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Correlated phenotypes often share common genetic determinants. Thus, a
multi-trait analysis can potentially increase association power and help in
understanding pleiotropic effect. When multiple traits are jointly measured over
time, the correlation information between multivariate longitudinal responses
can help to gain power in association analysis, and the longitudinal traits can
provide insights on the dynamic gene effect over time. In this work, we propose
a multivariate partially linear varying coefficients model to identify genetic vari-
ants with their effects potentially modified by environmental factors. We derive
a testing framework to jointly test the association of genetic factors and illus-
trated with a bivariate phenotypic trait, while taking the time varying genetic
effects into account. We extend the quadratic inference functions to deal with
the longitudinal correlations and used penalized splines for the approximation
of nonparametric coefficient functions. Theoretical results such as consistency
and asymptotic normality of the estimates are established. The performance of
the testing procedure is evaluated through Monte Carlo simulation studies. The
utility of the method is demonstrated with a real data set from the Twin Study
of Hormones and Behavior across the menstrual cycle project, in which sin-
gle nucleotide polymorphisms associated with emotional eating behavior are
identified.
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1 INTRODUCTION

Cross-sectional disease traits have been the primary focus in genetic association studies. Given the improved power to
identify disease genes with phenotypic data measured over time, longitudinal designs are becoming popular in genetic
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association studies.1-4 Most statistical methods developed so far focus on a single outcome of interest. When multiple
outcomes are measured over time, for example, multiple measures of heart function in a longitudinal study of cardiac
function, methods focusing on just a single outcome over time may not provide a complete picture of cardiac function.

In genetics, the phenomenon that a single gene or locus influences more than one trait is known as pleiotropy.5,6

Genetic pleiotropy plays a crucial role in many complex diseases. One of the most well-known examples is the phenylke-
tonuria (PKU) disease.7 The conventional approach to identify genetic pleiotropic effects on multiple traits is to test the
association between a gene and each trait individually and then determine whether the genetic effect is significantly asso-
ciated with more than one trait. The disadvantages of this approach, such as the inflation in the family wise Type I error
and incomplete information in individual tests compared to a combined analysis for multiple traits, have been discussed
in some studies.5 Therefore, a joint genetic association test on multiple traits is more desirable to control the family wise
Type I error and enhance the power of tests.

In real life, timing is a very important factor in the development of a disease. Genetic effects on a disease trait vary
during the life span of an individual. The function of a gene depends largely on when it turns on and off, which could
show a temporal pattern. In order to capture the dynamic effect of a gene on a disease trait over time, it is natural to model
the dynamic effect as a potential (nonlinear) function over time. Considering multiple longitudinal traits, we proposed
the following partially linear varying coefficients model,

yli(tij) = 𝛽0l(tij) + 𝛽1l(tij)Gi + 𝜶T
l Zij + 𝜖li(tij), l = 1, … ,L, i = 1, … ,N, j = 1, … ,ni, (1)

where ylij = yli(tij) is the response variable which measures the lth phenotype on the ith subject at the jth time point; Zij is
a p-dimensional vector of covariates, which can be either time dependent or independent; Gi denotes the time-invariant
genetic variable within subject; 𝛽0l(⋅) and 𝛽1l(⋅) are unknown functions; and the stacked error vector 𝝐i =

(
𝝐

T
1i, … , 𝝐T

Li

)T

with 𝝐li = (𝜖li1, … , 𝜖lini)
T is assumed to have mean zero and covariance 𝚺i. Models for multivariate longitudinal traits are

necessarily complex, because they must consider different types of correlations for each independent subject: correlation
between measurements for the same trait at different time points, correlation between measurements at the same time
point on different traits, and correlation between measurements at different time points and on different traits. With the
stacked error vector 𝝐i, its covariance matrix 𝚺i carries all of these correlations.

If we use a time-varying environmental factor Xij instead of tij in the model, that is,

ylij = 𝛽0l(Xij) + 𝛽1l(Xij)Gi + 𝜶T
l Zij + 𝜖lij,

then the model can be used for jointly modeling nonlinear gene-environment (G×E) interactions for multiple longitudinal
traits. In the model, one can assess the influence of X on G to affect multiple responses Y . Models for nonlinear G×E
interactions have been studied.8,9

Qu and Li applied the method of quadratic inference functions (QIF) to the varying coefficients models for longitudinal
data.10 One important advantage is that the QIF method only requires correct specification of the mean structure and
does not require any likelihood or approximation of the likelihood in hypothesis testing. In addition, when the working
correlation structure is misspecified, QIF is more efficient than the generalized estimation equation (GEE) approach.
Another advantage of the QIF approach is that the inference function has an asymptotic form, which provides a model
selection criteria similar to AIC and BIC. It also allows us to test whether coefficients are significantly time-varying based
on the asymptotic results.

Rochon analyzed bivariate longitudinal data for discrete and continuous outcomes by using generalized estimating
equations, which did not utilize the nice property of the QIF.11 Cho applied QIF for multivariate longitudinal data with
generalized linear models, which is not adequate to consider nonlinear effects as in varying coefficient models.12 Using
random effects for modeling longitudinal data is another very popular and common way.13 Proudfoot and his coauthors
modeled the longitudinal data using random effects then combines multiple outcomes together again similar to the gen-
eralized estimating equations.14 Recently, Zhao and his coauthors proposed a joint penalized quasi-likelihood modeling
based on splines for multivariate longitudinal data using random effects with applications to HIV-1 RNA load levels and
CD4 cell counts.15 Hector and Song investigated a distributed quadratic inference function framework to jointly estimate
regression parameters from multiple heterogeneous data sets with correlated responses.16

With the nice property of QIF to deal with complicated correlated data focusing on a univariate longitudinal
response,10 in this article, we consider to generalize it to partial linear varying coefficient models with multivariate lon-
gitudinal responses.17,18 The purpose of this article is to develop a powerful joint testing procedure using QIF for model
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(1). If the correlation between the longitudinal outcomes is reasonably high, we aim to show that the joint test has
higher power than the marginal tests to detect the signal like the genetic effect in model (1). We first use splines to
approximate the nonparametric functions in the model,19 followed by penalized estimation to avoid over fitting. Then we
develop a 2-step testing procedure to have a joint test for the interaction effect on multiple outcomes based on the QIF
approach, followed by separate test of marginal effect on each outcome if the overall null is rejected. In cross-sectional
studies, Wu et al.20 developed a multivariate partially linear varying coefficient model to detect G×E interactions with
multiple traits. Their method can select genetic variants with pleiotropic effects incorporating either the homogeneity
(ie, pleiotropy) or heterogeneity (ie, no pleiotropy) assumptions. However, their approach cannot provide uncertainty
quantification for the selected variables. Generalizing their method to multivariate longitudinal data is worth further
studying.

