderate natural fertility

Epileptic Protovertic Cambisol (B)

Medium to coarse textured

19 Shallow to moderately deep silt loamy to

loamy soils

Moderately well to well drained, shallow to moderately deep, brown, silt loam

and loamy soils with a moderate natural fertility

Haplic Cambisol (J)

20 Shallow to moderately deep silt loamy to

loamy soils

Moderately well to well drained, shallow to moderately deep, red-brownish,

silt loam and loamy soils with a good natural fertility

Chromic Luvisol

21 Shallow, stony silt loamy to sandy loam soils Well to excessively drained, shallow, stony, dark greyish brown clay loams

and sandy loams with weak to moderate structure and moderate fertility

Eutric Regosol, Eutric Cambisol

22 Shallow, stony loam to sandy loam soils on

calcaric material

Well to excessively drained, shallow, stony, dark greyish brown clay loams

and sandy loams on calcaric material

Calcaric Regosol, Calcaric

Cambisol

23 Shallow, dark, stony, silt loamy to loamy soils

on calcaric material

Moderately well to well drained, shallow stony soils with a dark well-

structured surface layer rich in organic matter with moderate natural fertility

Calcaric Mollic Cambisol (Q, R,

T)

(Continued)
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parent material will determine the specific soil unit: a limestone parent material will result in a

Calcic or Calcaric qualifier.

On the gentler slopes (2–10%) in the lower situated areas, deeper and the most developed

soils can be found. Parent material strongly determines the soil type. Soils with vertic proper-

ties (soil units 10, 11, 12, 14, 15, 17, 18) are found on limestones, shales or mafic material. The

closer to the valley bottom, the better the vertic properties are developed and the deeper the

soil becomes. More reddish soils, Luvisols (soil units 20, 26), can also be found in these areas

on more convex areas which results in the typical ‘red-black’ soil catena [85] (Fig 14). If sand-

stone or Precambrian rocks are the parent material, mainly Cambisol, Regosol and Luvisol/

Lixisol are found (soil units 19, 20, 21, 24, 25, 26, 28).

On plateaus, soil depth is also often limited and parent material determines strongly the soil

types. On limestone, Rendzic Leptosol (soil unit 3) is very common while on Enticho sand-

stone Petric Plinthosol (soil unit 9) or shallow soils like Leptosol and shallow, stony Cambisol/

Regosol (soil units 1, 4) are found.

In the valley bottoms, fine-textured soils occur with alluvial, stagnic or vertic properties like

Fluvisol, Gleysol and Vertisol (soil units 12, 13, 29, 30, 31, 32, 33).

Areas with sufficient vegetation cover have deeper soils than those without vegetation. If

the cover is barely touched by humans, the original soils are at the surface. These are

Table 5. (Continued)

Soil unit Main soil characteristics Soil classification

24 Sandy clay loams to sands developed on sandy

colluvium

Well to excessively drained with weak to moderate structure and moderate

natural fertility

Eutric Arenosol, Eutric Regosol,

Eutric Cambisol

25 Shallow to moderately deep, stony, brown silt

loamy to loamy soils on calcaric material

Moderately well to well drained, shallow to moderately deep, brown, silt loam

and loamy soils on calcaric material with a moderate natural fertility

Colluvic Calcic Cambisol (D),

Calcic Luvisol

26 Moderately deep, brown silty loamy to loamy

soils

Moderately well to well drained, moderately deep, brown, silt loam and loamy

soils with a good natural fertility

(Eutric) Luvisol

27 Shallow to very shallow silt loamy to clay

loamy soils

Imperfectly to poorly drained, shallow to very shallow, dark soils developed

on calcaric material with a moderate natural fertility

Vertic Endoleptic Calcisol

28 Shallow to moderately deep loamy to loamy

sandy soils

Moderately well to well drained, moderately deep, (light) brown, loamy to

loamy sandy with a moderate to good natural fertility

Chromic Cambisol, Arenic

Luvisol, Arenic Lixisol (L)

Stagnic and alluvial soils

29 Brown, silty loams to loamy sands developed

on alluvium

Well drained, deep, dark brown to brown often stratified silty loams to loamy

sands with good natural fertility

Fluvisol, Fluvic Cambisol, Mollic

Fluvisol (O)

30 Brown to dark, silty clay loams to loamy sands

developed on allvium

Well drained to imperfectly drained, deep, brown to gray, dark gray often

stratified silty loams to loamy sands with good natural fertility

Vertic Fluvisol, Eutric Fluvisol,

Haplic Fluvisol (K, M)

31 Moderately deep clay soils with ponded

drainage

Poorly to very poorly drained, moderately to deep, dark brown to dark

greyish with strong structure and good natural fertility

Gleyic Vertisol

32 Alluvial clays of flood plains and basins with

ponded drainage on calcaric material

Very poorly drained, moderately deep to deep soils with very high water table

on calcaric material with moderate to good natural fertility

Calcaric Gleysol

33 Alluvial clays of flood plains and basins with

ponded drainage

Very poorly drained, moderately deep to deep soils with very high water table

with moderate to good natural fertility

Eutric Gleysol, Gleyic Cambisol

34 Soils with stagnating water due to an abrupt

textural change

Poorly to very poorly drained, deep soils with abrupt textural change Haplic Planosol (G)

https://doi.org/10.1371/journal.pone.0224041.t005

Table 6. Classification of the different soil units according to their suitability for agricultural field crops.

