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ABSTRACT

There is increasing evidence that the 2020 COVID-19 pandemic has been influenced
by variations in air temperature and humidity. However, the impact that these
environmental parameters have on survival of the SARS-CoV-2 virus has not been
fully characterised. Therefore, an analytical study was undertaken using published
data to develop a psychrometric model to assess the biological decay rate of the virus
in aerosols. This revealed that it is possible to describe with reasonable accuracy
(R*=0.718, p < 0.001) the biological decay constant for the SARS-CoV-2 virus using
a regression model with enthalpy, vapour pressure and specific volume as predictors.
Applying this to historical meteorological data from London, Paris and Milan

over the pandemic period, produced results which indicate that the average half-life
of the virus in aerosols outdoors was in the region 13-22 times longer in March 2020,
when the outbreak was accelerating, than it was in August 2020 when epidemic

in Europe was at its nadir. However, indoors, this variation is likely to be much less.
As such, this suggests that changes in virus survivability due the variations in the
psychrometric qualities of the air might influence the transmission of SARS-CoV-2.

Subjects Microbiology, Virology, Infectious Diseases, Data Mining and Machine Learning,
Environmental Contamination and Remediation
Keywords SARS-CoV-2, Biological decay, Aerosols, Psychrometric model

INTRODUCTION

There is increasing evidence that the COVID-19 pandemic may have a seasonal
component that is influenced by environmental factors (Audi et al., 2020; Hoque, Saima ¢
Shoshi, 2020; Ma et al., 2020; Merow & Urban, 2020; Moriyama, Hugentobler ¢ Iwasaki,
2020; Qi et al., 2020), similar to that observed for influenza (Chan et al., 2009; Hemmes,
Winkler & Kool, 1960; Shaman & Karspeck, 2012; Shaman & Kohn, 2009). For example in
Hubei, China, it has been found that a 1 °C increase in the air temperature was associated
with a 36-57% decrease in the daily COVID-19 cases when the relative humidity (RH)
was in the range 67.0-85.5%. Similarly, a 1% increase in RH led to a 11-22% decrease in
the daily confirmed cases when the air temperature was in the range 5.0-8.2 °C. However,
these associations were not consistent throughout mainland China (Qi et al, 2020).

In Bangladesh, higher air temperatures and higher RH levels have also been significantly
associated with a reduction in the transmission of COVID-19 (Haque ¢» Rahman, 2020).
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Indeed, it has been found that worldwide the SARS-CoV-2 virus tends to spread more
in regions that are cooler, with an average temperature of 5-11 °C, and drier, with an
absolute humidity (AH) of 4-7 g/m’, suggesting that COVID-19 might exhibit seasonal
behaviour (Sajadi et al., 2020). Collectively, these findings suggest that COVID-19
might behave similarly to influenza, which is also caused by an enveloped RNA virus.
The influenza A virus is known to survive in aerosols for much longer when AH and
vapour pressure (VP) levels are low (Shaman ¢ Kohn, 2009)—something that is possibly
due to the ordering of the phospholipid envelope contributing to viral stability, leading to
increased transmissibility at lower air temperatures (Polozov et al., 2008).

The reasons for the seasonal variations in the behaviour of COVID-19 are unclear, but
may be related to variations in air temperature (Chin et al., 2020; Ma et al., 2020; Qi et al.,
2020; Riddell et al., 2020; Wang et al., 2020), humidity (Ma et al., 2020; Qi et al., 2020;
Wang et al., 2020) and ultraviolet (UV) radiation from sunlight (Merow ¢ Urban,

20205 Sfica et al., 2020; Tang et al., 2020; Whittemore, 2020), as well as immunological
(Moriyama, Hugentobler & Iwasaki, 2020; Whittemore, 2020) and behavioural (Kanzawa
et al., 2020) changes. However, because of the many confounding factors that can affect
the spread of COVID-19, it is difficult to identify the extent to which each of these
environmental factors has influenced the course of the epidemic. For example while it is
known that both higher air temperatures (Qi ef al., 2020; Wang et al., 2020) and increased
UV-B radiation in sunlight (Sfica et al., 2020; Tang et al., 2020; Whittemore, 2020) are
associated with reduced transmission of the SARS-CoV-2 virus, because in many parts of
the world higher air temperatures are closely associated with increased UV-B radiation it
becomes difficult to distinguish between the two. The situation is further complicated
by the fact that many researchers misunderstand the concept of RH, which is a ratio of
vapour pressures rather than an absolute value. RH is actually the ratio of the observed
VP to saturated vapour pressure (SP) expressed as a percentage and as such is strongly
affected by temperature because air can hold much more moisture at higher temperatures
compared with low temperatures. Unfortunately, researchers do not always appreciate
this fact, with the result that it is sometimes reported that during the winter months the air
is more humid than in the summer because the RH values are higher, when in fact the air is
actually much drier in winter due to SP being considerably lower. Furthermore, many
researchers have performed statistical analysis on the RH, failing to appreciate that because
it is a ratio involving SP, it is actually a function of air temperature (see Eq. (1) in the
methods section below) and therefore not an independent variable. Similarly, because air
expands in volume as it warms up, it means that AH, which is the mass of moisture (grams
of water) contained in 1 m> of dry air, is also not independent, but rather, a function of both
VP and air temperature. As such, there is a risk that questionable conclusions may have
been reached. Consequently, although a clear association exists between COVID-19
prevalence and air temperature and humidity, the precise nature of that association and the
reasons for it are much less clear. Given this confusion, we designed the study presented here
using published experimental and meteorological data (both in the public domain) with
the aim of quantifying the extent to which changes in the psychrometric quality of the air
(i.e. changes associated with temperature and humidity) influence the biological survival of
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the SARS-CoV-2 virus in aerosols. We did this because it is now recognised by the Centers
for Disease Control and Prevention (CDC) in the USA (Centers for Disease Control and
Prevention, 2020) and the Scientific Advisory Group for Emergencies (SAGE) in the UK
(SAGE, 2020) that ‘far-field’ transmission of COVID-19 can occur due the inhalation of
small aerosolised respiratory droplets that can remain suspended in the air for considerable
periods of time (Beggs, 2020; Miller et al., 2020), especially in poorly ventilated room spaces
(RAMP Task 7 Members, 2020; SAGE-EMG, 2020). Therefore, there is a need to better
understand how long the SARS-CoV-2 virus can remain viable in aerosols and the extent to
which variations in air temperature and humidity influence biological longevity.