This article is organized as follows. We state our proposed model in Section 2.1, and generalize the QIF method to the
multivariate longitudinal responses in Section 2.2. Estimation procedure and asymptotical properties of estimators are
provided in Section 2.3. A theorem for the general goodness-of-fit test via QIF is established in Section 2.4, based on which
we propose a 2-step testing procedure. We assess the finite sample performance of the proposed procedure with Monte
Carlo simulation in Section 3 and illustrate the proposed methodology by the analysis of an emotional eating behavior
study in Section 4. Conclusions and discussion are made in Section 5. Proofs are rendered to Appendix.

2 STATISTICAL METHODS

2.1 A joint multivariate partial linear model

In multivariate longitudinal studies, suppose ylij is the lth continuous outcome collected on the ith observation at time
point tij, where l = 1, … , L, i = 1, … , N, j = 1, … , ni. The joint partially linear varying coefficient models are defined as

ylij = yli(tij) = 𝛽0l(tij) + 𝛽1l(tij)Gi + 𝜶T
l Zij + 𝜖lij,

where Gi is the single nucleotide polymorphism (SNP) variable which does not depend on time and other types of
measurement; Zij is a p-dimensional covariate vector, which can be either time-dependent or time-independent; to
accommodate the correlation between multiple responses, we stack the error terms 𝜖lij together into a long vector

𝝐i =
⎛
⎜
⎜
⎜
⎝

𝝐1i

⋮

𝝐Li

⎞
⎟
⎟
⎟
⎠

where 𝝐li =
⎛
⎜
⎜
⎜
⎝

𝜖li1

⋮

𝜖lini

⎞
⎟
⎟
⎟
⎠

.

We assume 𝝐i mean 0 with covariance 𝚺, which carries three different association information: the within-subject cor-
relation across different time points, the between-subject correlation at the same time point and the between-subject
correlation across different time points; 𝛽0l(⋅) and 𝛽1l(⋅) are unknown nonparametric smooth functions, representing the
main time effect and time dependent genetic effect respectively. To illustrate the idea, in the following we demonstrate
the methods assuming L=2. For the situation where there are more than two traits (L > 2), the technique can be easily
extended.

2.2 Quadratic inference function

To construct the objective function using the QIF approach, we first approximate the unknown functions 𝛽01, 𝛽11, 𝛽02, and
𝛽12 by a q-degree truncated power spline basis, that is,

𝛽sl(t) ≈ Bsl(t)T𝜸sl, for s = 0, 1 and l = 1, 2, (2)

where Bsl(t) = (1, t, t2, … , tqsl , (t − 𝜅sl,1)
qsl
+ , … , (t − 𝜅sl,Ksl )

qsl
+ )T is a truncated power spline basis with degree qsl and Ksl

knots 𝜅sl,1, … , 𝜅sl,Ksl . 𝜸sl is a (qsl + Ksl + 1)-dimensional vector of spline coefficients.
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Under the GEE framework, we solve

N∑

i=1
�̇�

T
i V−1

i (yi − 𝝁i) = 0, (3)

where yi =
(
yT

1i, y
T
2i

)T , yli = (yli1, … , ylini)
T ; 𝝁i = E(yi) is the mean function and �̇�i is the first derivative of 𝝁i with respect

to the parameters; Vi is the covariance matrix of yi and can be decomposed as Vi = A1∕2
i R(𝝆)A1∕2

i with Ai being a diagonal
matrix of marginal variances and R(𝝆) being a working correlation matrix with nuisance parameters 𝝆. To avoid the
estimation of 𝝆, QIF approach considers the inverse of the correlation matrix R as a linear combination of several known
basis matrices in a form

R−1 ≈ a1M1 + a2M2 + · · · + ahMh, (4)

where M1 is the identity matrix and M2, … ,Mh are symmetric basis matrices. As discussed in the existing literature,10,12

the choice of the basis for the inverse of the correlation matrix plays an important role. Suppose 𝚪 as the within-subject
correlation structure and 𝜔 as between-subject correlation coefficient, that is, the working correlation structure can be
expressed as the Kronecker product (tensor product) R = 𝛀⊗ 𝚪 with 𝛀 as the 2 × 2 symmetric matrix with 1 on the
diagonal and 𝜔 elsewhere. The inverse of the Kronecker product is R−1 = 𝛀−1

⊗ 𝚪−1 = (𝛾0I + 𝛾1W)⊗ 𝚪−1 with W as a
2 × 2 symmetric matrix with 0 on the diagonal and 1 elsewhere, and I as the identity matrix with compatible dimension.
So if the basis matrix for the inverse of the within-subject correlation𝚪−1 is given by U1(= I),U2, … ,Uk, then we have the
bases M’s as {I ⊗ Uj,W ⊗ Uj ∶ 1 ≤ j ≤ k}. For exchangeable working correlation, we can set k = 2 and U2 has 0 on the
diagonal and 1 elsewhere. If the working correlation is AR(1), we can set k = 2 and U2 to have 1 on its two subdiagonals
and 0 elsewhere. Following QIF approach, we define the estimation function as

gN(𝜽) =
1
N

N∑

i=1
gi(𝜽) =

1
N

⎡
⎢
⎢
⎢
⎣

∑N
i=1�̇�

T
i A−1∕2

i M1A−1∕2
i (yi − 𝝁i)

⋮
∑N

i=1�̇�
T
i A−1∕2

i MhA−1∕2
i (yi − 𝝁i)

⎤
⎥
⎥
⎥
⎦

. (5)

Using the spline approximation, the mean function 𝝁i can be written as

𝝁i(𝜽) =

[
𝝁1i(𝜽)
𝝁2i(𝜽)

