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ABSTRACT Microbial genomes have been shaped by parent-to-offspring (verti-
cal) descent and lateral genetic transfer. These processes can be distinguished by
alignment-based inference and comparison of phylogenetic trees for individual
gene families, but this approach is not scalable to whole-genome sequences,
and a tree-like structure does not adequately capture how these processes im-
pact microbial physiology. Here we adopted alignment-free approaches based on
k-mer statistics to infer phylogenomic networks involving 2,783 completely se-
quenced bacterial and archaeal genomes and compared the contributions of
rRNA, protein-coding, and plasmid sequences to these networks. Our results
show that the phylogenomic signal arising from ribosomal RNAs is strong and
extends broadly across all taxa, whereas that from plasmids is strong but re-
stricted to closely related groups, particularly Proteobacteria. However, the signal
from the other chromosomal regions is restricted in breadth. We show that
mean k-mer similarity can correlate with taxonomic rank. We also link the impli-
cated k-mers to genome annotation (thus, functions) and define core k-mers
(thus, core functions) in specific phyletic groups. Highly conserved functions in
most phyla include amino acid metabolism and transport as well as energy pro-
duction and conversion. Intracellular trafficking and secretion are the most prom-
inent core functions among Spirochaetes, whereas energy production and con-
version are not highly conserved among the largely parasitic or commensal
Tenericutes. These observations suggest that differential conservation of func-
tions relates to niche specialization and evolutionary diversification of microbes.
Our results demonstrate that k-mer approaches can be used to efficiently iden-
tify phylogenomic signals and conserved core functions at the multigenome
scale.

IMPORTANCE Genome evolution of microbes involves parent-to-offspring descent,
and lateral genetic transfer that convolutes the phylogenomic signal. This study in-
vestigated phylogenomic signals among thousands of microbial genomes based on
short subsequences without using multiple-sequence alignment. The signal from ri-
bosomal RNAs is strong across all taxa, and the signal of plasmids is strong only in
closely related groups, particularly Proteobacteria. However, the signal from other
chromosomal regions (�99% of the genomes) is remarkably restricted in breadth.
The similarity of subsequences is found to correlate with taxonomic rank and in-
forms on conserved and differential core functions relative to niche specialization
and evolutionary diversification of microbes. These results provide a comprehensive,
alignment-free view of microbial genome evolution as a network, beyond a tree-like
structure.
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For nearly 100 years following the discovery of diverse bacteria by Pasteur, Koch,
Cohn, and others in the latter decades of the 19th century (1), little was known of

how these organisms might be related among themselves or to the rest of the living
world. This began to change with the recognition that ribosomal RNAs are present in
all living cells and contain structural domains that, by virtue of their differential
entanglements with core molecular functions and their interactions with greater or
lesser numbers of other components of the translational apparatus, can inform on
evolutionary history across a range of temporal scales “much as the hands of a clock
separately indicate hours, minutes, and seconds” (2). Given the central role of transla-
tion in the emergence of phenotype from genotype and the number and interrelat-
edness of these structural and functional constrains, it was assumed that statistical
analysis of rRNA sequences would recover the tree of vertical descent not merely of the
corresponding genes but also, much more interestingly, of the host organisms. As it
happened, the PCR method was invented at about the same time (3), and the presence
of conserved 5= and 3= regions made the rRNA gene an attractive target for amplifi-
cation and sequencing. Thus, Darwin’s Great Tree of Life quickly became universal, and,
as a bonus, Archaebacteria (Archaea) were recognized as a distinct domain of living
organisms.

As molecular evolutionary studies were extended into families of protein-coding
genes, congruent topologies were often (but not always) recovered (4). In contrast to
expectation, instances of incongruence often failed to be resolved as data sets grew
larger and statistical methodology for phylogenetic inference improved. It also became
clear that many microbes can exchange genetic material through the mediation of
plasmids or phage and/or take up DNA from their environment. Depending on the
breadth and granularity of the data, phylogenetic trees inferred for regions of lateral
origin may thus contain edges that directly connect lineages that are nonadjacent in
the rRNA tree. That is, lateral genetic transfer creates phylogenomic networks. Plasmid
and phage sequences in particular are expected to increase the connectivity of phy-
logenomic networks, although any genetic material that becomes established in a new
host genome after transmission by such a vector can contribute.

The resulting pattern of phylogenomic relationships has been described (by the use
of diverse metaphors) as fundamentally treelike (5, 6), as a tree overgrown with tiny
vines (7), as a ring (8, 9), as a coral (10), as a web (7, 11), as a network with some treelike
regions (12), or simply as a network (13, 14). Networks of lateral genetic transfer (11, 13)
highlighted the need to visualize contributions of different genomic regions on a broad
scale.