METHODS

A search of the relevant scientific literature (i.e. published literature, pre-prints and
relevant websites) was undertaken to identify published data relating to the survival of the
SARS-CoV-2 virus in aerosols under various environmental conditions. Only experiments
conducted in the dark were included in the study, with those conducted in the presence
of UV light excluded. From each study, the reported biological decay constant, k (min"),
together with the mean air temperature and RH used during experimentation were extracted
and compiled into a dataset. With regard to this, the survival of the virus can be computed
using the following first order decay equation.

N, = Ny x el %t (1)

where: Ny and N; are the number of viable viral particles (virions) at time zero and ¢
minutes respectively; and ¢ is time in minutes.

From the reported mean air temperature and RH values, the psychrometric parameters
saturated vapour pressure (SP), vapour pressure (VP), absolute humidity (AH), specific
volume (SV), and specific enthalpy, h, were computed using the following empirical equations:

Saturated vapour pressure (Alduchov ¢ Eskridge, 1996):

17.2694xT

ps = 0.61078 x (755 o

where; p; is saturated vapour pressure (kPa) and T is air temperature (°C).
Vapour pressure:

_ (br X pS
100 &)

v

where; p, is vapour pressure (kPa) and ¢, is relative humidity (%).
Absolute humidity (Hoque, Saima ¢ Shoshi, 2020):

2.16679 X &, X ps

e 4
0= 700 x (273.15+ 1) )
where ¢, is absolute humidity (kg of moisture per m® of dry air).

Moisture content:

0.622 x p,
e — 5)
Pb - pv
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where; g is moisture content (kg of moisture per kg of dry air) and p;, is barometric pressure
(i.e. 101.325 kPa).
Specific volume (CIBSE, 2001):

27315+ T
s = (0.287 4 0.461 x g) x <4+> (6)
122
where; s is the specific volume per kilogram of dry air (m*/kg)
Specific enthalpy (Toolbox E, 2020):
h = (1.007 x T —0.026) +g x (2,501 + 1.84 x T) 7)

where; h is specific enthalpy (kJ/kg).

Having computed the above psychrometric variables, Pearson correlation analysis was
performed. The impact of using artificial saliva on the k values was also assessed using
a one-way ANOVA. All the statistical analysis was performed using R (R: A language
and environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria), with p < 0.05 deemed as significant.

Multiple linear regression analysis was then performed with the decay constant, k, as the
response variable and SP, VP, enthalpy, and SV as predictor variables. RH was not
included because it is wholly described by VP and SP and therefore not independent.
Similarly, AH was not used because it too can be wholly described by VP (Eq. (5)) and SV
(the inverse of density). Instead, VP was used, rather than moisture content, because it
is the more fundamental measure. Refinement of the models was performed using
backward exclusion, with only variables exhibiting p < 0.1 retained. Heteroscedasticity was
evaluated using the Breusch-Pagan test (Breusch ¢ Pagan, 1979), and general applicability
assessed using 5-fold cross-validation (CV) (James et al., 2013).

Because three of the experiments in the published literature resulted in negative k values
(see Table 1), something that is difficult to interpret, it was decided to build two regression
models, one including all the observed k values and another with three negative
observations omitted.

In order to evaluate the impact of changes in the psychrometric variables on the survival
of the SARS-CoV-2 virus in aerosols, the refined (minimum acceptable) regression model
exhibiting the lowest Akaike information criterion (AIC) value was used to predict
weekly and monthly average k and biological half-life, [, 5, values from historical hourly
meteorological data (RP5, 2020) for London, Paris and Milan for the period 1st
January-25th October 2020. Where negative values of k were predicted using the hourly
data, these were capped at zero (implying no biological decay), before being averaged.
The weekly average k values were then compared with published COVID-19 case data
acquired for the UK, France and Italy (European Union, 2020) for the period March to
October, which approximates to the epidemic period in these countries. As it was only
possible to acquire countrywide COVID-19 data, the aim here was simply to compare the
relationship between the k values for the cities and the national case data, rather than to
draw any firm inference. The monthly average half-life, [, 5, values were computed from
the mean monthly k values as follows.
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Table 1 Reported biological decay constant, k, results for various air conditions, together with computed psychrometric values.

Ref. Artificial Decay Mean  Mean Absolute Vapour Saturated Specific Specific Source
No. Saliva Constant, k. Temp. Relative Humidity Pressure  Vapour Enthalpy  Volume
(min-1) (°C) Humidity (%) (kg/m®) (kPa) Pressure (kPa) (kJ/Kg) (kg/m>)