]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇1i1(𝜽)
⋮

𝜇1ini(𝜽)
𝜇2i1(𝜽)
⋮

𝜇2ini(𝜽)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

BT
01(ti1)𝜸01 + BT

11(ti1)𝜸11Gi + 𝜶T
1 Zi1

⋮

BT
01(tini)𝜸01 + BT

11(tini)𝜸11Gi + 𝜶T
1 Zini

BT
02(ti1)𝜸02 + BT

12(ti1)𝜸12Gi + 𝜶T
2 Zi1

⋮

BT
02(tini)𝜸02 + BT

12(tini)𝜸12Gi + 𝜶T
2 Zini

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the first derivative of 𝝁i is given as,

�̇�i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

BT
01(ti1) BT

11(ti1)Gi Zi1 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

BT
01(tini) BT

11(tini)Gi Zini 0 0 0
0 0 0 BT

02(ti1) BT
12(ti1)Gi Zi1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 BT
02(tini) BT

12(tini)Gi Zini

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝜽 =
(
𝜸

T
01, 𝜸

T
11,𝜶

T
1 , 𝜸

T
02, 𝜸

T
12,𝜶

T
2
)T .
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Setting each component in (5) to be zero will result in more equations than unknown parameters. Following the idea
of generalized method of moments,21 the QIF method is defined as

QN(𝜽) = NgT
N C

−1
N gN , (6)

where CN = 1
N

∑N
i=1gigT

i is a consistent estimator for var(gi). Minimizing the objective function (6) provides the estimation
of the parameters.

2.3 Estimation procedure via penalized QIF

The estimation of the parameters can be obtained through minimizing the objective function, that is,

�̂� = arg min
𝜽

QN(𝜽).

To avoid over-fitting, we can define a penalized QIF in a form

N−1QN(𝜽) + 𝜆𝜽TD𝜽, (7)

where D is a diagonal matrix with 1 if the corresponding parameter is the spline coefficient associated with knots, and 0
otherwise. Minimizing the penalized QIF provides

�̂� = arg min
𝜽

(N−1QN(𝜽) + 𝜆𝜽TD𝜽). (8)

To estimate the tuning parameter 𝜆, we can extend the generalized cross-validation10,22,23 to the penalized QIF and define
the generalized cross-validation statistic as

GCV(𝜆) = N−1QN

(1 − N−1df )2

with the effective degree of freedom

df = tr
[
(Q̈N + 2N𝜆D)−1Q̈N

]
,

where Q̈N is the second derivative of QN . The optimized tuning parameter 𝜆 is given as

𝜆 = arg min
𝜆

GCV(𝜆).

To establish the asymptotic properties for the penalized quadratic inference function estimators with fixed knots, we
assume 𝜽0 to be the parameter satisfying E𝜽0(gi) = 0. Similar theoretical results are provided in Qu and Li.10 Following
their idea and extend those results to the estimators in our model, we get the strong consistency of the resulting estimators
in Theorem 1. The

√
N-consistency and asymptotic normality of the estimators are given in Theorem 2 .

Theorem 1. Suppose conditions (A1)-(A6) in the Appendix hold and the smoothing parameter 𝜆N = o(1), then the estimator
�̂�, which is obtained by minimizing the penalized quadratic function in (7), exists and converges to 𝜽0 almost surely.

Theorem 2. Suppose conditions (A1)-(A6) in the Appendix hold and the smoothing parameter 𝜆N = o(N−1∕2), then the
estimator �̂� obtained by minimizing the penalized quadratic function in (7) is asymptotically normally distributed with the
limiting distribution,

√
N(�̂� − 𝜽0)

d
−→ N(0, (GT

0 C−1
0 G0)−1),

where the calculation of G0 defined in (A6) and C0 defined in (A5) can be found in the Appendix.
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2.4 A two-step hypothesis testing procedure

Compared to GEE, an advantage of the QIF approach is that QIF provides a goodness-of-fit test without estimating the
second moment parameters. Suppose that the d-dimensional parameter vector 𝜸 is partitioned into (𝝍 , 𝜻), where𝝍 is the
parameter of interest with dimension d1, and 𝜻 is a nuisance parameter with dimension d2 = d − d1. If we are interested
in testing

H0 ∶ 𝝍 = 𝝍0,

then the test statistic

QN(𝝍0, 𝜻) − QN(�̂� , 𝜻),

follows an asymptotically chi-square distribution with d1 degrees of freedom as from Qu and her coauthors work cited
below.24

Theorem 3. Suppose that all required regularity conditions are satisfied and𝝍 has dimension d1. Under the null hypothesis,
QN(𝝍0, 𝜻) − QN(�̂� , 𝜻) is asymptotically chi-square distributed with d1 degrees of freedom, where

𝜻 = arg min QN(𝝍0, 𝜻), (�̂� , 𝜻) = arg min QN(𝝍 , 𝜻). (9)

In Model (1), it is of interest to test whether the genetic effects on multiple traits are significant or not. Based on
Theorem 3, we develop a 2-step testing procedure for testing the significance of the varying coefficient functions. In the
first step, the joint test is performed to see whether a genetic factor has a significant effect on at least one longitudinal
trait. If the testing result in the first step is significant, we then further conduct the marginal test in the second step to
assess if the genetic effect is significant on both traits or just one trait. The first step is a joint test of significance followed
by a marginal test to assess individual significance. For associated multiple traits with reasonably strong correlation, the
joint test is more powerful than the marginal tests, which is empirically verified in our simulation studies.

2.4.1 Step 1: Joint test

First, we are interested in testing whether the genetic factor G has an effect on at least one longitudinal trait. The
hypothesis is stated as

H0 ∶ 𝛽11(⋅) = 𝛽12(⋅) = 0 v.s. H1 ∶ 𝛽11(⋅) ≠ 0 or 𝛽12(⋅) ≠ 0.

This can be handled through the truncated power spline approximation of the nonparametric functions stated in (2). In
particular, testing this hypothesis is equivalent to test the following null hypothesis

H0 ∶ 𝜸11 = 𝜸12 = 0.