Complete genome sequences are now available for thousands of bacterial and
archaeal species, making it possible to assess microbial evolution globally and, often, at
considerable phyletic depth. However, until recently these studies were necessarily
biased in favor of alignable regions, i.e., genes, as classical phylogenomic workflows are
based on multiple-sequence alignment (MSA) of putative orthogroups. Recently, so-
called alignment-free (AF) approaches have been shown to perform well in phyloge-
netic inference from simulated and empirical (microbial genome) data sets (15; see
references 16, 17, and 18 for recent reviews).

An important class of AF methods consists of approaches based on subsequences
of fixed length, known as k-mers. These methods typically compute a matrix of
distances on the basis of, e.g., the number of shared k-mers, which can then be used
to generate a tree by the use of, e.g., neighbor joining (19) or a similarity network (20).
Alternatively, k-mers of lateral origin can be recognized (11, 21, 22) and used to
generate a directional network in which the edges natively represent inferred lateral
relationships. The use of k-mers in phylogenetics is biologically intuitive (23, 24); the
earlier works of Carl Woese and colleagues (25–27) showed that short (enzymatically
digested) oligonucleotides of 16S/18S ribosomal RNAs carry significant phylogenetic
(and thus, homology) signal and reveal the three domains of life. AF approaches can
recover homology signal among molecular sequences at the genome scale and have
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been successfully applied to genomes of bacteria and archaea (15, 28–30), organelles
(31), plants (31), and primates (30) as well as to microbial metagenomes (30).

AF methods can be more robust than MSA-based approaches to among-site rate
heterogeneity, compositional bias, rearrangement, and insertion-deletion events (15,
32) and are scalable for very large data sets (32, 33). We earlier generated an AF
phylogenetic network for 143 bacterial and archaeal genomes (29) using pairwise k-mer
distances computed using the D2

S statistic (34, 35). By varying similarity thresholds, we
could easily display changes of network structure, e.g., the progressive separation of
genomic lineages (29) or the disappearance of cliques (putative “genetic exchange
communities” [11, 36]).

Here we used k-mer methods and the D2
S statistic to infer phylogenomic networks

for 2,783 complete prokaryote genomes and investigated the contribution of different
components of the data to the phylogenetic signals captured by AF methods. Specif-
ically, we compared AF networks inferred using (i) complete genomic data sets,
including plasmids, if any; (ii) chromosomal sequences without rRNA genes; (iii) only
rRNA genes; and (iv) only plasmid sequences. Using an advanced database approach,
we investigated the core functions that are specific to particular phyletic groups or
genera on the basis of the shared k-mers.

RESULTS

For each subset of the data (see above), we first calculated a distance d between the
genomes in a given pair (a and b) using the D2

S distance measure and k � 25 (see
Materials and Methods). The value of k � 25 was found to capture an adequate level of
uniqueness among 1,121 complete bacterial genome sequences and is thus suitable for
deriving a metric of relatedness among bacterial genomes (37). We transformed the
distance between genome a and genome b (dab) into a similarity value (Sab) and
generated a similarity network using a method that we described previously (29). These
networks capture the relatedness among these genomes, i.e., are phylogenomic,
although the relative contributions of the vertical and lateral components (which may
be admixed) depend on the subset of data used as input. Here we define a threshold
t for which only edges with S values that are �t are considered in the network. To
compare our results at the genome and phylum levels, we generated I-networks in
which nodes represent distinct genome isolates and edges indicate evidence of shared
k-mers and also generated P-networks in which nodes represent distinct phyla and
edges represent the number of isolates (summed over both nodes) that share k-mers
with isolates of the other phylum (see Materials and Methods). Given the taxon richness
of Proteobacteria, we evaluated its subgroups (e.g., Alphaproteobacteria and Betapro-
teobacteria) as individual phyla. We then compared the k-mer networks based on the
topological differences between them at different t values. All I- and P-networks of
these 2,705 genome isolates are available at https://doi.org/10.14264/uql.2017.436.

AF networks of microbial evolution. We first inferred phylogenomic networks
based on a data set of 2,783 completely sequenced microbial genomes (2,618 bacterial
genomes and 165 archaeal genomes [total of 9,582,718,896 bases]) downloaded from
NCBI on 31 January 2016 (see Data Set S1 in the supplemental material), including
plasmid sequences if present. Where two or more genomes had identical contents of
25-mers (D2

S distance � 0), only one was retained. We also removed edges for which the
D2

S distance was �10; these genomes share �0.01% of 25-mers with any other genome.
Following this filtering step, we took 2,705 genomes forward into subsequent analyses.
For each network, we systematically assessed the number of nonsingleton nodes (c)
(i.e., the number of nodes with one or more edges), the size of the maximal clique (i.e.,
the clique with the largest number of genomes) (z), and the number of cliques (n)
across various levels of the similarity score threshold (t). We required a clique to contain
three or more edges and defined D as the density of a network, i.e., the proportion of
edges among all possible edges in a network (Fig. 1; see also Materials and Methods).