1 No 0.01060 22.0 65.0 0.0126 1.7185 2.6439 49.402 0.8504 Van
Doremalen
et al. (2020)

2 No 0.00618 23.0 53.0 0.0109 1.4890 2.8094 46.728 0.8513 Fears et al.
(2020)

3 Yes 0.01000* 20.0 20.0 0.0035 0.4676 2.3382 27.433 0.8342 Schuit et al.
(2020)

4 Yes —0.00250" 20.0 37.0 0.0064 0.8651 2.3382 33.708 0.8375 Schuit et al.
(2020)

5 Yes 0.00800* 20.0 53.0 0.0092 1.2393 2.3382 39.659 0.8406 Schuit et al.
(2020)

6 Yes 0.01750* 20.0 70.0 0.0121 1.6368 2.3382 46.031 0.8440 Schuit et al.
(2020)

7 No 0.01500" 20.0 20.0 0.0035 0.4676 2.3382 27.433 0.8342 Schuit et al.
(2020)

8 No 0.01300* 20.0 37.0 0.0064 0.8651 2.3382 33.708 0.8375 Schuit et al.
(2020)

9 No 0.00750" 20.0 53.0 0.0092 1.2393 2.3382 39.659 0.8406 Schuit et al.
(2020)

10 No 0.01500* 20.0 70.0 0.0121 1.6368 2.3382 46.031 0.8440 Schuit et al.
(2020)

11 Yes -0.01100 10.0 20.0 0.0019 0.2456 1.2279 13.851 0.8040 Dabisch et al.
(2020)

12 Yes 0.01800 10.0 70.0 0.0066 0.8595 1.2279 23.451 0.8089 Dabisch et al.
(2020)

13 Yes 0.00600 20.0 20.0 0.0035 0.4676 2.3382 27.433 0.8342 Dabisch et al.
(2020)

14 Yes 0.01700 20.0 70.0 0.0121 1.6368 2.3382 46.031 0.8440 Dabisch et al.
(2020)

15 Yes -0.00300 30.0 20.0 0.0061 0.8486 4.2429 43.612 0.8659 Dabisch et al.
(2020)

16 Yes 0.06600 30.0 70.0 0.0212 2.9701 4.2429 78.197 0.8846 Dabisch et al.
(2020)

17 Yes 0.04000 40.0 20.0 0.0102 1.4751 7.3754 63.911 0.9001 Dabisch et al.
(2020)

18 No 0.00910 20.5 55.5 0.0099 1.3384 24116 41.755 0.8429 Smither et al.
(2020)

19  Yes 0.01590 20.5 55.0 0.0098 1.3264 2.4116 41.562 0.8428 Smither et al.
(2020)

20 No 0.02270 20.5 86.0 0.0153 2.0740 24116 53.614 0.8491 Smither et al.
(2020)

21 Yes 0.04000 20.5 81.0 0.0144 1.9534 24116 51.658 0.8481 Smither et al.
(2020)

Note:

* Values estimated from plots.
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Biological half-life:

1
s =22 ®)

RESULTS

The results of the literature search are summarised in Table 1, which shows the biological
decay constants, k, for the SARS-CoV-2 virus in aerosols, reported for 21 experiments
conducted by five research teams (Dabisch et al., 2020; Fears et al., 2020; Schuit et al., 2020;
Smither et al., 2020; Van Doremalen et al., 2020). All these researchers used similar
methodologies to assess the survival of the virus in aerosols, namely the use of Goldberg
type rotating drums into which the SARS-CoV-2 virus was nebulised. Such experiments
utilise the competition between gravitational and centrifugal forces induced by the
rotating drum to allow aerosol particles to remain airborne for much longer than would be
the case in a simple stirred settling chamber (Asgharian ¢ Moss, 1992). The virus was
introduced into the drums in aerosols with a diameter range of approximately 2-5 um and
was sampled periodically using impingers (Fears et al., 2020; Smither et al., 2020), or filters
(Dabisch et al., 2020; Schuit et al., 2020; Van Doremalen et al., 2020), to determine
(following tissue culturing and enumeration) the biological decay rate. For all experiments,
the temperature and humidity of the air inside the rotating drums was controlled.
Although some researchers (Dabisch et al., 2020; Schuit et al., 2020) also performed
experiments in the presence of simulated sunlight, the results of these experiments were
excluded from the present study, with only experiments performed in the dark included.
Thirteen experiments were conducted with the virus nebulised in artificial saliva
(Dabisch et al., 2020; Schuit et al., 2020; Smither et al., 2020), while the rest used a standard
tissue culture medium. Two researcher groups (Schuit et al., 2020; Smither et al., 2020)
performed experiments using both artificial saliva and a tissue culture medium. However,
no statistical difference was found (p = 0.546) between the k values reported for
experiments conducted using artificial saliva and those that did not. Table 1 also includes
computed psychrometric values for AH, VP, SP, enthalpy, and SV based on the mean air
conditions reported for the various experiments.

The correlation results are presented in Table 2. These reveal that the k value was
significantly positively correlated with all the psychrometric variables, with the strongest
relationships being with AH (r = 0.750; p < 0.001), VP (r = 0.764; p <0.001), enthalpy
(r=0.780; p <0.001) and SV (r = 0.630; p = 0.002). It can also be seen that the correlation
between AH and VP was r = 0.999 (p <0.001), indicating that these two variables are very
closely related.

The results of the linear regression analysis (utilising the predictor variables
temperature, enthalpy, SP, SV, artificial saliva and VP) are presented in Table 3, which
shows two competing minimum adequate models (Model 1 and Model 2; see Eqs. (9)
and (10) below), one utilising all the data points (n = 21) and the other utilising just the
positive k values (n = 18).
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Table 2 Correlation r value results.

k Temp RH AH Vap. pres  Sat. pres Enthalpy Spec. vol
k 0.494* 0.436" 0.750""*  0.764** 0.489* 0.780""*  0.630"*
Temp 1.000 -0.182 0.382 0.414 0.9627%  0.748"* 0.9707%
RH -0.182 1.000 0.7947**  0.769** -0.251 0.476* 0.045
AH 0.382 0.794° 1.000 0.999** 0.290 0.898"**  0.593**
Vap. pres 0.414 0.769°"* 0.999***  1.000 0.325 0.621"*
Sat. pres -0.251 0.290 0.325 1.000
Enthalpy  0.780%** 0.476* 0.898**"  0.914™ 0.667%*
Spec. vol  0.630"* 0.045 0.593** 0.621%* 0.915%

Note:
Denotes p < 0.05.
“* Denotes p < 0.01.
“* Denotes p < 0.001.
k, decay constant; Temp, temperature; RH, relative humidity; AH, absolute humidity; Vap. pres, vapour pressure;
Sat. pres, saturated vapour pressure; Spec. vol, specific volume.

Table 3 Refined multiple linear regression models with the biological decay constant, k, as the response variable.

Model No. of Response Predictor Coefficient b (95% CI) Significance (p Model AIC (p Model R*> 5-fold CV R*
observations (n) Variable Variables value) value) (mae) (mae)
Model 21 k Intercept 16.9803 0.030 -129.9 0.718 0.485 (0.009)
1 [1.8804-32.0802] (<0.001) (0.007)
Enthalpy (k)  0.0622 [0.0075-0.1170] 0.028
Vap. pres —-0.7960 [-1.5103 to 0.031
(VP) ~0.0817]
Spec. vol (SV) -21.9500 [-41.4471 to  0.030
~2.4529]
Model 18 k Intercept 26.2888 [14.7640 to <0.001 -125.9 0.877 0.620 (0.019)
2 37.8137] (<0.001) (0.004)
Enthalpy (k)  0.0923 [0.05110 - <0.001
0.13334]
Vap. pres -1.1786 [-1.7141 to <0.001
(VP) —-0.6431]
Sat. pres (SP) —33.9240 [-48.7952 to  <0.001
~19.0528]

Spec. vol (SV) 0.0172 [0.0061-0.0282] 0.005

Note:
k, decay constant; Vap. pres, vapour pressure; Sat. pres, saturated vapour pressure; Spec. vol, specific volume; AIC, Akaike information criterion; mae, mean absolute error;
CV, cross validation.