According to Theorem 3, we can construct a test statistic

TN = QN(�̃�) − QN(�̂�),

where

�̃� = arg min
𝜸11=𝜸12=0QN

{
𝜸01, 𝜸11,𝜶1, 𝜸02, 𝜸12,𝜶2|y1, y2,G,Z

}
,

and

�̂� = arg min QN
{
𝜸01, 𝜸11,𝜶1, 𝜸02, 𝜸12,𝜶2|y1, y2,G,Z

}
.
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The test statistic TN has an asymptotic 𝜒2 distribution with the degrees of freedom equal the number of constraints under
H0, according to Theorem 3.

2.4.2 Step 2: Marginal tests

From the joint test, if there exists a significant genetic effect on at least one longitudinal trait, then we can further test the
marginal effects, that is,

H0l ∶ 𝛽1l(⋅) = 0 v.s. H1 ∶ 𝛽1l(⋅) ≠ 0, l = 1, 2.

Based on (2), this is equivalent to test H01 ∶ 𝜸11 = 0 and H02 ∶ 𝜸12 = 0, separately.
For testing H01 ∶ 𝜸11 = 0, we use test statistic TN1 = QN(�̃�01, 0, �̃�1) − QN(�̂�01, �̂�11, �̂�1), where

(�̃�01, 0, �̃�1) = arg min
𝜸11=0QN

{
𝜸01, 𝜸11,𝜶1|y1,G,Z

}
,

and

(�̂�01, �̂�11, �̂�1) = arg min QN
{
𝜸01, 𝜸11,𝜶1|y1,G,Z

}
.

Similarly, we can construct a test statistic TN2 = QN(�̃�02, 0, �̃�2) − QN(�̂�02, �̂�12, �̂�2) for testing H02 ∶ 𝜸12 = 0, where

(�̃�02, 0, �̃�2) = arg min
𝜸12=0QN

{
𝜸02, 𝜸12,𝜶2|y2,G,Z

}
,

and

(�̂�02, �̂�12, �̂�2) = arg min QN
{
𝜸01, 𝜸12,𝜶2|y2,G,Z

}
.

The asymptotic distribution of the test statistics TN1 and TN2 can be obtained from Theorem 3.

3 SIMULATION STUDIES

3.1 Simulation setup

In this section, the finite sample performance of the proposed method is evaluated through Monte Carlo simulation
studies. Two continuous longitudinal responses are generated from the models

{
y1ij = y1i(tij) = 𝛽01(tij) + 𝛽11(tij)Gi + 𝛼1Zi + 𝜖1ij,

y2ij = y2i(tij) = 𝛽02(tij) + 𝛽12(tij)Gi + 𝛼2Zi + 𝜖2ij,

where 𝛽01(tij) = 0.5 cos(2𝜋tij), 𝛽11 = sin(𝜋(tij − 0.2)), 𝛽02(tij) = sin(𝜋tij) − 0.5, 𝛽12(tij) = cos(𝜋tij − 0.8), 𝛼1 = 0.2 and 𝛼2 =
0.3. We generate the same number of time points n for each individual ti = (ti1, … , tin) from a uniform distribution
U(0, 1). The time independent predictor variable Zi is also generated from U(0, 1). We set the minor allele frequency
(MAF) for Gi as pA and assume Hardy-Weinberg equilibrium. Three different SNP genotypes AA, Aa, and aa are sim-
ulated from a multinomial distribution with frequencies p2

A, 2pA(1 − pA) and (1 − pA)2, respectively. In this simulation
study, we vary pA ∈ {0.1, 0.3, 0.5} to investigate the effect of minor allele frequency. Variable G takes value {0,1,2}
corresponding to genotypes {aa,Aa,AA}, following an additive model. We assume 𝜖1ij and 𝜖2ij are jointly normally
distributed as

(
𝝐1i

𝝐2i

)

∽N

[(
0
0

)

,

(
𝜎2

1Σ11 𝜎1𝜎2Σ12

𝜎1𝜎2Σ12 𝜎2
2Σ22

)]

.
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We set the marginal variances 𝜎2
1 = 𝜎

2
2 = 0.1. The true correlation structure of Σ11 and Σ22 are both exchangeable with the

structure

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 𝜌 𝜌 · · · 𝜌

𝜌 1 𝜌 · · · 𝜌

⋮ ⋮ ⋮ ⋮ ⋮

𝜌 𝜌 𝜌 · · · 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with 𝜌1 = 𝜌2 = 0.5. And for Σ12 we choose

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜏 𝜌12 𝜌12 · · · 𝜌12

𝜌12 𝜏 𝜌12 · · · 𝜌12

⋮ ⋮ ⋮ ⋮ ⋮

𝜌12 𝜌12 𝜌12 · · · 𝜏

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with 𝜌12 = 0.2 as the between-subject correlation across different time points. We vary the between-subject correlation at
the same time point 𝜏 = corr(𝜖1ij, 𝜖2ij) to investigate the power gain for the joint test.

We draw 1000 data sets with sample size N = 200,500 and time points ni = n = 10, in order to compare the perfor-
mances of our proposed method under different sample sizes. We set M1 to be the identity matrix and M2 to be 1 on
subdiagonals and 0 elsewhere, that is, AR(1) working correlation. An important issue for the model selection is to decide
whether the spline model (2) is adequate for further penalization by (8). In the following simulations, we use quartic
splines with the number of knots taken to be the largest integer not greater than 0.6 ×N1∕5 as suggested in Tian and his
colleagues work.25

3.2 Estimation performance

We use the asymptotic normality in Theorem 2 to construct the Wald type confidence interval for parameters 𝛼1 and
𝛼2. Table 1 summarizes the empirical coverage probability (CP) in percentage and the average length (AL) of the con-
fidence intervals at 95% confidence level based on 1000 simulation replicates. As we can see from the table, the CPs
are close to the nominal level 95%. When the sample size gets larger, the ALs are shorter and the CPs are closer
to 95%.

Next, we consider the estimation performance of the nonparametric functions 𝛽sl(t) for s = 0, 1, l = 1, 2. In Figure 1,
the plots are from the case with sample size N = 200 and pA = 0.1 (for other situations, please refer to the Appendix).
For each function, the red solid line is the true function, and the three blue dashed lines correspond to the average of
the estimated functions from 1000 simulation replicates in the middle and the 95% pointwise confidence bands with the
standard error calculated from the standard deviation of 1000 replicates. The estimation is quite accurate with low sample
size and MAF. As the MAF or sample increases, the estimation performance improves (see Appendix). We also use the
asymptotic normality in Theorem 2 to construct the pointwise confidence intervals. Table 2 summarized the empirical
coverage probability (CP) in percentage and the average length (AL) (in parentheses) of the CIs for 𝛽sl(t) at t = 0.2, 0.4, 0.6,
and 0.8 for sample size N = 500 and N = 1000. The CPs are all close to the nominal level 95% and the ALs are shorter
under a larger sample size.