Suitability for field crops Soil units

Very suitable 10, 11, 12, 14, 15, 16, 17, 20, 26, 28, 29, 30

Moderately suitable 3, 6, 7, 13, 18, 19, 21, 22, 23, 24, 25, 27

Not suitable 1, 2, 4, 5, 8, 9, 31, 32, 33, 34

https://doi.org/10.1371/journal.pone.0224041.t006
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moderately deep to deep Phaeozem on the plateaus and slopes and Vertisol in the lower areas.

Such areas have become very scarce, but they can still be found in Des’a forest and the wetter

depressions that it holds (“dambos”, sensu [120]; Fig 15), as well as in old church forests, where

the soils and the vegetation have been protected since a long time [70].

Discussion

Soil suitability for cropping. Despite its strong relief, 40.2% of the Giba catchment is clas-

sified as very suitable for agriculture and another 25.1% as moderately suitable. On the other

hand, long-standing cropping and soil erosion in this mountainous catchment [3, 4] have led

to the presence of large unsuitable areas (26% of the area is covered by bare rock and Lepto-

sols). Furthermore, relatively less erodible clay and sand dominate the soil texture; the high

rock fragment contents of topsoils after prolonged tillage and erosion also provide a partial

protection against soil erosion [122–124]. Such positive feedback effects have led to a new

dynamic equilibrium of the soilscape, not only in relation to tectonic uplift but also in relation

to longstanding human impact [125, 126]. In total, 65% would be suitable for crop production.

This value is larger than the 42–50% classified as agricultural land in earlier studies [34, 39,

Fig 13. Land systems of Giba catchment with dominant and associated soil types and inclusions. Multiple soil units within a subdivision are separated by |.

Soil units are named and characterised in Table 5, and their suitability for agricultural field crops in Table 6. A typical catena for each soil unit has been

prepared by Tielens [50]. See the .KMZ file in S2 File, for visualizing the map in Google Earth.

https://doi.org/10.1371/journal.pone.0224041.g013
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40]. One may however not conclude that the 65% of suitable land indicates that some space is

left to be used for cultivation, as some part of these suitable lands are occupied by villages, for-

est and regenerating semi-natural vegetation. Furthermore, a soil unit might be suitable for

agriculture at this moment but it may not be sustainable in the future. For instance, soil units

3, 6 and 7 (7.5% coverage) are moderately suitable for agriculture but these are shallow soils. If

used as agricultural land, water and tillage erosion will reduce soil depths even more which

may convert them into unsuitable soils in the mid-term. However, the high percentage of suit-

able soils indicates that the Giba catchment, despite the long-standing soil degradation, still

has good agricultural potential.

Optimal land use for increased crop productivity. ‘Optimal’ land use should minimise

soil erosion rates to values less than a tolerable soil loss, i.e. “the maximum level annual

amount of soil, which can be removed before the long-term natural soil productivity is

adversely affected” [127]. Because soil depth is rather limited, except in the flatter areas

towards and in the valley bottoms, this tolerable soil loss should not be larger than the soil for-

mation rates, which, for the semi-arid midlands in northern Ethiopia, were modelled at 6 Mg

ha-1 year-1 [128], but less at higher (due to cold) and lower elevations (due to drought). Mea-

sured soil loss rates, at plot, but also at catchment level are well beyond that value [10, 129,

130]. The most efficient way to drastically reduce these erosion rates would be to convert all

the cropland that exceeds a critical slope gradient to exclosures [44, 131]. A critical slope gradi-

ent of 10% would mean that more than 60% of the whole catchment should be converted into

exclosures. This might be a sustainable solution from a long-term view but it is not possible

under the current agricultural productivity conditions. At this moment crop yields are even

too small for the local population to be self-sufficient–for instance, 66.2% of the population in

Ethiopia depended on agriculture for its livelihood in 2018 [132]. Reducing the cropland area

cannot be done without increasing specific crop yields.