Model 1:

k = 16.9803 + (0.0622h) — (0.7960p,) — (21.9500s) ©)
Model 2:

k = 26.2888 + (0.0923h) — (1.1786p,) — (33.9240p,) + (0.0172s) (10)

These models reveal a strong linear relationship between the decay constant and the
predictor variables, irrespective of whether or not the negative k value observations were
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Figure 1 Scatter plot of actual and predicted k values for the various experiments using Model 1
(n =21). Full-size K&l DOT: 10.7717/peerj.11024/fig-1

included. While Model 1 (n = 21) achieved a good fit (R* = 0.718; mean absolute error
(mae) = 0.007), an even stronger fit (R* = 0.877; mae = 0.004) was observed for Model 2
(n = 18). Nevertheless, because Model 1 exhibited a lower AIC score (AIC = —129.9) than
Model 2 (AIC = —125.9), it suggests that Model 1 is likely to exhibit better predictive
qualities than Model 2. The Breusch-Pagan test showed no heteroscedasticity problems for
either model. CV analysis revealed the cross-validated R* values to be 0.485 and 0.620
for models 1 and 2 respectively, implying that both have general applicability.
Interestingly, when the variables, enthalpy, VP, SP and SV were individually regressed
onto the k values using the entire dataset (n = 21), the resulting models were weaker,
exhibiting for: enthalpy (R* = 0.609); VP (R* = 0.583); SP (R* = 0.239); and SV (R* = 0.397).

The results for the two models are graphically presented in Figs. 1 and 2, which show the
regression plots for the various studies aggregated together. From these, it can be seen
that for both models the observed k values for the various experiments all lie close to the
linear best-fit lines, suggesting that the experimental data is consistent and lacking in
outliers.

The computed mean monthly psychrometric data for the period 1st January to 25th
October 2020 for London, Paris and Milan are summarised in Table 4, whereas Table 5
shows the predicted mean monthly k and half-life values produced by applying Model 1,
which exhibited the lowest AIC value, to the data in Table 4. From this it can be seen
that the predicted biological half-life of the SARS-CoV-2 virus in aerosols during the
winter months and early spring is much longer than that for the summer months.

For example in Milan during March, when the epidemic first took hold in Italy, the mean
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Figure 2 Scatter plot of actual and predicted k values for the various experiments using Model 2
(n=18). Full-size k&l DOL: 10.7717/peerj.11024/fig-2

biological half-life of the virus was 517.2 min, whereas in August it was only 25.8 min—an
approximate 20-fold reduction. A similar pattern was also observed for London and Paris.
When the mean weekly k values for London, Paris and Milan are compared with
the COVID-19 case data for the UK, France and Italy (Fig. 3), it can be seen that there
is a broadly inverse relationship between the two plots (March to October, r = —0.258
(London); —0.124 (Paris); —0.512 (Milan)), with infections lowest during the summer
months when the biological decay constant, k, was at its greatest. However, this
relationship only reached significance in the case of Milan and Italy (p = 0.002).

DISCUSSION

The principal finding of our study is that the biological decay constant, k, for the
SAR-CoV-2 virus in aerosols broadly conforms to a linear relationship and can be
modelled with reasonable accuracy using a regression model with the variables: enthalpy,
SV and VP (and possibly SP) as predictors. As such, this supports the growing body of
evidence that the COVID-19 epidemic is influenced by changes in temperature and
humidity (Chin et al., 2020; Ma et al., 2020; Morris et al., 2020; Qi et al., 2020; Riddell et al.,
2020; Wang et al., 2020) and suggests that in this respect the SARS-CoV-2 virus behaves
similarly to influenza A (Haque & Rahman, 2020; Shaman ¢ Kohn, 2009), which is

also an enveloped RNA virus. Indeed, Shaman ¢» Kohn (2009) and Marr et al. (2019)
(re-analysing Harper (1961) original data) both produced similar results to ours,
demonstrating that the survival of the influenza virus in aerosols is inversely correlated
with VP and air temperature. This mirrors our finding that the k value is most strongly
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Table 4 Average monthly values for the various psychrometric parameters for London, Paris and Milan during the 2020 (January to October).