The network topology changes substantially with similarity threshold: at t � 0,
c � 2,705 and z � 2,704, compared to c � 1,358 and z � 48 at t � 9 (Table 1). As we
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increase the stringency of the threshold of shared similarity, the network becomes less
connected, and distinct subsets corresponding to diverse taxa (i.e., phyla, classes, and
genera) start to emerge. In this network, many bacterial phyla are represented in a
single subgraph at t � 4, most phyla can be identified as distinct sets at t � 5, and all
proteobacterial classes are separate from each other at t � 5.

The I-network is very densely connected at t � 0, with the maximum number of
cliques n � 10. The value n is too great to be computed at t �1 or t � 2, but n �

1,662,785 at t � 3 and decreases to 232 at t � 9 (Table 1). Most isolates are members
of a single large clique at t � 0 and t � 1 (D � 0.98 in both cases); at t � 2, D � 0.513.
The network becomes less dense at t � 3 (D � 0.079; Table 1). As this network of 2,705
nodes remains too densely connected to be visualized and analyzed directly, we
generated the P-network using the same data, with each node representing a phylum.
Figure 2 shows the P-network of the 2,705 genomes at t � 3 (dynamic view available
at http://bioinformatics.org.au/tools/AFmicrobes/). The width (thickness) of each edge
represents the number of instances in which any two genomes (one from each phylum
connected by the edge) have similarity S � t; the width is relative to the number of
connected genome pairs between two phyla. Major phyla (e.g., Betaproteobacteria and
Gammaproteobacteria, Firmicutes, Actinobacteria, and Tenericutes) are clearly separated
at t � 3. The thickest edge (in red) is between the Betaproteobacteria and Gammapro-
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FIG 1 Definition of key terms of network characteristics used in this study. The example 11-node
network is shown at the top, and the definition of each key term associated with this example network
is shown at the bottom.

TABLE 1 Characteristics of the phylogenomic network of 2,705 prokaryote genomes based on complete genomic data sets

Threshold No. of nonsingleton nodes, c Density, D Size of the maximal clique, z No. of cliques, n

0 2,705 0.998 2,704 10
1 2,705 0.989 2,701 Not available
2 2,705 0.513 860 Not available
3 2,680 0.079 339 1,662,785
4 2,378 0.019 211 6,181
5 2,091 0.008 124 3,344
6 1,860 0.005 82 525
7 1,676 0.003 64 229
8 1,538 0.003 61 224
9 1,358 0.002 48 232
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teobacteria (7,568 connected genome pairs; see Fig. S1A in the supplemental material),
suggesting a high similarity among genomes between these groups. In addition, we
also observed a large proportion of shared 25-mers between Firmicutes and each of the
proteobacterial classes.

Phylogenomic signal contributed by rRNA genes. To determine the contribution
of the rRNA genes to our AF networks, we first excluded from our set of 2,705 unique
genomes (see above) the 89 genomes that did not have gene annotation, and we
excluded from the remaining 2,616 all rRNA gene sequences based on annotated start
and stop coordinates (see Materials and Methods). The density of the I-network of
genomes from which rRNA genes have been removed was lower than in the I-network
inferred using the whole data set. Similarly to what we observed for the I-networks
described in the previous section, here, at t � 0, c � 2,615 and z � 1,226, and these
values decreased to c � 1,290 and z � 47 at t � 9 (Table 2). At t � 3, the I-network of
the rRNA gene-free network had a network density of D � 0.026, 3-fold lower than the
D � 0.079 in the whole-genome network (Table 1). Figure 3 shows the P-network of

Firmicutes

Tenericutes

Actino-
bacteria

γ

β

α

ε
δ

Spirochaetes

Cyanobacteria

Chlamydiae

Euryarchaeota

BacteroidetesHighway of k-mer sharing

FIG 2 P-network of 2,705 prokaryote genomes based on whole-genome data. The network was
generated using D2

S with k � 25 at t � 3. Each node represents a distinct phylum (or proteobacterial
group), with major representative nodes labeled. Each edge between two nodes represents the
number of genome pair connections between the two nodes. The thickness of each edge is
proportional to the number of genome pairs with shared k-mers. The size of each node is
proportional to the number of isolates within the phylum. The five representative Proteobacteria
groups are labeled with the corresponding Greek characters. The highway of k-mer sharing between
Betaproteobacteria and Gammaproteobacteria is indicated in red. A dynamic view of this figure is
available at http://bioinformatics.org.au/tools/AFmicrobes/.

TABLE 2 Characteristics of the phylogenomic network of 2,616 prokaryote genomes based on complete genomes without rRNA genes

Threshold No. of nonsingleton nodes, c Density, D Size of the maximal clique, z No. of cliques, n

0 2,615 0.490 1,226 Not available
1 2,597 0.219 548 Not available
2 2,555 0.072 367 164,221
3 2,394 0.026 220 5,379
4 2,182 0.012 159 5,139
5 1,959 0.006 117 631
6 1,761 0.004 74 299
7 1,591 0.003 62 120
8 1,460 0.003 59 117
9 1,290 0.002 47 131
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these 2,616 genomes at t � 3 (dynamic view available at http://bioinformatics.org.au/
tools/AFmicrobes/). As in Fig. 2, the thickest edge (in red), between Betaproteobacteria
and Gammaproteobacteria (Fig. 3), indicates the largest number of instances of shared
k-mers between genomes from these two groups. This P-network is less dense than the
equivalent network based on the whole data set (shown in Fig. 2). Although we
observed fewer connections between phyla after removal of rRNA sequences from the
genome data, many of the major connections observed in Fig. 2 remained, e.g., the
connections between Betaproteobacteria and Gammaproteobacteria (404 connected
genome pairs) and between Actinobacteria and Gammaproteobacteria (57 connected
genome pairs) (see Fig. S1B). Thus, the sharing of 25-mers contributing to these major
connections extends beyond the rRNA genes commonly used as phylogenetic markers.

