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Background and purpose — Analysis of the revision-free survival 
of knee and hip prostheses has traditionally been performed using 
Kaplan–Meier analysis and Cox regression. The competing risk 
problem that is related to patients who die during follow-up has 
recently been increasingly discussed, not least with regard to the 
problem of choosing a suitable statistical method for the analysis. 
We compared the results from analyses of Cox models and Fine 
and Gray models.

Methods — We used data simulation based on parameter 
estimates from the Swedish Knee Arthroplasty Register and 
assessed hypothetical effects of the studied risk factors. 

Results — The Cox model provided more adequate results.
Interpretation — The parameter estimates from the Fine and 

Gray model can be misleading if interpreted in terms of relative 
risk.

■

The analysis of arthroplasty data has traditionally been 
performed using Kaplan–Meier (KM) analyses or Cox 
regression models (Cox) for adjustment of differences in 
the distributions of age and sex. The purpose is typically to 
estimate, in a cohort of patients with arthroplasties, either the 
absolute (KM) or the relative revision risk (Cox) for certain 
factors among patients with different lengths of follow-up, a 
consequence of patients’ varying inclusion (operation dates) 
in the studied cohort.

At the end of follow-up, which usually occurs on the same 
date for the entire cohort, unrevised patients, who have had 
their implants for varying lengths of time, are censored. 
However, some unrevised patients may have been censored 
prior to this because of emigration or death. 

Both the KM and Cox methods are based on underlying 
assumptions regarding the censoring. The KM method 
requires non-informative censoring, i.e. that the distribution of 
censorship times does not provide any information regarding 
implant survival times and vice versa. Censored patients 
should have the same revision risk as non-censored patients. 
This is clearly not the case with patients who are censored 
because of death. 

The Cox method requires independent censoring, i.e. 
that censored patients are “representative” of those under 
observation at the same time, conditional on covariates at each 
point in time (Andersen et al. 1992). 

In other words, censoring is independent if it is random 
within any subgroup defi ned by the covariates. Independent 
censoring is thus less restrictive than non-informative 
censoring.

Both the non-informative and the independent censoring 
assumptions are incompatible with the censoring of events 
that preclude the studied event. Such events are known as 
competing events. Patient death is a typical competing event 
when studying implant revision.

When estimating revision risk, 2 different estimates can be 
defi ned depending on whether or not death as a competing 
event has been accounted for in the analysis: The net revision 
risk can be defi ned as the revision risk estimate in a hypothetical 
world where all patients live until they experience revision. 
Competing risks are simply assumed to be eliminated. An 
estimate of the 10-year revision risk corresponds to the risk 
that a patient can expect if he or she lives that long.

The crude revision risk can be defi ned as the revision risk 
in the real world where some patients die during follow-up 
without being revised. The actual revision risk will thus be 
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lower than it would have been if these individuals had lived 
long enough to be revised.

The estimation of crude revision risks focuses partly on 
other statistical methods than those previously used. The 
cumulative incidence method is usually used for estimating 
absolute crude risks and the Fine and Gray method when 
estimating relative crude risks (Gillam et al. 2010, 2011, 
Lacny et al. 2015, Maradit Kremers et al. 2016, Graw et al. 
2009, Jameson et al. 2015). 

Until recently, arthroplasty register reports have mainly 
presented net revision risks. After discussion in scientifi c 
journals, crude revision risks are now also presented (Gillam 
et al. 2010, 2011).

While the cumulative incidence method has not been a 
matter for much debate, the Fine and Gray models have been 
criticized on the grounds that their parameter estimates, which 
describe the relationship between risk factors and revision 
risk, are diffi cult to interpret (Andersen et al. 2012, Dignam et 
al. 2012). We compared the outcomes from the traditional Cox 
models with the results from the more recently introduced 
Fine and Gray models when analyzing relative revision risks 
with arthroplasty register data.