T A B L E 1 Empirical coverage probability (%) and average length of confidence intervals for 𝛼l, l = 1, 2

N = 200 N = 500

CP AL CP AL

𝛼1 93.2 0.078 94.8 0.050

𝛼2 93.7 0.078 95.6 0.050
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F I G U R E 1 The estimation of nonparametric functions 𝛽sl(⋅) for s = 0, 1, l = 1, 2 with N = 200 and pA = 0.1. In each panel, the red solid
line is the true function, and the three blue dashed lines correspond to the estimated function in the middle and the 95% pointwise
confidence bands

T A B L E 2 Empirical coverage probability (%) and average length of pointwise confidence intervals (in parentheses) for 𝛽sl(t) at
t = 0.2, 0.4, 0.6, and 0.8

t N Intercept 𝜷01(t) Slope 𝜷11(t) Intercept 𝜷02(t) Slope 𝜷12(t)

0.2 500 92.2 (0.115) 92.6 (0.073) 92.9 (0.115) 92.7 (0.073)

1000 91.7 (0.082) 93.3 (0.052) 92.9 (0.082) 92.9 (0.052)

0.4 500 90.5 (0.109) 91.9 (0.069) 92.4 (0.108) 92.8 (0.068)

1000 92.3 (0.077) 93.7 (0.049) 94.4 (0.077) 93.1 (0.049)

0.6 500 91.0 (0.111) 91.0 (0.070) 92.3 (0.110) 93.1 (0.070)

1000 94.0 (0.079) 93.8 (0.050) 95.1 (0.079) 94.4 (0.050)

0.8 500 91.5 (0.113) 93.1 (0.072) 92.9 (0.113) 94.1 (0.071)

1000 91.5 (0.081) 94.2 (0.051) 94.8 (0.080) 94.6 (0.051)

3.3 Testing performance

We propose a two-step hypothesis testing procedure to detect the genetic effects on multiple traits. With the joint test,
higher power is expected with correlated traits than the marginal tests. We would like to evaluate how much we can gain
in power when the correlation between multiple traits increases. This is done by varying the correlation coefficient 𝜏 at
the same time point for the two simulated traits.

We evaluate the performance of the joint test under the null hypothesis H0 ∶ 𝛽11(⋅) = 𝛽12(⋅) = 0. Power is evaluated
under a sequence of alternative models with different values of 𝛿, which is denoted by H1 ∶ 𝛽11(⋅) = 𝛿𝛽11(⋅) and 𝛽12(⋅) =
𝛿𝛽12(⋅). The performance of the marginal tests for the nonparametric functions corresponding to different traits is eval-
uated under the two null hypotheses H01 ∶ 𝛽11(⋅) = 0 and H02 ∶ 𝛽12(⋅) = 0 respectively. For each test, power is evaluated
under a sequence of alternative models, denoted by Hal ∶ 𝛽1l(⋅) = 𝛿𝛽1l(⋅), l = 1, 2, correspondingly.

Figure 2 shows the power comparison between joint test and marginal tests under different correlation coefficient
𝜏 varying from 0.1 through 0.6. Each panel corresponds to the results with one 𝜏 value and displays the comparison of
the three power curves, with the empirical size (when 𝛿 = 0) and power at different 𝛿(> 0) at the significance level 0.05
and sample size N = 200. Similar pattern can be observed for larger sample size N = 500. As expected, the Type I error is
closer to 0.05 and the power increase as the signal 𝛿 increases for every power curve. When 𝜏 is small (low correlation),
we do not see much power gain of the joint test compared to the marginal tests. As 𝜏 increases (correlation between
the two traits increases), we observe higher power of the joint test (starting at 𝜏 = 0.4). This shows that the joint test is
more powerful than the marginal tests for moderate or high correlation between traits. We also conducted simulations to
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F I G U R E 2 The power comparison between the joint test and marginal tests under different correlation coefficient 𝜏 from 0.1 to 0.6
with sample size N = 200. The exact empirical sizes are given in Table 3

T A B L E 3 Empirical size for the joint and marginal tests under different correlation coefficient 𝜏 from 0.1 to 0.6 with sample size N = 200

𝝉 = 0.1 𝝉 = 0.2 𝝉 = 0.3 𝝉 = 0.4 𝝉 = 0.5 𝝉 = 0.6

Joint 0.040 0.040 0.037 0.036 0.034 0.026

Marginal 1 0.038 0.036 0.038 0.039 0.039 0.038

Marginal 2 0.034 0.036 0.039 0.037 0.038 0.037

evaluate the impact of between-subject correlation across different time points on the testing power. We observed similar
results as the one by varying the between-subject correlation at the same time point. Due to space limit, the results were
rendered in the supplemental file.

MAF also plays a major role for the inference performance of an association test in general. For the proposed method,
the power increases as the MAF pA increases from 0.1 to 0.5. This is in align with the general conception. In particular,
there is a big power improvement as pA increases from 0.1 to 0.3 as shown in Figure 3.

4 REAL DATA APPLICATION

We applied the proposed multivariate partially linear varying coefficients model and the two-step hypothesis testing
procedure to the Twin Study of Hormones and Behavior across the Menstrual Cycle project26 from the Michigan State
University Twin Registry (MSUTR).27-29 The goal of the study was to examine associations between changes in estradiol
and progesterone levels and emotional eating across the menstrual cycle. Emotional eating was measured with the Dutch
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F I G U R E 3 The power comparison of the joint test under different minor allele frequencies (PA = 0.1, 0.3, 0.5) and different sample
sizes (N = 200,500)

Eating Behavior Questionnaire (DEBQ) and negative affect was measured with the Negative Affect scale from the Positive
and Negative Affect Schedule (PANAS). The DEBQ assesses the tendency to eat in response to negative emotions while
PANAS is used to measure negative emotional states like sadness and anxiety.