A network computed using only the rRNA sequences was denser than the two
corresponding I-networks described above. At t � 6, D was high at 0.635 (z � 1,321; see
Table S1 in the supplemental material) compared to 0.005 (z � 82) and 0.004 (z � 74)
in the I-networks based on whole-genome and rRNA gene-removed data, respectively.
Figure S2 shows the P-network of 2,616 genome isolates based solely on rRNA genes
at t � 6. Although almost all phyla were connected to each other (c � 2,613 and
z � 1,321 at t � 6), we observed a clear separation between the Archaea and Bacteria.
These results imply that rRNA gene sequences contain sufficient information to distin-
guish Archaea from Bacteria by the use of a k-mer approach, but separation of bacterial
phyla would require further tuning of k and t.

Phylogenomic signal contributed by plasmid genomes. Among the genome
data records available to this study, 921 (representing 26 phyla) include sequence
annotated as arising from one or more extrachromosomal plasmids. To examine the
phylogenomic signal contributed by these plasmids, we computed I- and P-networks

Actinobacteria

Firmicutes

Spirochaetes

Chloroflexi

Chrysio-
genetes

Cyanobacteria

Thermotogae

Synergistetes

Fusobacteria

Thermobaculum

highway of k-mer sharing

γ β

α

ε

δ

Tenericutes

Euryarchaeota

Unclassifed
(Archeon DL32)

FIG 3 P-network of 2,616 prokaryote genomes based on chromosomal sequences with rRNA genes
removed. The network was generated using D2

S with k � 25 at t � 3; only nonsingleton nodes are shown.
Each edge between two nodes represents the number of connections between isolates from the two
phyla; the thickness of each edge is proportional to the number of genome pairs with shared k-mers. The
size of each node is proportional to the number of isolates within the phylum. Singletons are not shown.
The five representative Proteobacteria groups are labeled with the corresponding Greek characters. The
highway of k-mer sharing between Betaproteobacteria and Gammaproteobacteria is indicated in red. A
dynamic view of this figure is available at http://bioinformatics.org.au/tools/AFmicrobes/.
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using only the plasmid sequences for these 921 isolates (see Materials and Methods).
Figure 4 shows the I-network of the 921 plasmid genomes at t � 0, in which D � 0.025
(c � 745 and z � 48; Table 3); a dynamic view is available at http://bioinformatics.org
.au/tools/AFmicrobes/. Most phyla appear as distinct cliques, but, notably, there are
edges between Proteobacteria and Actinobacteria and between Proteobacteria and

Cyanobacteria

Alphaproteobacteria

Betaproteobacteria

Gammaproteobacteria

Acidobacteria

Firmicutes

Actinobacteria

Aquificae

Euryarchaeota

Epsilonproteobacteria

Tenericutes

Deltaproteobacteria

Bacteroidetes

Spirochaetes

Deferribacteres

Chlamydiae

Deinococcus-Thermus

Fusobacteria

Chloroflexi

Planctomycetes

Thermotogae

Chlorobi

Crenarchaeota

Synergistetes

Unclassified

Elusimicrobia

FIG 4 I-network of 921 plasmid genomes. The network was generated using D2
S with k � 25 at t � 0. Each edge between two nodes represents

evidence of shared k-mers. A dynamic view of this figure is available at http://bioinformatics.org.au/tools/AFmicrobes/.
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Firmicutes. At t � 4, most phyla are separated as distinct cliques, with the exception of
Epsilonproteobacteria and Firmicutes; the other Proteobacteria (Alphaproteobacteria,
Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria) are in a distinct
paraclique. The Euryarchaeota, connected only to the bacterial phylum Planctomycetes
at t � 0, is separated from Bacteria at t � 1. All phyla are disjoint at t � 7. These results
are not surprising, as the plasmid genomes can have a narrow host range (38, 39) and
are known to evolve faster than the core genomes (40); in combination with their
smaller genome size, fewer shared k-mers are observed at a given similarity threshold
(41).

For each genome pair, we further compared its D2
S distance derived from whole

genome data set to those derived from distinct genome components (Fig. S3). Dis-
tances derived from rRNA sequences are almost always smaller than the distances
derived from the overall data set. The reverse trend is observed for distances derived
from chromosomal sequences with rRNAs removed (although a one-to-one relationship
is observed) and to a greater extent for those derived from plasmid sequences.