City Parameter January February =~ March April May June July August September  October™
Mean (SD) Mean (SD) Mean Mean Mean Mean Mean Mean (SD) Mean (SD) Mean (SD)
(SD) (SD) (SD) (SD) (SD)
London Temp (°C) 7.78 7.99 8.00 12.27 15.09 17.02 18.23 19.93 16.20 11.87
(2.80) (2.89) (2.95) (4.52) (5.25) (4.37) (3.67) (4.80) (4.19) (2.47)
London RH (%) 83.25 76.46 70.26 62.55 56.26 66.99 66.05 69.56 71.83 83.28
(7.92) (10.84) (15.35) (17.13)  (1667) (1598) (17.73)  (16.83) (15.89) (10.60)
London Sat. pres  1.0734 1.0905 1.0925 1.4854 1.8037 2.0089 2.1454 24247 1.9012 1.4067
(kPa)
(02007)  (0.2111) (02250)  (0.4703)  (0.6253) (0.6129) (0.5608) (0.8051)  (0.5368) (0.2311)
London Vap. pres 0.8919 0.8320 0.7559 0.8664 0.9391 1.2776 1.3501 1.5923 1.3118 1.1608
(kPa)
(0.1837)  (0.2000) (0.1986)  (0.1536)  (0.2108) (0.2478) (0.2711) (0.3296)  (0.2841) (0.1922)
London Spec. vol  0.8028 0.8029 0.8024 0.8154 0.8241 0.8324 0.8365 0.8434 0.8303 0.8167
(m*/kg)
(0.0093) (0.0096) (0.0093)  (0.0134) (0.0159) (0.0136) (0.0109) (0.0153) (0.0134) (0.0082)
London AH (kg/  0.0069 0.0064 0.0058 0.0066 0.0071 0.0095 0.0100 0.0118 0.0098 0.0088
m?)
(0.0014) (0.0015) (0.0015)  (0.0011)  (0.0015) (0.0018) (0.0020) (0.0024) (0.0021) (0.0014)
London Enthalpy 21.710 20.991 19.805 25.869 29.899 37.239 39.630 45.273 36.953 30.120
(kJ/kg)
(5.552) (5.739) (5.277) (5.809) (7.445) (7.141) (5.872) (8.726) (7.664) (5.064)
Paris ~ Temp (°C) 6.85 8.93 9.06 15.24 16.68 18.89 20.95 2243 18.84 12.59
(3.59) (3.08) (3.54) (5.08) (5.09) (4.89) (4.30)  (5.46) (5.06) (2.71)
Paris RH (%) 84.18 76.99 66.70 54.74 55.57 62.65 55.47 60.34 64.52 79.79
(9.84) (10.71) (19.07) (18.55) (16.93) (17.20) (16.82) (18.74) (17.96) (11.35)
Paris Sat. pres 1.0178 1.1646 1.1824 1.8132 1.9872 2.2769 2.5588 2.8534 2.2751 1.4789
(kPa)
(0.2433) (0.2429) (0.2952) (0.5900)  (0.6479) (0.7703)  (0.7405) (1.0471) (0.7587) (0.2701)
Paris ~ Vap. pres 0.8517 0.8937 0.7809 0.9243 1.0422 1.3250 1.3280 1.5728 1.3669 1.1676
(kPa)
(02146)  (0.2186) (02666)  (0.2544)  (0.3076) (0.2405) (0.2782) (0.3405)  (0.2839) (0.2105)
Paris ~ Spec. vol  0.7998 0.8061 0.8056 0.8244 0.8295 0.8382 0.8441  0.8504 0.8384 0.8188
(m*/kg)
(0.0117) (0.0103) (0.0115) (0.0153)  (0.0159) (0.0148) (0.0126) (0.0165) (0.0156) (0.0090)
Paris AH (kg/  0.0066 0.0069 0.0060 0.0069 0.0078 0.0098 0.0098 0.0115 0.0101 0.0088
m’)
(0.0016) (0.0016) (0.0020) (0.0019)  (0.0022) (0.0017) (0.0021) (0.0025) (0.0020) (0.0015)
Paris Enthalpy  20.139 22915 21.276 29.815 33.161 39.906 42.058 47.516 40.536 30.970
(kJ/kg)
(6.766) (6.223) (6.908) (7.457) (8.579)  (7.230)  (6.325)  (8.569) (8.112) (5.570)
Milan  Temp (°C) 3.05 7.04 8.52 13.44 18.13 20.41 23.92 24.47 19.52 12.43
(4.54) (5.31) (4.96) (5.88) (4.21) (4.87) (4.15)  (451) (5.25) (3.87)
Milan RH (%) 83.51 66.13 68.84 60.61 66.81 70.89 65.55 64.43 72.32 81.10
(19.18) (26.63) (23.47) (24.40)  (2094)  (19.83) (17.35)  (18.78) (19.07) (17.53)
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Table 4 (continued)

City Parameter January February =~ March April May June July August September  October™
Mean (SD) Mean (SD) Mean Mean Mean Mean Mean Mean (SD) Mean (SD) Mean (SD)
(SD) (SD) (SD) (SD) (SD)
Milan  Sat. pres  0.7967 1.0640 1.1679 1.6397 2.1448 2.4953 3.0501 3.1672 2.3745 1.4835
(kPa)
(0.2689) (0.3887) (0.4049) (0.5979)  (0.5579) (0.7695) (0.7659) (0.8628) (0.7617) (0.3756)
Milan  Vap. pres 0.6231 0.6431 0.7469 0.8913 1.3426 1.6358 1.8981 1.9108 1.6198 1.1614
(kPa)
(0.1267)  (0.2524) (02373)  (0.3237)  (0.2911) (0.2654) (0.3204) (0.3297)  (0.3693) (0.2627)
Milan  Spec. vol  0.7872 0.7987 0.8037 0.8190 0.8361 0.8452 0.8575 0.8592 0.8425 0.8183
(m*/kg)
(0.0135) (0.0158) (0.0149)  (0.0174) (0.0124) (0.0146) (0.0129) (0.0135) (0.0169) (0.0122)
Milan AH (kg/  0.0049 0.0050 0.0057 0.0067 0.0100 0.0121 0.0138 0.0139 0.0120 0.0088
m?)
(0.0010) (0.0019) (0.0018) (0.0024)  (0.0022) (0.0019) (0.0023) (0.0024) (0.0027) (0.0019)
Milan  Enthalpy 12.701 17.062 20.187 27.474 39.416 46.451 54.299 55.071 45.297 30.708
(K]/kg)
(5.862) (7.409) (7.157) (8.456) (6.463) (7.168) (7.479) (7.356) (9.823) (6.872)
Notes:

* Data for 1 to 25th October 2020 only.
Temp, temperature; RH, relative humidity; AH, absolute humidity; Vap. pres, vapour pressure; Sat. pres, saturated vapour pressure; Spec. vol, specific volume; SD,
standard deviation.

Table 5 Predicted monthly mean biological decay constant, k, and half-life values for London, Paris and Milan during the 2020.

City Parameter January February = March April May June July August September  October”
Mean (SD) Mean (SD) Mean Mean Mean Mean Mean Mean (SD) Mean (SD) Mean (SD)
(SD) (SD) (SD) (SD) (SD)
London k.pred 0.00113 0.00108 0.00078 0.00262 0.00484 0.00963 0.01150 0.01697 0.00980 0.00488
(min™")

(0.00192)  (0.00183) (0.00158)  (0.00265) (0.00388) (0.00528) (0.00486) (0.00828)  (0.00607) (0.00355)

London Mean 613.4 641.8 888.6 264.5 1432 72.0 60.3 40.8 70.7 142.0
half-life
(min)

Paris k.pred 0.00110 0.00171 0.00140 0.00500  0.00704 0.01143 0.01287 0.018.23 0.01224 0.00545
(min™?)