In this study, we wanted to examine how genes respond to the hormone change (eg, estrogen) to affect emotional
eating measured by DEBQ and PANAS. Since body mass index (BMI) is an important covariate for the study, we included
it in the linear component of the model. Although the original study contains twins data, we only included one of the
twins in each family in the analysis to make the samples independent. Measurements for each participant were collected
for 45 consecutive days, which then were grouped into eight menstrual cycle phases, that is, ovulatory phase (1), transition
ovulatory to midluteal (2), midluteal phase (3), transition midluteal to premenstrual (4), premenstrual phase including
the first day of menstrual cycle (5), remaining days of menstrual cycle, part of follicular phase (6), follicular phase (7) and
transition follicular to ovulatory phase (8). They were grouped into these phases based on profiles of changes in estrogen
and progesterone across the cycle.30 Data that belong to the same phase were averaged to get a phase-level measure. All
individuals were aligned according to the 8 phases for further analysis.

To demonstrate the utility of the method, here we focused on a candidate gene, nuclear receptor coactivator 7
(NCoA7). This gene codes for an estrogen receptor-associated protein which plays an important role in the cellular
response to estrogen. After removing SNPs with MAF < 0.05, we had 12 SNPs measured on 327 participants for further
analysis.

We consider the partially linear varying coefficient model with the two longitudinal traits, namely DEBQ and PANAS,
with the form

yD
ij = 𝛽

D
0 (Xij) + 𝛽D

1 (Xij)Gi + 𝛼DZij + 𝜖D
ij ,

yP
ij = 𝛽

P
0 (Xij) + 𝛽P

1 (Xij)Gi + 𝛼PZij + 𝜖P
ij .

For the ith individual measured at menstrual cycle phase j, the two longitudinal traits are denoted as yD
ij and yP

ij for DEBQ
and PANAS, respectively. One phase dependent covariate BMI is denoted as Zij. Xij refers to the hormone estradiol level,
which is standardized to range between 0 and 1 by Φ((E − XE)∕SE) where E is the original estrogen level, XE and SE are
the sample mean and standard deviation of E, and Φ is the cumulative distribution function of a standard normal. Gi
represents the SNP variable and the 12 SNPs were analyzed separately.
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We aimed to test if an SNP is associated with the two traits with its effect modified by the estrogen hormone level, that
is,

H0 ∶ 𝛽D
1 (⋅) = 𝛽

P
1 (⋅) = 0 v.s. H1 ∶ 𝛽D

1 (⋅) ≠ 0 or 𝛽P
1 (⋅) ≠ 0.

We applied the quadratic splines and the exchangeable working correlation structure for this real data analysis. After the
Bonferroni correction for the 12 SNPs, we found three SNPs, rs584032, rs6911452, and rs9401855, are significant
with the joint test. Table 4 lists the results. The joint test results are all more significant than the marginal tests. The
between-trait correlations between DEBQ and PANAS at the same cycle phase are shown in Figure 4, which shows a
quite strong correlation at different phases ranging from 0.36 to 0.61. This explains why the joint test shows stronger
significance than the marginal tests. Figure 4 shows the detailed correlation information about the three components:
within-trait correlation, between-trait correlation at the same time points and across different time points.

Figure 5 shows the estimated nonparametric coefficient functions for both responses DEBQ and PANAS, with SNP
rs9401855 as an example. The point-wise 95% confidence bands cover a large part of the zero line for the DEBQ, which
is consistent with its P-value .0545 from the marginal test. And for PANAS, in the central region, the zero line is outside
of the 95% point-wise confidence bands, which is also consistent with the marginal P-value .0011. The result shows that
this SNP interacts with estrogen hormone and only affects PANAS, but not DEBQ. The negative coefficients show that

T A B L E 4 The test results of the 3 significant SNPs with their rs numbers, the alleles (minor allele shows with bold font), the MAF, and
the P-values for the joint test (denoted as Pjoint) and the two marginal tests (denoted as PDEBQ and PPANAS)

SNP Alleles MAF Pjoint PDEBQ PPANAS

rs584032 T/A 0.176 2.390e-4 3.472e-2 1.937e-3

rs6911452 A/G 0.089 8.225e-4 3.491e-3 4.627e-3

rs9401855 A/G 0.129 3.758e-4 5.449e-2 1.108e-3
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F I G U R E 4 The correlation information including within-trait correlation, between-trait correlation at the same and across different
cycle phases. The x-axis and y-axis represent the 8 cycle phases for the two variables DEBQ and PANAS, respectively
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F I G U R E 5 The estimated intercept and slope functions for DEBQ and PANAS from the joint model (red solid curve) and their
point-wise 95% confidence bands (dashed curve)

estrogen hormone negatively impacts PANAS. Individuals carrying theGG genotype are more likely to experience negative
affective states such as sadness and anxiety, compared to those carrying one or no G allele. From the slightly quadratic
effect curve, it can be seen that the negative impact peaks around phase 5-6, that is, the Premenstrual phase including
the first day of menstrual cycle (5) to Remaining days of menstrual cycle, part of follicular phase (6), while less negative
impact is observed at the beginning and the end of the eight phased cycle (ie, during the ovulatory phase).

5 DISCUSSION

Joint analysis of multiple correlated traits can potentially improve the power to identify genetic variants associated with
complex traits. However, association analysis focusing on multiple longitudinal traits has not be well studied. Method on
G×E interaction with multiple traits under a longitudinal design is even rare. In this article, we proposed a joint multivari-
ate varying coefficient modeling approach to accommodate correlated longitudinal traits and proposed a testing procedure
to identify genetic variants associated with multiple longitudinal traits with their effects modified by some environmen-
tal factors. By modeling the environmental effect with a nonparametric function, one can estimate the dynamic changing
effect of G on Y over the changing values of X . The nonparametric function is flexible in the sense that the function is
determined by the data without assuming a parametric structure. Both simulation and real data analysis demonstrate the
utility of the proposed method.