Network comparison. Figure 5 shows the density D for all four I-networks as a
function of threshold t. For all networks, the network density decreases as t increases.
At t � 2, the rRNA gene-only network is denser than the others, with D remaining �0.63
through t � 6, compared to D � 0.02 for the others at t � 3. As expected, the highest
density of the complete-genome network is observed at t � 2; D � 0.98 and decreases

TABLE 3 Characteristics of the phylogenomic network of 921 prokaryote genomes based on plasmid sequences only

Threshold No. of nonsingleton nodes, c Density, D Size of the maximal clique, z No. of cliques, n

0 745 0.025 48 20,557
1 718 0.021 46 13,272
2 680 0.017 45 3,925
3 648 0.014 39 1,406
4 601 0.011 34 800
5 556 0.009 30 589
6 499 0.006 25 368
7 439 0.004 13 122
8 353 0.002 11 26
9 245 0.001 9 14
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at the bottom.
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rapidly at 2 � t � 5. The network without rRNA genes exhibits a lower density, D � 0.5,
at t � 0, and by t � 5, D has decreased to a level similar to that calculated for the
complete-genome network (D � 0.01). Together with our observed pairwise genome
distances based on distinct genome components (Fig. S3), these results confirm that
rRNA sequences (as captured by 25-mers) are more highly conserved than are the
genome sequences overall. The data corresponding to the whole-genome and rRNA-
free networks differ through a similar range of network densities, whereas data
corresponding to the rRNA gene network differ at a higher threshold (i.e., t � 5). The
plasmid network shows the lowest density, with D � 0.03 at t � 0 (Fig. 5), indicating
that these plasmid genomes are more diverse in 25-mer composition than are the
corresponding main genomes. The results presented in Fig. 5 provide a guide for
visualization and comparison of these networks at the appropriate t values. In this
study, we chose t values that would yield a clear separation of Bacteria and Archaea;
thus, we used t � 3 for visualizing the two networks shown in Fig. 2 and 3 (i.e., the use
of the same t value for both networks is purely coincidental) and t � 0 for the plasmid
network shown in Fig. 4.

To assess the (individual) contributions of rRNA genes and plasmids to the related-
ness among the distinct phyla, we calculated for each phylum pair a connectedness
value C, representing the proportion of genome pairs that share one or more k-mers
over all possible genome pairs in the two phyla (see Materials and Methods). As shown
in the heat map summaries (Fig. 6), the hierarchical clustering of C values does not
conform to known phyletic relationships; e.g., proteobacterial groups are not unified a
single cluster. In the all-inclusive genome network (Fig. 6A), the archaeal phyla (Cren-
archaeota and Euryarchaeota) are not clearly separated from the Bacteria phylum and
show substantial connectedness with Tenericutes (C � 0.63) and Chlamydiae (C � 0.54).
The highest mean C value (0.85) was observed in the network consisting only of rRNA
genes (Fig. 6B), with Archaea and Bacteria clearly separated. Crenarchaeota shows
substantial connectedness (C � 0.5) with 11 bacterial phyla, compared to Euryarchaeota
with 6; both cases include Deinococcus-Thermus, Aquificae, and Thermotogae. The
removal of rRNA genes from the genome sequences appears to have removed most of
the connectedness among phyla (mean C � 0.05 in Fig. 6C), with the maximum
C � 0.59 between Betaproteobacteria and Gammaproteobacteria. Even less phylum-
level connectedness was observed in the plasmid-only network (Fig. 6D; mean
C � 0.002), with maximum C � 0.029 between Betaproteobacteria and Gammaproteo-
bacteria. These results indicate the complications of inferring a tree-like structure
among these taxa using genome-wide k-mers and that whole-genome and plasmid
sequences capture phyletic relatedness that is distinct from that captured by the rRNA
genes. Remarkably, chromosomal sequences, apart from rRNA genes, although usually
representing more than 99% of the genome sequences, contribute little to overall
phylogenetic signal.

Core k-mers of microbial genera. We define a core k-mer in a group of interest as
a k-mer that is present in every genome within the group, e.g., a core 25-mer in
Proteobacteria is present in all proteobacterial genomes in our database (see Materials
and Methods). We identified core 25-mers for each genus in our 2,783-genome data set.
Of these 699 genera, 497 are represented by only a single genome isolate, and a further
51 consist of highly divergent genomes for which no core 25-mers were identified; we
exclude these data from this part of analysis. The remaining 151 genera for which core
25-mers were identified are listed in Table S2. As these genera are represented in our
data set by different numbers of isolates, we define K as the number of distinct core
k-mers per isolate for each genus; this value can help describe the extent of genome
divergence (and thus the evolutionary rate of these genomes) within each of these
genera. Thus, the three genomes representing genus Azotobacter show the highest
number of core k-mers, and K � 1,722,079; these genomes represent distinct isolates of
the same species, Azotobacter vinelandii. This is in contrast to the 123 Streptococcus
genomes (in 27 described species), which share only one core k-mer (K � 0.01). Among
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the 20 genera with the greatest K values, Shigella is represented here by the greatest
number of distinct isolates (10 from four species), and K � 33,698. This number com-
pares to K � 4.82 among the 11 Ralstonia genome isolates from three species. Thus,
these Shigella genomes have diverged much less from their common ancestor than
have these Ralstonia genomes from theirs, as assessed by shared 25-mers. This result
also lends support to the earlier discovery of extensive gene dispersal among six
genomes of Ralstonia solanacearum (of the 11 Ralstonia isolates in our data set) (42).
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Core functions of microbial phyla. To relate the shared k-mers to biological