(0.00192)  (0.00254)  (0.00229) (0.00359) (0.00548) (0.00562) (0.00530) (0.00830)  (0.00639)  (0.00380)

Paris Mean 630.1 405.3 495.1 138.6 98.5 60.6 539 38.0 56.6 127.2
half-life
(min)

Milan  k.pred 0.00008 0.00077 0.00134 0.00442 0.01142 0.01756  0.02626  0.02686 0.01762 0.00565
(min™?)

(0.00035)  (0.00149)  (0.00208) (0.00386) (0.00521) (0.00722) (0.00870) (0.00824)  (0.00800)  (0.00417)

Milan  Mean 8663.8 900.1 517.2 156.8 60.7 39.5 26.4 25.8 39.3 122.7
half-life
(min)
Note:

Data for 1 to 25th October 2020 only.
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Figure 3 Plots of: (A) the biological decay constant, k, for London, Paris and Milan during the period
1st January to 25th October 2020; (B) weekly COVID-19 cases for the UK, France and Italy during
the same period. Full-size K&l DOT: 10.7717/peerj.11024/fig-3

correlated (r = 0.780, P < 0.001) with specific enthalpy, h, which is a composite measure
representing total heat energy in the air and as such reflects both VP and air temperature.
In practical terms, this implies that survival of the SARS-CoV-2 virus in aerosols is
strongly influenced by the total energy in the air (i.e. the sensible heat energy of the dry air
and the latent heat energy in the evaporated moisture combined). Consequently, as air
temperature, VP and enthalpy increase, so the value of k also increases, with the result that
the biological half-life, [, 5, decreases and the virus survival time becomes shorter.

The reasons why survival of the SARS-CoV-2 virus should reduce as the air temperature
and VP increase are poorly understood. However, the fact that other enveloped viruses
such as influenza, respiratory syncytial virus (RSV) and human coronavirus (HCoV), all
exhibit seasonal cycles similar to COVID-19 (Moriyama, Hugentobler ¢» Iwasaki, 2020),
suggests that structural changes in the phospholipid envelope and surface proteins
due to variations in temperature and humidity may be responsible (Marr et al., 2019;
Shaman & Kohn, 2009). It may be that low-temperature conditions promote the ordering of
lipids in the viral envelope and that this contributes to viral stability (Polozov et al., 2008).
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However, this does not explain how changes in VP can affect viral stability in respiratory
droplets when the actual virions are not exposed to the ambient air and therefore not directly
interacting with the water vapour (Marr et al., 2019). It therefore appears likely that
evaporation from the droplet surface plays a key role in determining survivability. This is
because evaporation affects the chemistry of droplets, which in turn might affect the stability
of any viral particles contained within (Lin, Schulte ¢ Marr, 2020; Marr et al., 2019).

The evaporation process is dominated by the difference between the SP at the
droplet surface and the ambient air VP (Mittal, Ni ¢» Seo, 2020). It also depends on the
temperature difference between the droplet surface and the ambient air; with flow
convective effects influenced by the Reynolds, Schmidt and Prandtl numbers playing an
important role (Kincaid ¢ Longley, 1989). As such, the droplet evaporation process
exhibits a complex dependency on both temperature and humidity, which is difficult to
model. However, Shaman ¢ Kohn (2009) developed a simplistic evaporation model which
related time and the rate of decrease in the droplet’s radius, dr/dt, with the ratio of the
air vapour pressure deficit to the ambient air temperature, (ps — py)/(273.15 + T), where T
is in the range -20 °C to 40 °C. As such, they were able to show that the rate at which
volumetric change occurs in aerosol droplets, and by inference changes in the solute
(i.e. salts, proteins, etc.) concentration, are largely influenced by VP and air temperature.
In particular, changes in pH within the aerosol droplet that are induced by evaporation
may trigger conformational changes of the surface glycoproteins in enveloped viruses and
subsequently compromise their infectivity (Yang ¢» Marr, 2012). Changes in pH due to
droplet evaporation have been shown to be critical importance to the survival of the
enveloped bacteriophage ¢6 (Lin, Schulte ¢» Marr, 2020).

As well as having a biological effect, evaporation profoundly influences droplet size and
thus the aerodynamic behaviour of any respiratory droplets exhaled. With respect to this,
respiratory droplets can be classified as being either large (>100-125 pum in diameter)
or small (<100-125 pum in diameter). With large droplets the sedimentation process
dominates over the evaporation process, with the result that they tend to travel only short
distances from the source due to their ballistic behaviour (Mittal, Ni ¢» Seo, 2020; Seminara
et al., 2020; Walker et al., 2020). By comparison, small droplets are dominated by
evaporation in their initial stage, rapidly reducing in size to become semi-solid aerosol
particles containing proteins and salts (Marr et al., 2019; Walker et al., 2020) or fully dry
particles called droplet nuclei, both of which can be transported longer distances on
convection currents and widely distributed in room spaces (Miller et al., 2020). While the
former are largely unaffected by air humidity, the latter are profoundly affected by VP
if the flow convective effects are small (Serninara et al., 2020). So as well as affecting virus
survival in aerosol droplets, air temperature and humidity can also affect the aerodynamic
behaviour of respiratory aerosols and thus the transmission of viral diseases (Shaman ¢
Kohn, 2009). Indeed, Shaman & Kohn (2009) were able to show that increased evaporation
at lower VPs produced smaller aerosol particles (i.e. the formation of greater numbers of
droplet nuclei) that stay airborne for longer. However, they found no strong correlation
between the ratio of VP deficit to temperature and the actual transmission of influenza,
suggesting that increased production of airborne droplet nuclei in low-VP conditions may
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not be the principle means by which VP modulates influenza transmission (Shaman ¢
Kohn, 2009). Rather, they found a much stronger statistically significant relationship
between VP and virus survival, suggesting that the modulation of viral survivability in
aerosols is the primary means through which VP affects airborne influenza transmission
(Shaman & Kohn, 2009). This opinion is however challenged by early studies on influenza in
humans, which found that illness could be induced with substantially lower virus titres when
administered as a small droplet aerosol rather than by nasal droplets (Alford et al., 1966).
This suggests that influenza infection may be induced more efficiently when the virus is
deposited in the lower respiratory tract rather than in the upper airways. If this is the case,
then small virus laden droplet nuclei might pose a greater threat than larger droplets, or at
least contribute to the airborne spread of influenza (Bridges, Kuehnert ¢ Hall, 2003; Yan
et al., 2018). Interestingly, several studies have found viral RNA to be more concentrated in
small droplet nuclei compared with larger droplets (Bischoff et al., 2013; Coleman & Sigler,
2020 Lindsley et al., 2010; Yan et al., 2018). It may therefore be that the warm dry air
conditions that predominate indoors during the winter months are more conducive to the
production of small virus laden droplet nuclei and that this promotes the airborne
transmission of viral infections within buildings during this period.