One difficulty in jointly modeling multiple longitudinal traits is to model the complex correlation structure. For each
subject, we should consider correlation between measurements for the same trait at different time points, correlation
between measurements at the same time point on different traits, and correlation between measurements at different
time points and on different traits. We applied the QIF approach in estimation and testing procedures. There are several
advantages for QIF approach. First, the QIF approach only requires correct specification of the mean structure and does
not require any joint likelihood in hypothesis testing. Second, it avoids estimating the nuisance correlation structure
parameters by assuming that the inverse of working correlation matrix can be approximated by a linear combination of
several known basis matrices. Third, when the working correlation structure is misspecified, the QIF is more efficient than
the GEE approach. Fourth, the inference function of the QIF approach has an explicit asymptotic form, which provides a
model selection criteria and allows us to test whether coefficients are significant or time varying based on the asymptotic
results. It is worth mentioning that missing completely at random (MCAR) is assumed in this work, which is a common
assumption under the QIF framework when dealing with missing data.31

In the real application, we investigated association of SNPs in a candidate gene with two longitudinal traits DBEQ
and PANAS. Although the data were regrouped into eight phases, they still carry the temporal information and can be
treated like longitudinal data. The results show that three SNPs passed the Bonferroni threshold with the joint test and
the P-values of the joint test are smaller than the individual marginal test. This shows the relative advantage of the joint
test. As shown in the simulation study, the joint test can achieve power gain when the traits are correlated. Therefore, it
is essential to assess the correlations between traits when fitting multiple traits jointly and conducting joint testing.
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Our method was demonstrated with two traits. The method can be extended to multiple longitudinal traits with L > 2,
although the computational cost might increase. In addition, our method is not restricted to a longitudinal study. It also
applies to other studies where multiple traits can be measured over a linear scale. For example, in a pharmacogenetic
study, multiple drug responses (eg, blood pressure and heart rate) can be measured over different dosage of a drug treat-
ment. The proposed model can be fitted to assess how genes respond to the increasing dosage levels to affect the drug
responses. For another example, in a brain imaging genetic study, brain activities in different brain regions can be mea-
sured over a spatial scale and can be treated as multiple traits. One can fit the proposed model to understand how genes
affect brain activities over a spatial scale.
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APPENDIX. PROOFS OF THEOREMS

To establish the asymptotic properties for the estimator of 𝜽, we need the following regularity conditions.

(A1) {ni} is a bounded sequence of integers.
(A2) The parameter space Ω𝜽 is compact and 𝜽0 is an interior point of Ω𝜽.
(A3) The parameter 𝜽 is identified, that is, there is a unique 𝜽0 ∈ Ω𝜽 such that the first moment assumption E[gi(𝜽0)] = 0

holds for i = 1, … ,N, and E[gi(𝜽)] is continuous.
(A4) E[g(𝜽)] is continuous in 𝜽.
(A5) CN(�̂�) = 1

N

∑N
i=1gi(�̂�)gi(�̂�)T converges almost surely to C0, which is a constant and invertible matrix.

(A6) The first derivative of gN exists and is continuous. 𝜕gN
𝜕𝜽
(�̂�) converges in probability to G0 if �̂� converges in probability

to 𝜽0.

Proof of Theorem 1. �̂� exists because (7) has zero as a lower bound and the global minimum exists. To prove the
consistency, first, the estimator �̂� is obtained by minimizing (7), then we have

1
N

QN(�̂�) + 𝜆N �̂�
T

D�̂� ≤ 1
N

QN(𝜽0) + 𝜆N𝜽
T
0 D𝜽0. (A1)

Since

1
N

QN(𝜽0) = gT
N(𝜽0)C

−1
N (𝜽0)gN(𝜽0) = o(1),

by the strong law of large number and (A5), and 𝜆N = o(1),

1
N

QN(𝜽0) + 𝜆N𝜽
T
0 D𝜽0

a.s.
−−→ 0.
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Thus, we can obtain from (A1) that

1
N

QN(�̂�) = gT
N(�̂�)C

−1
N (�̂�)gN(�̂�)

a.s.
−−→ 0. (A2)

Since the parameter space Ω𝜽 is compact, by Glivenko-Cantelli theorem,

sup
𝜃∈Ω

𝜽

||gN(𝜽) − E[g(𝜽)]||
a.s.
−−→ 0.

Hence, by (A5) and the continuity mapping theorem,

||||
gT

N(�̂�)C
−1
N (�̂�)gN(�̂�) − E[g(�̂�)]TC−1

0 E[g(�̂�)]
||||

a.s.
−−→ 0.

Combined with (A2), we get

E[g(�̂�)]TC−1
0 E[g(�̂�)]

a.s.
−−→ 0. (A3)

Suppose �̂� is not a strong consistent estimator of 𝜽, then there exists a neighborhood of the true parameter 𝜽0, say U,
such that �̂� ∈ Uc. Since E[g(𝜽)]TC−1

0 E[g(𝜽)] is a continuous function and Uc is compact, there exists a point 𝜽∗ ∈ Uc such
that

E[g(𝜽∗)]TC−1
0 E[g(𝜽∗)],

achieve its minimum in Uc. By the identification of 𝜽 in (A3), there is a unique 𝜽0 ∈ Ω𝜃 satisfying E[g(𝜽0)] = 0, and we
have

E[g(𝜽∗)]TC−1
0 E[g(𝜽∗)] > 0,

which contradicts (A3). Hence, �̂� is a consistent estimator of 𝜽. ▪

Proof of Theorem 2. The estimate of 𝜽 satisfies

1
N
𝜕QN

𝜕𝜽
(�̂�) + 2𝜆N D�̂� = 0.

By Taylor’s expansion, we obtain

1
N
𝜕QN

𝜕𝜽
(𝜽0) + 2𝜆N D𝜽0 +

(
1
N
𝜕2QN

𝜕𝜽2 (�̃�) + 2𝜆N D
)
(�̂� − 𝜽0) = 0,

where �̃� is some value between �̂� and 𝜽0. Thus, we can have

�̂� − 𝜽0 = −
(

1
N
𝜕2QN

𝜕𝜽2 (�̃�) + 2𝜆N D
)−1 ( 1

N
𝜕QN

𝜕𝜽
(𝜽0) + 2𝜆N D𝜽0

)
. (A4)

Since �̂� converges to 𝜽0 in probability and �̃� is between �̂� and 𝜽0, by (A5) and (A6) we can get

1
N
𝜕2QN

𝜕𝜽2 (�̃�) = 2
𝜕gN

𝜕𝜽

T

(�̃�)C
−1
N (�̃�)