functions, for all 25-mers in these 2,783 genomes we organized the genome coordi-
nates of each instance, and the biological function annotated for the gene product
encoded at those coordinates, in a relational database. Functional annotation was
based on Clusters of Orthologous Groups (COGs) (43). Then, using the list of core
25-mers described above, we grouped these 25-mers by taxon, focusing on protein-
coding sequences (i.e., rRNA sequences were discarded; see Materials and Methods).
This yielded a set of core 25-mers for 112 genera in 16 phyla; the corresponding COG
functional categories for these core 25-mers are shown in Table S3. The noninformative
functional categories R (general function prediction only) and S (function unknown)
were excluded from subsequent analyses. No core k-mer in our data set was found to
be associated with functional category Y (nuclear structure). Functional categories
represented at �1% of core k-mers in each genus included category A (RNA processing
and modification), category B (chromatin structure and dynamics), category W (extra-
cellular structure), and category Z (cytoskeleton).

We found core k-mers associated with functional category A only in the proteobac-
terial classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Del-
taproteobacteria (i.e., not in the Epsilonproteobacteria) and in phylum Actinobacteria and
those associated with functional category B only in phyla Chloroflexi, Euryarchaeota and
Thaumarchaeota. Figure 7 shows the proportions of the five most-frequent COG catego-
ries associated with core 25-mers across the 23 COG categories for 16 phyla. Categories E
(amino acid metabolism and transport) and C (energy production and conversion) are
among the five most abundant categories in 15 and 13 phyla, respectively. The Epsilon-
proteobacteria, Thaumarchaeota, Euryarchaeota, Actinobacteria, Cyanobacteria, and
Chloroflexi represent the only phyla with category H (coenzyme metabolism) among
the five most abundant. For the phyla Tenericutes, Deinococcus-Thermus, Firmicutes and
Crenarchaeota, the most-represented functional categories include P (inorganic ion
transport and metabolism), L (replication and repair), J (translation), E (amino acid
transport and metabolism), and G (carbohydrate metabolism and transport). Bacte-
roidetes is the only phylum for which categories O (posttranslational modification,
protein turnover, and chaperone functions), Q (secondary structure), and F (nucleotide
metabolism and transport) are among the top five. Phylum Spirochaetes is the only one
with U (intracellular trafficking and secretion) and T (signal transduction) among the
five most abundant, but very few COGs are associated with core 25-mers.

Comparing the annotated core k-mers in each phylum to all annotated core k-mers,
11 of the 25 COG functional categories are significantly enriched in Gammaproteobac-
teria (Fisher’s exact test, Benjamini-Hochberg [44]-adjusted P � 0.05), 9 in Alphaproteo-
bacteria, 9 in Actinobacteria, 8 in Deltaproteobacteria, and 7 in Firmicutes (Table S4). This
observation may be due to the large (73.6%) representation of taxa of these phyla in
the overall 2,783 data set: 1,163 (41.8%) Proteobacteria, 601 (21.6%) Firmicutes, and 285
(10.2%) Actinobacteria (Data Set S1). In comparison, category L (replication and repair)
is enriched (P � 7.55 � 10�6) among the core k-mers of Tenericutes and category M (cell
wall/membrane/envelop biogenesis; P � 4.88 � 10�9) in Euryarchaeota. These results
suggest a more prominent conservation of these functions in these phyla than in the
others, indicating their importance.

In order to determine whether the phyla can be clustered based on their COG-
category profiles, we performed a series of principal-component analyses (PCA). PCA of
the raw data (e.g., of nonnormalized counts of COG number) did not reveal any
particular clustering (Fig. S4A), nor did PCA of the clusters of genera classified according
to the number of isolates (Fig. S4B). Figure S4C shows the results of PCA performed on
the normalized counts of COG numbers in a centered scale (e.g., COG categories with
equal weights). In this analysis, Nitrosopumilus, the only genus in phylum Thaumar-
chaeota represented in this data set, is isolated from the other genera, as is genus
Dehalococcoides, a member of phylum Chloroflexi. These results confirm that the

k-mer Phylogenomics of Microbes

November/December 2018 Volume 3 Issue 6 e00257-18 msystems.asm.org 11

msystems.asm.org


different numbers of isolates per genus do not bias our analysis of functional categories
but that some phyla can be distinguished from others.