Fig 14. Red-black soil catena near Hagere Selam, after [119]. Luvisol in upper landscape position (A), Skeletic Regosol (stony brownish colluvium) at the foot of the

cliff, Vertisol (B) on toeslopes and valley bottom.

https://doi.org/10.1371/journal.pone.0224041.g014
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The use of a wide set of SWCM in the Giba catchment [133] has been proven to drastically

reduce the erosion rates [7–9, 134, 135], improve soil quality as well as environment [136, 137]

and increase crop yields if they are implemented correctly [103, 138–140]. The participatory

approach that is generally implemented in the Tigray Region of Ethiopia combines scientific

knowledge and the local knowledge of the farmers, which is likely the most successful

approach and is strongly recommended [6, 141].

Deficit or supplementary irrigation, tailor-cut to soil type, is another way to increase crop

yields [11]. With the use of crop growth models, like Aquacrop [142, 143], it is possible to

develop guidelines for deficit and supplementary irrigation to increase the crop yields. Besides

specific information about the crops (e.g. canopy development and transpiration), the climate

and the used management practices, Aquacrop requires specific information about the soils in

order to calculate the soil water balance [142].

Finally, Integrated Soil Fertility Management (ISFM), i.e. “the application of soil fertility

management practices, and the knowledge to adapt these to local conditions, which maximise

fertiliser and organic resource use efficiency and crop productivity” [144] would allow to

increase the agronomic efficiency, the ratio between the increase in crop yield and the applied

nutrients. In the Giba catchment, most of the soils are lacking nitrogen. Incorporating legumes

in the rotation system is a simple way to increase the N content [145], which is commonly

done by the farmers in the study area [43]. Furthermore, legume-cereal intercropping is espe-

cially beneficial in areas with low-input/high-risk environments, such as moisture and nutrient

Fig 15. Dambo in Era at the fringe of Des’a forest, after [121]. Gilgai micro-relief is visible indicating the presence of

Vertisols with active swell-shrink processes and absence of overwash; on the slopes, under forest (at right) Calcaric

Phaeozems, and under degraded forest (at left) Calcaric Cambisols and Rendzic Leptosols.

https://doi.org/10.1371/journal.pone.0224041.g015
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stress in the study area [146]. Despite slow take-off [29], mineral fertilizer has become more

popular in recent years. A bottleneck that still needs to be tackled is the insufficient and inap-

propriate use of manure [29, 147].

Conclusions

The in-depth study of the Giba catchment soils involved soil profile and augering descriptions,

soil type characterisation and comprehension of soil-landscape relations. On the steepest

slopes, shallow soils (e.g. Leptosol) and bare rock are found; on the footslopes, more developed

but younger soils occur (e.g. Cambisol and Regosol); on the more gentle slopes, the most

developed and deeper soils occur but the parent material strongly determines the soil type (e.g.

Vertisol, Luvisol, Cambisol); in the valley bottoms, more fine-textured soils with alluvial, stag-

nic or vertic properties are present; on the plateau, soil depth is often more limited (e.g. Lepto-

sol, Plinthosol).

The geographical distribution of the soil types was determined using land systems, i.e. areas

with specific and unique geomorphic and geological characteristics. In this study 41 different

and unique land systems were demarcated (Fig 13), each characterised by a particular soil dis-

tribution in line with the soil catena. Thirty-four different soil units were distinguished and

characterised (Table 1). The most dominant soil units are: unit 1 (Leptosol and bare rock, 19%

coverage), unit 10 (Vertic Cambisol, 14% coverage), soil unit 21 (Regosol and Cambisol, 10%

coverage), unit 4 (Skeletic/Leptic Cambisol and Regosol, 9% coverage), unit 3 (Rendzic Lepto-

sol, 7% coverage), unit 11 (Calcaric/Calcic Vertisol, 6% coverage), unit 20 (Chromic Luvisol,

6% coverage) and soil unit 12 (Chromic/Pellic Vertisol, 5% coverage). Together these eight soil

units cover almost 75% of the catchment.

Topography and parent material are the most important driving factors explaining the soil

distribution while vegetation (or land cover) has a less important role, as most parts of the

Giba catchment are deforested since many centuries. Without human-induced erosion, the

soil distribution would be much more homogenous and topography and parent material

would be of lesser importance in controlling the soil distribution. In the new dynamic equilib-

rium of the soilscape, after major human impacts, younger soils dominate.

Determining the optimal land use for the catchment based on the soil map, strongly

depends on the degree to which sustainability is taken into account. Our results show that

approximately 65% of the catchment is suitable for agricultural purposes at this moment but

not all of these soils can sustain agriculture in the long term. Erosion rates should be reduced

to ensure that soil depth will not decrease any further. Yet, the high percentage of suitable soils

clearly shows that the Giba catchment has certainly high agricultural potential if correct land

management decisions are made.

For most soils, besides water, nitrogen is the most limiting factor for crop growth. Increas-

ing the nitrogen content by e.g. integrated soil fertility management in combination with the

ongoing ex-situ and recommended in-situ soil and water conservation measures and irrigated

farming will most likely yield the best results.
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