Methods

We used random samples from the Swedish Knee Arthro-
plasty register to estimate the empirical survival distributions 
(the time from the primary operation to death) of each sex 
and 5-year age class with help of the R library fi tdistrplus, 
and we used the estimated parameters to simulate death as a 
competing event with fi ctitious revision rates. When estimat-
ing survival we assumed that this was distributed according 
to a Weibull distribution. We also assumed that the revision-
free survival for 2 fi ctitious prosthesis types was distributed 
according to exponential distributions yielding 10-year revi-

sion risks similar to what has been observed empirically, i.e. 
in the magnitude of 4–8%. The computing of simulated data 
was performed using the R library survsim.

The simulated data were then analyzed in Stata version 
14.2 (Stata Corp LLC, College Station, TX, USA) using a 
Cox regression model and a Fine and Gray regression model 
with 1 binary indicator for the 2 fi ctitious implant types (0–1) 
and another binary indicator for women and men (0–1). Age 
in 5-year classes was included as a discrete variable. The 
simulation of data was repeated in cycles of 500 simulations 
and analyses. 

The hazard ratios estimated from the simulated data 
were then compared with the parameter values used in the 
simulations.

Results (Table)

While both models provided reasonably good estimates of the 
relative revision risk of prosthesis type and age, the Fine and 
Gray model substantially underestimated the revision risk for 
men. 

Discussion

One explanation for the unbiased estimates from the Cox 
model in spite of the competing risk problem is that the cen-
soring, at least in these simulations, depends on the parameters 
of the model, and that the Cox model is based on conditioning 
on observed values of censoring. The censoring distributions 
then do not enter the partial likelihood and therefore do not 
introduce bias (Broström 2001).

The reason for the underestimation of the male revision risk 
with the Fine and Gray model is the way this model takes the 
competing risk into account. A covariate (sex), which does not 
affect the primary event (revision) in itself, but is associated 
with the competing event (death), will appear to be associated 
also with the primary event, the revision risk. This problem 
has also been discussed in other publications (Szychowski et 
al. 2010, Dignam et al. 2012). 

A clinically more serious problem can be envisaged if 2 
prosthesis types with identical revision risks are allocated 
differently to patients with different mortality patterns, for 
example because of comorbidities. A Fine and Gray model 
would then have given the false impression that the revision 
risks of these prosthesis types differed. The phenomenon 
would not occur with a Cox model.

The differences in results between the 2 models depends 
on the different model formulation. The Fine and Gray 
model answers a slightly different question than the Cox 
model. The issue addressed by the Fine and Gray model 
refers to the pattern of actually performed revisions of men 
and women, not (as with the Cox model) to the revision risk 

True (simulated) and estimated values when 
comparing the revision-free survival of 2 different 
hypothetical prostheses types and including age 
and sex in the analysis

 
Variable RR 95% CI
  
Values used in the simulation
 Prosthesis 2 –
 Age 1 –
 Sex 1 –
Estimated values using a Cox model   
 Prosthesis 2.05 2.01–2.08
 Age 1.00 1.00–1.00
 Sex 1.00 0.98–1.02
Estimated values using a Fine and Gray model  
 Prosthesis 2.03 2.00–2.07
 Age 0.99 0.99–0.99
 Sex 0.86 0.85–0.87
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that could be expected for a patient living long enough. The 
latter information is important for rational clinical decision-
making vis-à-vis individual patients. The former information 
is relevant when planning economic projections and allocation 
of resources.

Furthermore, analyzing death as a competing event makes 
it diffi cult for orthopedic surgeons and patients to relate 
the results to previously published implant survival studies, 
which use the KM or the Cox method. It is important that 
publications intended for the orthopedic community clearly 
provide the reason for using competing risk analysis and 
explain the differences in results as compared with the more 
conventional KM and/or Cox methods.

In conclusion, we recommend using the Cox model when 
estimating relative revision risks using arthroplasty data. If 
Fine and Gray models are used, the authors should carefully 
consider the interpretation of the results in relation to the 
mortality patterns. 
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