DISCUSSION

Phylogenetic studies have long been based on multiple-sequence alignment (thus
the implicit assumption of full-length contiguity), from which a phylogenetic tree is
inferred. A tree-like structure is an unrealistic representation of microbial evolution due
to complications of horizontal signal caused by genome rearrangements and lateral
genetic transfer (33, 45, 46). In this study, we demonstrated that AF approaches can be
used to infer phylogenetic networks quickly for large-scale microbial whole-genome
data (see also Text S1 in the supplemental material). Our results provide a comprehen-
sive, alignment-free view of microbial genome evolution as a network, beyond a
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tree-like structure. We introduce for the first time the concept of a k-mer similarity
network and two types of AF networks, the I- and P-networks. We show that by
combining a k-mer approach with the use of a relational database, biological informa-
tion can be accessed efficiently for large-scale data. Finally, we define core k-mers as
consisting of those k-mers present in every isolate genome of a genus (or other taxon),
following the concept of core genes (47, 48).

We examined the contributions of rRNA genes and plasmids to the phylogenomic
signal among microbial genomes. As expected, rRNA genes contribute to the signal
captured by 25-mers, as they do in MSA-based approaches. However, the pattern of
network density versus threshold (Fig. 5) clearly indicates the different extents of
sequence conservation in the distinct genomic regions. Our demonstration that, in
general, the signal contributed by rRNA genes is not by itself sufficient to resolve
relationships among (and sometimes within) bacterial phyla is in line with many
previous studies (2, 6, 49, 50). The low density of the plasmid k-mer network also
confirms that plasmids tend to be taxon specific (41). In all our AF networks, phyletic
relatedness based on shared k-mers is often strongest between proteobacterial classes,
in particular, between the Betaproteobacteria and Gammaproteobacteria, and many
25-mers are shared between the Actinobacteria and Proteobacteria or Firmicutes across
all networks. Lateral genetic transfer between lineages of Betaproteobacteria and
Gammaproteobacteria (14), identified in earlier studies based on MSA (14, 51) and
k-mers (11), partly explains this strong similarity in our networks.

Overall, the I- and P-networks provide a quick overview of the evolutionary rela-
tionships among whole genomes, or subsets of genomes, in large-scale data sets. The
I-networks capture evolutionary dynamics (e.g., divergence and lateral genetic transfer)
and relatedness among individual genomes, providing a fine-scale overview of shared
genetic elements among these genomes. The P-networks capture phyletic relatedness
and illustrate the magnitude of the sharing of k-mers (and genetic elements) among
these groups at a deeper evolutionary timescale.

Assignment of taxonomic rank to groups of bacteria has long been considered
fraught (52–54), and there is no generally accepted way to extract taxonomic rank from
trees. This undertaking is further complicated by the imbalance in the number of
isolates per higher taxon. Our k-mer similarity networks provide an alternative way to
explore the evolutionary dynamics of microbial genomes that tracks taxonomic rank. In
our phylogenomic network based on 2,705 complete genomic data sets, at threshold
at t � 3, domains Archaea and Bacteria appear as separate regions of dense connection
within the AF graph. At 3 � t � 5, phyla (e.g., Proteobacteria and Firmicutes) emerge.
We see classes (e.g., of Proteobacteria) at 4 � t � 6 and structure between and/or within
genera (e.g., Escherichia coli and Shigella) at t � 6. Our k-mer phylogenomic network
allows dynamic genome-scale exploration of the taxonomic rank.

Relating the identified core 25-mers for each genus to annotated functions of the
corresponding genes identifies highly conserved functions. Although we took great
care to use only 2,873 completely sequenced and annotated prokaryote genomes (and
excluded draft, fragmented genomes with suboptimal annotations), we cannot dismiss
entirely the possible impact of technical errors or inconsistencies of the genome
annotation process (e.g., due to chains of functional inference) on these data sets.
However, the annotated functions of core k-mers represent conservation at a finer scale
than those based on full-length sequence comparisons and remain biologically rele-
vant. Across the phyla represented in our data set, functions (identified on this basis)
associated with the metabolism and transport of amino acids, and with the production
and conversion of energy, are the ones most frequently encountered. Perhaps not
surprisingly, we observed that phyla that share many 25-mers also exhibit similar core
functional profiles. Our analysis reveals that the core functions highly conserved in
Epsilonproteobacteria and in Deltaproteobacteria are distinct from those conserved in
the other proteobacterial classes. Except for the two most highly conserved categories
(see above), the Epsilonproteobacteria do not share highly conserved functions with the
other classes of Proteobacteria; indeed, the Epsilonproteobacteria share more 25-mers
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with the Firmicutes and with the Actinobacteria than with other Proteobacteria. These
results support those of previous single-gene phylogenetic analyses revealing Epsilon-
proteobacteria to be the most basal proteobacterial lineage and are consistent with
Epsilonproteobacteria having been the last class in this phylum to have been recognized
(55). Finally, we also observed that phylum Tenericutes is among the only phyla that do
not have highly conserved functions related to energy production and conversion; this
can be related to their parasitic or commensal lifestyle (56). These results demonstrate
that analysis of conserved k-mers can identify molecular mechanisms and functions
that characterize evolutionary diversification within and among microbial taxa.