𝜕gN

𝜕𝜽
(�̃�) + op(1)

p
−→ 2GT

0 C−1
0 G0.
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When 𝜆N = o(N−1∕2),

(
1
N
𝜕2QN

𝜕𝜽2 (�̃�) + 2𝜆N D
)−1

= 1
2
(GT

0 C−1
0 G0)−1 + op(N−1∕2).

Similarly, since

1
N
𝜕QN

𝜕𝜽
(𝜽0) =

𝜕gN

𝜕𝜽

T

(𝜽0)C
−1
N (𝜽0)gN(𝜽0),

and 𝜆N = o(N−1∕2), we have

1
N
𝜕QN

𝜕𝜽
(𝜽0) + 2𝜆N D𝜽0 = GT

0 C−1
0 gN(𝜽0) + o(N−1∕2).

Therefore, (A4) can be written as

√
N(�̂� − 𝜽0) = −

√
N(GT

0 C−1
0 G0)−1GT

0 C−1
0 gN(𝜽0) + op(1). (A5)

By Central Limit Theorem,

√
NgN(𝜽0)

d
−→ N(0,C0). (A6)

Using (A5) and (A6), we obtain

√
N(�̂� − 𝜽0)

d
−→ N(0, (GT

0 C−1
0 G0)−1).

▪

Proof of Theorem 3. By Taylor’s expansion,

Q(𝝍0, 𝜻0) − Q(�̂� , 𝜻) =

(
𝝍0 − �̂�
𝜻0 − 𝜻

)T

Q̇(�̂� , 𝜻) + 1
2

(
𝝍0 − �̂�
𝜻0 − 𝜻

)T

Q̈(𝝍∗, 𝜻∗)

(
𝝍0 − �̂�
𝜻0 − 𝜻

)

,

where (𝝍∗, 𝜻∗) is some value between (𝝍0, 𝜻0) and (�̂� , 𝜻). We can also obtain from Taylor’s expansion that

Q(𝝍0, 𝜻0) − Q(𝝍0, 𝜻) = (𝜻0 − 𝜻)TQ̇𝜁 (𝝍0, 𝜻) +
1
2
(𝜻0 − 𝜻)TQ̈𝜁𝜁 (𝝍0, 𝜻

∗∗)(𝜻0 − 𝜻),

where 𝜻∗∗ is between 𝜻0 and 𝜻 . From conditions in (9), we have

Q̇(�̂� , 𝜻) = 0 and Q̇(𝝍0, 𝜻) = 0.

Hence

Q(𝝍0, 𝜻) − Q(�̂� , 𝜻) = 1
2

(
�̂� − 𝝍0

𝜻 − 𝜻0

)T

Q̈(𝝍∗, 𝜻∗)

(
�̂� − 𝝍0

𝜻 − 𝜻0

)

− 1
2

(
0

𝜻 − 𝜻0

)T

Q̈(𝝍0, 𝜻
∗∗)

(
0

𝜻 − 𝜻0

)

.

If we expand Q̇𝜁 (𝝍0, 𝜻) about 𝜻0, and Q̇𝜁 (�̂� , 𝜻) about (𝝍0, 𝜻0), we obtain

0 = Q̇𝜁 (𝝍0, 𝜻) = Q̇𝜁 (𝝍0, 𝜻0) + Q̈𝜁𝜁 (𝜻 − 𝜻0) + Op(N− 1
2 ),

0 = Q̇𝜁 (�̂� , 𝜻) = Q̇𝜁 (𝝍0, 𝜻0) + Q̈𝜁𝜓 (�̂� − 𝝍0) + Q̈𝜁𝜁 (𝜻 − 𝜻0) + Op(N− 1
2 ).
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The above two equations give us

𝜻 − 𝜻0 = Q̈−1
𝜁𝜁 Q̈𝜁𝜓 (�̂� − 𝝍) + (𝜻 − 𝜻0) + Op(N− 1

2 ),

which can be written as
(

0
𝜻 − 𝜻0

)

=

(
0 0

Q̈−1
𝜁𝜁 Q̈𝜁𝜓 I

)(
�̂� − 𝝍0

𝜻 − 𝜻0

)

.

Then Q(𝝍0, 𝜻) − Q(�̂� , 𝜻) can be written as

(
�̂� − 𝝍0

𝜻 − 𝜻0

)T ⎧
⎪
⎨
⎪
⎩

Q̈(𝝍∗, 𝜻∗) −

(
0 0

Q̈−1
𝜁𝜁 Q̈𝜁𝜓 I

)T

Q̈(𝝍0, 𝜻
∗∗)

(
0 0

Q̈−1
𝜁𝜁 Q̈𝜁𝜓 I

)⎫
⎪
⎬
⎪
⎭

(
�̂� − 𝝍0

𝜻 − 𝜻0

)

+ Op(N
1
2 ),

which is asymptotically equivalent to

(
�̂� − 𝝍0

𝜻 − 𝜻0

)T ⎧
⎪
⎨
⎪
⎩

(
J𝜓𝜓 J𝜓𝜁
J𝜁𝜓 J𝜁𝜁

)

−

(
0 0

J−1
𝜁𝜁

J𝜁𝜓 I

)T

Q̈(𝝍0, 𝜻
∗∗)

(
0 0

J−1
𝜁𝜁

J𝜁𝜓 I

)⎫
⎪
⎬
⎪
⎭

(
�̂� − 𝝍0

𝜻 − 𝜻0

)

= (�̂� − 𝝍0)T(J𝜓𝜓 − J𝜓𝜁J−1
𝜁𝜁

J𝜁𝜓 )(�̂� − 𝝍0).

By theorem 3.2 in Hansen,21

(
�̂� − 𝝍0

𝜻 − 𝜻0

)
d
−→ Nd

⎧
⎪
⎨
⎪
⎩

(
0
0

)

,

(
J𝜓𝜓 J𝜓𝜁
J𝜁𝜓 J𝜁𝜁

)−1⎫
⎪
⎬
⎪
⎭

.

Therefore,

�̂� − 𝝍0
d
−→ Nd1

(
0, (J𝜓𝜓 − J𝜓𝜁 J−1

𝜁𝜁
J𝜁𝜓 )−1

)
,

thus, Q(𝝍0, 𝜻) − Q(�̂� , 𝜻) follows 𝜒2
d1

asymptotically. ▪
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