While external air conditions may vary greatly throughout the year, it is general practice
to maintain air temperatures inside buildings at an approximately constant level with
minimal variation, although during the summer, internal air temperatures may rise if air
conditioning is not employed. However, while it is possible through the use of heating
to maintain comfortable room air temperatures during the winter months, internal RH
levels may drop to <30% when external air temperatures are low (e.g. <4 °C) and the
air is dry (e.g. VP < 0.75 kPa), something which can have a dramatic impact on the survival
of the SARS-CoV-2 virus. This is clearly illustrated in Fig. 4, which shows the predicted
(using Model 1) k values for the virus over a range of RH levels for a constant air
temperature of 21 °C. From this it can be seen that at 30% RH, k = 0.0063 min "'
(half-life = 112.4 min), whereas at 50% RH the value of k increases to 0.0111 min*
(half-life = 62.6 min) and at 70% RH, k = 0.0198 min ™" (half-life = 35.0 min). Similarly, if
the RH is kept constant, say at 50% (Fig. 5), we can see that varying the air temperature
has an even more dramatic impact on the k value. At 10 °C and 50% RH, the model
predicts that k = —0.0003 min~" (i.e. no biological decay), whereas at 25 °C and 50% RH,
k = 0.0168 min~" (half-life = 36.1 min). From this it can be seen that if a room space
is maintained at a temperature => 21 °C with an RH => 50%, then this should cause the
virus to biologically decay more rapidly than would be the case if the air were cooler
and drier.

It is noticeable that for three of the experiments studied, negative k values were reported
(see Table 1). This implies that during these experiments the viral load marginally
increased rather than decreased, something that is difficult to explain, given that virion
numbers in aerosols should in theory only decrease with time. We therefore constructed
two competing models: Model 1 using all the data points, and Model 2 utilising only
the data for which k was positive. Both demonstrated a strong linear relationship between k
and the various predictors. However, although Model 2 produced a better fit than Model 1,
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Figure 4 Predicted k values (using Model 1) for air at 21 °C for a range of humidity levels

(RH = 20-70%). Full-size Kl DOTI: 10.7717/peerj.11024/fig-4
v
o
—~ O
<l
Eg
E s
2
£ o
g O
»w ©
e
o]
O
b=
O o
)
0 o
o
© 1 | [ I I
10 15 20 25 30

Temperature (Degree C)

Figure 5 Predicted k values (using Model 1) for air at 50% RH for a range of temperatures
(temperature = 10-30 °C). Full-size k&l DOL: 10.7717/peerj.11024/fig-5

we nonetheless decided to use Model 1 to predict k values from the meteorological

data because this model exhibited a lower AIC value than Model 2, implying that it would
be the better predictive tool. However, Model 1 had the limitation that it yielded negative k
values at the extremes when the air was cool and dry, as is the case at 10 °C and 50%
RH (see above). Although in the present study, we got around this problem by capping all
the predicted negative k values at zero (a reasonable assumption implying no biological
decay), it nevertheless implies that the predictive power of the current linear model may be
limited at the extremes, particularly at low temperature and RH levels. As such, this
mirrors the findings of Yang, Elankumaran & Marr (2012) for influenza and suggests that
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a more complex two-phase model may be required to accurately predict the value of k
when air temperatures and RH levels are low. Notwithstanding this, for most practical
purposes, when assessing the survival of the SARS-CoV-2 virus indoors, Model 1 appears
to yield a reasonable approximation of k, because air temperatures rarely fall below
about 12-15 °C inside most buildings, even when they are intermittently heated

(Kane, Firth & Lomas, 2015).

In order to evaluate how changes in weather during the 2020 COVID-19 pandemic
might have affected the SARS-CoV-2 biological decay constant, k, and thus survival
half-life we applied our regression model (Model 1) to historical meteorological data for
London, Paris and Milan (Table 4). This revealed (Table 5) that for all three locations the
virus survived in the air for much longer during the winter, autumn and early spring
compared with the summer. For example in Milan during March 2020 (when the Italian
COVID-19 epidemic started to accelerate) the predicted mean half-life of the virus was
517 min, whereas in July and August (when the Italian epidemic reached its low point) the
mean half-life was just 26 min. Mirroring the findings of Morris et al. (2020) and Shaman
¢ Kohn (2009), this suggests that changes in VP and air temperature may contribute
to the seasonal fluctuations that have been observed in the COVID-19 epidemic,
particularly in temperate regions. Indeed, when the predicted weekly mean k values for
these cities are compared with the weekly number of COVID-19 cases for the UK, France
and Italy respectively (Fig. 3), it can be observed that a broadly inverse relationship
exists in all three countries, with COVID-19 cases lowest when the k values are highest.
Of course, any comparison between weather data for individual cities and COVID-19 cases
for whole countries can only be of limited value and must therefore be treated with
great caution. Nonetheless, despite the fact that transmission of the virus is thought to
primarily occur indoors, it is clear that COVID-19 case numbers were lowest when
survival of the virus in the outdoor environment was at its shortest. This suggests that
external weather conditions affect virus survival in aerosols within buildings, which is to be
expected given that room temperature and humidity levels are known to respond to
changes in the psychrometric condition of the outside air (Jornes, 2007). In particular,
because most buildings lack any form of humidification, it is generally the case that the
humidity levels experienced inside reflect the vapour pressure levels in the outside air. So,
in winter when, for example the outside air condition might be 0 °C and 90% RH
(VP =0.5497 kPa), the RH will be about 23.5% in a room heated to 20 °C, assuming that no
additional humidification of the air occurs within the room space. However, in autumn
when the outside air might be at, say, 13 °C and 75% RH (VP = 1.1233 kPa), for the same
room at 20 °C the RH would be about 48%.