No core 25-mers were recovered for 51 of these 699 genera, particularly those
represented by genome sequences for many isolates from different species. For such
genera, a core k-mer set might be sought at lower values of k, although at the potential
risk of including signal from false positives and background noise (i.e., nonhomologous
k-mers). Similarly, some phyla that we pointed out as sharing highly conserved func-
tions have few distinct COGs related to core 25-mers.

MATERIALS AND METHODS
Data. In total, 2,785 completely sequenced genomes of Bacteria and Archaea were downloaded

from NCBI on 31 January 2016 (Data Set S1); two of these were identified as “multispecies” and
“multi-isolate” and were thus excluded. Functional annotation of the remaining 2,783 genomes was
obtained through the corresponding RefSeq records. Genes encoding ribosomal RNAs were iden-
tified based on annotation. Genomes with no annotation information were excluded from our
rRNA-gene network. Of the 2,783 isolates, 921 contained plasmids; these plasmid genomes were
used in the plasmid-only network.

Relational database of k-mers and genome features. We extracted 10,059,526,408 distinct 25-
mers from the genomes of 4,401 bacterial and archaeal isolates (present as of 31 January 2016 in NCBI
RefSeq), of which 2,783 genomes were complete and included in our subsequent analysis (see above).
We organized these k-mers, and their genomic locations and features (based on RefSeq annotations), in
a relational database using SQL, following the method of Greenfield and Roehm (37). Tables in the
database contain a list of isolates, lists of genes and their sequences, coherent taxonomic information for
each isolate, an indexed list of all 25-mers, an indexed list of gene-by-gene comparisons for each pair of
genes, and an indexed list of genome-by-genome comparisons for each pair of genomes.

Alignment-free (AF) network. We followed the method of Bernard et al. (29) in generating the AF
networks. We first computed pairwise comparisons for the 2,783 isolates and generated for each
comparison the corresponding D2

S distance (15) value d, using 25-mers across parallel central processing
units (CPUs). For a pair of genomes a and b, we transformed d into a similarity measure Sab, where
Sab � 10 � d. For instance, considering two highly similar genomes of a and b for which distance dab �
0.001, the similarity measure Sab � 9.999. Likewise, considering two highly dissimilar genomes of a and
b for which dab � 9.925, Sab � 0.075. We ignored any edge for which d � 10 (i.e., for which the S value
was negative), as the corresponding pair of sequences shares only �0.01% of 25-mers (i.e., 25-mers
capture little evidence of homology). We then generated the networks using JSON files containing the
S values as input for a Javascript script using the D3 library (https://d3js.org/). Here, we present two types
of AF networks. For a phylum-level depiction of the network (P-network), we grouped all sequences of
the same phylum as a single entity prior to calculating the distance; each phylum is represented by a
node in the network. The width of the edge between two nodes represents the number of connections
between isolates from these two phyla, and the size of each node is proportional to the number of
isolates in the phylum. For an isolate-level depiction of the network (I-network) we treated each genome
isolate as a single entity (i.e., node). In this network, an edge between two nodes indicates evidence of
shared k-mers. The AF networks include a similarity-score threshold t, for which only edges with S�t are
displayed; changing t therefore can dynamically change the structure of the network (29). The resulting
dynamic networks can be visualized using any web browser. All of the networks are available at
https://doi.org/10.14264/uql.2017.436.

Network density and phylum connectedness. For a network with x nodes, there are e possible

edges (potential connections), where e �
x�x�1�

2
. For a network containing y edges (actual connections),

the density value D was calculated as
y

e
(Fig. 1). For a pair of phyla a and b, their connectedness value

Cab is
g

G
, where g is the number of genome pairs (between phyla a and b) that share one or more k-mers

and G is the number of all possible genome pairs between phyla a and b. In this case, G � Na � Nb, where
Na and Nb represent the number of genomes or isolates in phylum a and phylum b, respectively. For each
network, C values were calculated at the optimal threshold t for which the connectedness signal is
neither too strong nor too weak across all phylum pair comparisons. To avoid potential biases of
incomplete taxon sampling, here we restricted our comparisons to phyla that have �10 genomes.

Core k-mers and COG categories. For a specific group of microbial isolates (representing, e.g., a
genus or a phylum), we extracted the set of the 25-mers that are found in all isolates within the group;
we define this set of 25-mers as the core k-mers for the corresponding group. Using the relational
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database of k-mers (see above), we identified for these core 25-mers their corresponding genome
locations and function based on COG (Clusters of Orthologous Groups) (57) annotations in RefSeq
records. We generated profiles of COG functional categories for each of the 151 genera, for each of the
11 phyla, and for the five proteobacterial classes in which core k-mers were identified using our
approach.
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