While the results in Table 5 represent the predicted k and half-life values for external
air conditions, it should be remembered that COVID-19 is a disease that is primarily
transmitted indoors. With this in mind, because indoor air is generally heated during
the cooler months, the range of the k values exhibited inside buildings is likely to be
considerably less than that experienced outdoors. So for example for buildings located in a
temperate region such as the UK, the internal air conditions might range from, say, 18 °C
and 25% RH, equating to k = 0.0038 min~' (half-life = 181.5 min) at one extreme
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(i.e. a poorly heated space on a cold day in winter), to, say, 25 °C and 60% RH, equating to
k =0.0262 min~" (half-life = 26.5 min) at the other (i.e. a room space on a hot humid dayin
summer). From this it is reasonable to suppose that for temperate regions, the half-life
of the SARS-CoV-2 virus within buildings could be as much as seven times longer during
the winter months compared with the summer, depending, of course, on the weather
conditions experienced, the degree to which the indoor space is heated, and the internal
moisture gains. Having said this, it should be noted that this represents the extremes of
the range and for much of the time the variation in the virus half-life should be less
than this.

While in this study we have been able to characterise the relationship that exists between
the psychrometric qualities of the air and survival of the SARS-CoV-2 virus in aerosols, it is
important to note that we cannot say to what extent this contributes to the overall
transmission of the SARS-CoV-2 virus. This is because the seasonal variations that result
in large changes in air temperature and VP also coincide with changes in: UV-B irradiation
levels; population behaviour; building occupancy levels; and ventilation rates, as well as
changes in the human immune system. For example in temperate regions during the
summer months, populations spend more time outdoors, as well as ventilating buildings to
a greater extent (RAMP Task 7 Members, 2020), both factors that tend to inhibit COVID-
19. Likewise, viral degradation due to UV-B radiation in sunlight is greatly increased
during the summer months (Ratnesar-Shumate et al., 2020; Schuit et al., 2020; Tang et al.,
2020), as are vitamin D levels due to exposure to sunlight (Tang et al., 2020; Whittemore,
2020). Furthermore, the effect of low air temperatures and VP levels during winter on the
respiratory tract should not be ignored. Dehydration due to inhaling dry cold air can cause
the mucosal layer in the respiratory tract to become more viscous, immobilising the cilia,
and reducing the body’s ability to clear pathogens from the airways during wintertime
(Moriyama, Hugentobler ¢ Iwasaki, 2020). Notwithstanding this, our finding that the
SARS-CoV-2 virus is likely to survive in aerosols for much longer during winter and early
spring compared with summer supports the observations of many other researchers (Chin
et al., 2020; Morris et al., 2020; Riddell et al., 2020; Schuit et al., 2020; Van Doremalen et al.,
2020; Wang et al., 2020). Importantly however, it should be noted that the half-life survival
times of >100 min predicted by our model for indoor spaces during the colder months, are
much longer than the period virions are likely to remain airborne in a typical room space.
As such, this raises two intriguing questions:

1. Does the psychrometric quality of the air alter the viral load in aerosol droplets that are
inhaled and does this influence the progression of the epidemic? And;

2. Does the psychrometric quality of the air alter the survival time and viral load in
respiratory droplets that impact on surfaces and hands, etc. and does this in any way
influence the transmission of the SARS-CoV-2 virus?

While it would appear reasonable to assume that increased viral load is associated with
an increase in the biological half-life, the answers to both these questions are at this stage
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unknown, and further investigation will be required in order to determine whether or
not changes in air temperature and VP significantly affect the transmission of the
SARS-CoV-2 virus by either route.

Although we have characterised a strong relationship between survival of the SARS-CoV-2
virus in aerosols and air enthalpy, VP and SV, we are aware that our study has several
noticeable limitations. Chief amongst these is our reliance on a limited dataset collected by
disparate researchers, using a variety of experimental procedures. Furthermore, when
calculating the psychrometric parameters we used the mean temperature and RH values
reported in the respective publications, which meant that we could not compute any
margins of error. Notwithstanding this, because of the ensemble approach taken and the
strengths of the linear relationships observed in Figs. 1 and 2, and in Table 3, which we
cross-validated, it suggests that our findings and conclusions are valid. Having said this,
we recommend that our results should be considered as being indicative only and that
further experimental work should be undertaken to refine our findings. In addition,
because our model yielded negative k values at the extremes, which in theory should not
occur, it is recommended that further work be undertaken to better understand how the
virus behaves in aerosols in cold dry air, so that it can be modelled more accurately
under these conditions.

Because our psychrometric model has the potential to yield useful information
regarding the survival of the SARS-CoV-2 virus both inside and outside buildings, it is
recommended that the analysis presented here be extended in the future to cover typical
indoor environments as well as other geographical locations. Also, the analysis should
be extended to cover a longer time period than that reported here, as this might yield useful
insights into the impact of variations in air temperature and humidity on the progression
of the pandemic.

CONCLUSIONS

We have been able to demonstrate that survival of the SARS-CoV-2 virus in aerosols is
inversely related to both air temperature and VP, with survival greatly increasing during
the winter months when the air is cooler and drier. More specifically, we have been

able to build a linear model that describes with reasonable accuracy (R* = 0.718) the
biological decay constant, k, of SARS-CoV-2 using enthalpy, VP and SV as predictors.
When applied to historical meteorological data for the 2020 COVID-19 pandemic for
London, Paris and Milan (Table 5), the results suggest that the average half-life of the virus
in aerosols outdoors was in the region 13-22 times longer in March, when the outbreak
was accelerating, than it was in August when it was at its nadir. However indoors,
although a similar pattern will exist, because room spaces are generally heated, the
variation in the virus half-life between summer and winter is likely to be much less than
that exhibited outdoors. Nonetheless, the considerable range in virus half-life exhibited
throughout the year, suggests that variations in the psychrometric qualities of the air
might play an important contributory role in influencing the transmission of the
SARS-CoV-2 virus.
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